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Abstract

Natural language inference on tabular data is
a challenging task. Existing approaches lack
the world and common sense knowledge re-
quired to perform at a human level. While
massive amounts of KG data exist, approaches
to integrate them with deep learning models to
enhance tabular reasoning are uncommon. In
this paper, we investigate a new approach using
BiLSTMs to incorporate knowledge effectively
into language models. Through extensive anal-
ysis, we show that our proposed architecture,
Trans-KBLSTM improves the benchmark per-
formance on INFOTABS , a tabular NLI dataset.

1 Introduction

Understanding tabular or semi-structured knowl-
edge presents a reasoning challenge for modern
natural language processing algorithms. Recently,
Chen et al. (2020) through TabFact and Gupta et al.
(2020) via INFOTABS presented this problem as a
natural language inference problem (NLI, Dagan
et al., 2013; Bowman et al., 2015, many others),
where a model is asked to determine whether a
hypothesis is entailed or refuted by a premise, or
is unrelated to it (c.f. Table 1). One technique for
modeling such tabular reasoning problems is to rely
on the success of contextualized representations for
the sentential variant of the problem (e.g., Devlin
et al., 2019; Liu et al., 2019, etc.). To convert tab-
ular data into a format suitable for these models,
they are flattened using heuristics into phrases.

Recently, Neeraja et al. (2021) highlight the sig-
nificance of adding world knowledge for the tab-
ular inference task (c.f. Table 1). Their approach
develops a knowledge addition strategy, namely
KG Explicit, which expands the keys of a tabular
premise with its definitions obtained from Wordnet
and Wikipedia articles. These definitions are ap-
pended as a suffix to the original input as additional
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James Hetfield

Birth Name James Alan Hetfield
Born Aug. 3, 1963(age 58), California, U.S.
Genres Heavy metal, thrash metal, hard rock
Occupation(s) Musician, Singer
Instruments Vocals, Guitar
Years active 1978-present
Labels Warner Bros, Elektra, MegaForce

Hypothesis James Hetfield was born on the west
coast of the USA.

Focused Relation coast AtLocation←−−−−−−− california

Human Entailment
RoBERTa Neutral
Trans-KBLSTM Entailment

Table 1: An INFOTABS example demonstrating the need of
knowledge augmentation. Predicting the Gold label requires
broad understanding of California is located on the Coast. In
the table, for each row the first column represents the keys
(unique identifiers) and the second column represents their
corresponding values (attributes).

context. With this added additional knowledge, the
model outperforms the original baseline. Despite
improved effectiveness, knowledge addition has the
following drawbacks: (a) Knowledge Extraction.
KG Explicit disambiguates multiple key definitions
using the table context, ignoring the hypothesis
content entirely. Additionally, the extended defini-
tion contains hypothesis-unrelated and unnecessary
additional functional terms. All of these factors
contribute to erroneous key-sense disambiguation
and additional noise. (b) Knowledge Addition.
KG Explicit adds knowledge by appending a suffix
definition to existing inputs instead of using more
effective semantic representations such as Knowl-
edge Embedding (Graph Embedding or Learned
representations). (c) Knowledge Integration. Fi-
nally, utilizing tokenized input BERT (Devlin et al.,
2019) to fuse word-pair relations yields consider-
ably weaker semantic linkages between premise,
hypothesis, and the external knowledge.

In this work, we propose a solution to these is-
sues. We drew inspiration from Chen et al. (2018)
and utilize relational connections between premise
and hypothesis to extract important knowledge re-
lations from ConceptNet (Speer et al., 2017) and
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Wordnet (Miller (1992)). This enhancement re-
duces noise in knowledge addition, resulting in
improved Knowledge Extraction. We embed re-
lational terms in sentences using sentence trans-
formers (Reimers and Gurevych, 2019) to encode
semantic representations of the relation, compara-
ble to Gajbhiye et al. (2021), culminating in suc-
cessful Knowledge Addition. Finally, for effec-
tive Knowledge Integration, we combine these
relational embeddings into a word-level language
model, using BiLSTM (Hochreiter and Schmidhu-
ber, 1997), and backpropagate using our proposed
BiLSTM and transformer architecture together to
enhance model inferencing capabilities.

Our proposed model, Trans-KBLSTM, outper-
forms the earlier baseline, i.e., KG Explicit in full as
well as limited supervision setting, substantially for
some specific categories. Furthermore, knowledge
addition via Trans-KBLSTM improve model lexi-
cal, multi-row and Numerical reasoning. We also
performed a detailed ablation study to understand
the importance of each component. Our contribu-
tions are as follows:
1. We address the challenges inherent in existing

techniques, e.g., KG Explicit, for explicit knowl-
edge addition in tabular reasoning.

2. We investigate a more efficient knowledge ex-
traction method that involves using knowledge
embeddings rather than directly appending them
to the input.

3. We propose a novel architecture, namely Trans-
KBLSTM, for integrating word-level knowl-
edge effectively with BiLSTM’s encoders with
state-of-the-art transformers such as BERT.

4. Through extensive experiments, analysis
and ablation studies, we demonstrate that
Trans-KBLSTM improves reasoning for
INFOTABS dataset.
The dataset, and associated scripts, are available

at https://trans-kblstm.github.io/.

2 Proposed Trans-KBLSTM Model

We highlight the main model components and their
implementation details in this section. We begin
with a description of the knowledge relations re-
trieval technique, followed by a discussion of the
model architecture’s core components.

2.1 External Knowledge Relations Retrieval

It is challenging to retrieve contextually relevant
knowledge relations from the knowledge graphs.
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Figure 1: High level flowchart of Trans-KBLSTM.

The challenge is to retrieve task-relevant knowl-
edge relations from massive volumes of noisy
Knowledge Graph data. Our method is inspired by
Chen et al. (2018), which considers a connection
to be significant if the knowledge graph contains
the term pair relations.

Relational Connections We define relational con-
nections between two sentences through external
relational knowledge between each pair of words
in the sentences. The token level relation connec-
tions are based on word triples derived from the
knowledge graphs.

Relational Connections Retrieval Stop words and
punctuation are first removed from the premise and
hypothesis. Then, we analyze the knowledge re-
lational connections between the premise and hy-
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pothesis token pairs and compute the relationship
attention matrix, Ar

ij , as follows:

Ar
ij =

{
1 ith and jth words are related
0 ith and jth words are not related

Each knowledge relational triple, consisting of two
token terms (one from each premise and hypothe-
sis) and their respective relationship is transformed
into a complete grammatical sentence. For instance,
the triple {Day, Antonym, Night} is transformed
into “Day is the opposite of Night”. For a com-
plete list of knowledge templates refer to table 5
in Appendix §B. We utilize sentence transformers,
as presented in Reimers and Gurevych (2019), to
convert the relationship phrase e.g. “is opposite of”
in the preceding example into high-level seman-
tic representations. The contextual representations
denote the relational pair’s across relational pairs.

Relational Connection Embedding The contex-
tual knowledge connections between premise and
hypothesis token pairs are used to generate a re-
lational vector, Rijk. Each marginal vector Rij

is the k dimension BERT representation for the
“Relation Connection Sentence” in the previously
described sentential form constructed using the re-
lationship between the ith premise word and the
jth hypothesis word. For words whose relations
are absent from knowlege source, we initialize the
Rij vector with ‘zero’ values.1

2.2 Model Architecture Details

Next, we described several components of our pro-
posed model. Figure 1 describe the high level ar-
chitecture of the Trans-KBLSTM model.

Transformer We encode the premise and hypoth-
esis using RoBERTa(Liu et al., 2019) to gener-
ate contextual word embeddings. Consider P =
{pi}mi=1 as table premise of length m and H =
{hj}nj=1 as hypothesis of length n. We input these
premise-hypothesis pairs to RoBERTa as :

S = [<s> P </s> H </s> ] ; Tr = RoBERTa(S)

Here, Tr denotes the context-aware representations
of the premise and hypothesis sentence.

Encoding Premise and Hypothesis The encoder
approach is inspired from Chen et al. (2018). We
encode the Premise, P = {pi}mi=1 and Hypothesis,

1 Experiment with non-zero random initialization ref §3.3.

H = {hj}nj=1 using bidirectional LSTMs (BiL-
STMs). We embed pi and hi into de dimensional
vectors

[
E(p1), ...E(pm)

]
and

[
E(h1), ...E(hn)

]

using embedding matrix E ∈ Rde×|V |, where |V |
is the Vocabulary size and E can be initialized
with pretrained embeddings. We feed the premise-
hypothesis pairs into BiLSTM encoders (Hochre-
iter and Schmidhuber (1997)) to generate context-
aware hidden states ps and hs.

ps = BiLSTM(E(p), i) ; hs = BiLSTM(E(h), i)

ps ∈ Rm×lk and hs ∈ Rn×lk

Here, lk is the LSTM hidden state size. Follow-
ing that we apply embedding dropout (Gal and
Ghahramani (2016)) to enhance variation and pre-
vent overfitting (Zaremba et al. (2014)).

Premise and Hypothesis Attention Module To
assess the contribution of external knowledge to
the premise (and hypothesis), we utilize the Multi-
Head dot-product attention (Vaswani et al., 2017)
across knowledge representations and premise-
hypothesis encoding. We calculate premise hypoth-
esis relation values by normalizing relational con-
nection embedding (Rijk) with respect to column-
axis (1), to obtain Rprem

jk ∈ Rn×k which is the av-
erage premise relation for every hypothesis word.

Rprem
jk =

m∑

i=1

Rijk

m

To apply dot product attention, we then reduce the
dimension of the relation matrix to BiLSTM hidden
state dimension, i.e., lk.

Rr
jk = F r

P (R
prem
jk ) ∈ Rn×lk

where, F r
P is a single layer neural network.

To highlight the importance of premise and its rela-
tions to hypothesis we utilise the premise attention
head. The context-aware hypothesis hidden state
hs is used as queries, premise hidden state is used
as keys and reduced premise hypothesis relation
values are used as values. The attention function
can be defined as follows:

Attention(hs, ps, Rr
jk) = softmax(

hspsT√
l

)Rr
jk

where, the multi-head attention is defined:

hattp = MH(hs, ps, Rr
jk)

= Concat(head1, . . . , headh)W o
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Here, headi = Attention(hsW q
i , p

sW k
i , R

r
jkW

v
i )

and W q
i ,W

k
i , and W v

i are projection matrices and
i is the number of attention heads. The output
hattp ∈ Rn×lk is a context matrix that is attention-
weighted according to the strength of the premise
and its relationships to each of the hypothesis
words. We also extract P att, the premise multi-
head attention attention weights. In hypothesis
attention module, we use hypothesis attention head
to highlight the importance of hypothesis and its re-
lations to premise. Similar to the premise attention
module, we calculate2 patth ∈ Rm×lk , attention-
weighted context matrix measuring the importance
of premise and relations to each of the hypothesis.
We also extract Hatt, the hypothesis multi-head
attention attention weights.

Context Aware External Knowledge ExBERT
(Gajbhiye et al., 2021) uses a mixture model
to weigh the balance of external relations and
premise-hypothesis during inference. We construct
attention-weighted external knowledge relations us-
ing Multi-head attention weights obtained in the
attention modules.

PCE =

h∑

k=1

P att
ij Rijk ; HCE =

h∑

k=1

Hatt
ij Rijk

Composition Layer ps encodes the individual
word representations of the premise while patth is
the context representation of the premise aligned
to the hypothesis. We can obtain word-level infer-
ence information for each word in the premise by
composing them together with attention weights
and context-aware external knowledge. We can do
the same calculation for hypothesis, hs and hattp :

pm = GP (
[
ps; patth ; ps−patth ; ps∗patth ;

n∑

j=1

PCE
ij

]
)

hm = GH(
[
hs;hattp ;hs−hattp ;hs∗hattp ;

n∑

j=1

HCE
ij

]
)

Here, GP and GH are 2-layer neural networks
with Dropout and ReLU activation (Agarap (2018))
that compose the knowledge relations and premise-
hypothesis contextual vectors into a unified knowl-
edge aware context vector.

Pooling Layer The pooling layer creates fixed-
length representations from the knowledge-aware
premise and hypothesis context vectors.

pmean = MeanPool(pm) ; pmax = MaxPool(pm)

hmean = MeanPool(hm) ; hmax = MaxPool(hm)
2 More details can be found in section A in §Appendix

Embedding mix-skip connection To effectively
integrate transformer embeddings with representa-
tions from premise and hypothesis, we introduce an
Embedding mix-skip connection, where the embed-
dings are concatenated and passed through a fully
connected layer with a skip connection to trans-
former embeddings. Skip connections, introduced
by He et al. (2016), provides a shortcut to gradient
flow and preserve the context between layers.

f =
[
pmean, pmax, hmean, hmax

]

f ′ = Tr + Fc([Tr, f ])

Here, Fc is a two-layer neural network with dropout
and ReLU activation. Finally, f ′ is passed through
a classification layer to obtain the inference class.

3 Experiment and Analysis

Our experiments study the following questions.

RQ1: Is our proposed model competent in using
external knowledge sources effectively to enhance
performance across INFOTABS evaluations sets?

RQ2: How effective is our approach in settings
with little supervision? How much supervision is
necessary to outperform benchmark models?

RQ3: (a) Which reasoning types is our proposed
model most effective at boosting? (b) Is our ap-
proach equally effective across all domains, that is,
across all table categories? (c.f.§C)

RQ4: How does the model component choices
impact performance? (a) To what extent are skip
connections, (b) knowledge embeddings, (c) addi-
tional MNLI (Williams et al., 2018) pre-finetuning,
and (d) a bigger pre-trained model beneficial?

3.1 Experimental setup

Here, we discuss the datasets, external knowledge
sources, and the models used in the experiments.

Datasets. We use INFOTABS , a tabular Lan-
guage inference dataset introduced by Gupta et al.
(2020) for all our experiments. The dataset is di-
verse in categories and keys and requires back-
ground knowledge and semantic understanding of
the text. Examples in INFOTABS are labeled with
three types of inference: entailment, neutrality, and
contradiction, based on their relation with premise
tables. Along with the standard development set
and test set (dubbed α1 ), the dataset includes two
adversarial test sets: a contrast set dubbed α2 that
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is lexically similar to α1 but contains fewer hy-
potheses, and a zero-shot set dubbed α3 that con-
tains long tables from various domains with little
key overlap with the training set.

Table Representation. To represent tables, we
utilize Neeraja et al. (2021) Better Paragraph Rep-
resentation (BPR) technique in conjunction with
Distracting Row Removal (DRR). The BPR tech-
nique turns its rows into sentences using a universal
template, enabling it to be used as the input for a
BERT-style model. We utilize the DRR approach
to reduce the premise table by identifying the most
relevant premise sentence. For finding the most rel-
evant rows, we use cosine similarity over fastText
embeddings (Bojanowski et al. (2017)) and word
alignment with the specified hypothesis. We select
the top four aligned table rows from each premise
table with hypotheses.

Knowledge Sources. We utilize ConceptNet, as
introduced by Speer et al. (2017) to extract external
commonsense knowledge to create relational occur-
rences. We notice that 85% of premise-hypothesis
pairings contain at least one relationship in the
ConceptNet database. To supplement the cover-
age, we also use Wordnet (Miller, 1992), to ex-
tract additional lexical word relations, namely Syn-
onyms, Antonyms, Hypernyms, Hyponyms and Co-
Hyponyms. After combining the two knowledge
databases and removing duplicates, the number of
non-zero relational connection pairings increases to
90%. We create an English directional single word
relations dataset by merging ConceptNet and Word-
net. The combined KG source contains 11.2 mil-
lion relation triples. For example in the table 1, the
relational occurrence { “coast” ← “California”}
extracted from Conceptnet, provide the necessary
world knowledge required for correct inference.

Word Embeddings. We utilize pre-learned word
embeddings to initialize the BiLSTM encoders.
The premise and hypothesis words are embedded in
300-dimensional vectors using Glove embeddings
3, introduced by Pennington et al. (2014). Glove is
a collection of 400,000-word embeddings learned
using the Wikipedia, Common crawl, and Twit-
ter datasets. We realize that the GloVe vocabulary
covers 85.6% of the terms in INFOTABS dataset.4

3 We also investigate fastText embeddings for representation,
but it has only 77.4 % coverage of all tokens. 4 Due to
limited supervision, we found that freezing word embedding
during the BiLSTM training is beneficial. For the remaining
unseen tokens, we initialized with zero vectors.

Models. To evaluate we compare our model with
INFOTABS (Gupta et al., 2020) and Knowledge-
INFOTABS (Neeraja et al., 2021) baselines, specif-
ically we employ the following methods:
• RoBERTa. The original RoBERTa baseline of

INFOTABS . We append and encode premise-
hypothesis pairs with BPR with DRR represen-
tation and generate an inference label with the
RoBERTa classification head.

• KG Explicit. Knowledge-INFOTABS intro-
duced this baseline. The baseline uses the same
RoBERTa classifier as the INFOTABS , except
that the premise end is augmented with extracted
premise row key definitions from Wordnet and
Wikipedia sources before encoding and classi-
fying using RoBERTa. Additionally, prior to
appending, the method employs key sense disam-
biguation to assure that only relevant hypothesis
context-related definitions are added. For ex-
ample, for a table with category “Person” and
key “Spouse”, the definition of “Spouse” from
Wikipedia, i.e., “Spouse is defined as a spouse is
a significant other in a marriage, civil union, or
common-law marriage.” is appended as a suffix.

• Tok-KTrans. We utilize Wordnet to expand
premise hypothesis pairs with word relations
in Tokens added transformers before encoding
and classifying using RoBERTa. We extend the
tokenizer by including relational tokens and
appending the relationships with the follow-
ing format - {<KNW> [premise_word1
: hypothesis_word1 ; <relation1> ]
[premise_word2 : hypothesis_word2 ;
<relation2>] . . . }. For example, The table
Jallikattu contains a key Mixed Gender with
a value NO. The hypothesis, Jallikattu is a
single sex sport contradicts the premise table.
We append the relation {<KNW> [ gender :
sex ; <SYN> ]} as suffix to input prior to the
RoBERTa classification.

• Trans-KBLSTM. This is our proposed model as
described in the §2. For details on model training
and hyper-parameters, refer to Appendix §G.

3.2 Results and Analysis

This section summarizes our findings concerning
the research questions.

Full Supervision Setting. To assess the effective-
ness of our method Trans-KBLSTM (i.e. RQ1), we
train baseline and our model Trans-KBLSTM with
100% of training data. Table 2 shows the perfor-
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mance (accuracy) for all models. We observe that
Trans-KBLSTM outperform5 all other baselines.
On development, α1 , and α3 Trans-KBLSTM
outperform 0.75 - 0.95 % with 100% training data.

Model Dev α1 α2 α3

w/o Knowledge 77.30 76.44 70.49 69.05
Tok-KTrans 78.17 76.19 70.75 69.77
KG Explicit 78.97 77.84 71.13 69.58
Trans-KBLSTM 79.92 79.62 72.10 70.21

Table 2: Performance in terms of accuracy with full supervi-
sion. w/o Knoweldge represent RoBERTa INFOTABS (Gupta
et al., 2020) baseline, KG Explicit represent Knowledge-
INFOTABS (Neeraja et al., 2021) baseline, Tok-KTrans is
the token appended transformers and Trans-KBLSTM rep-
resent our proposed model. Reported number are average
over three random seeds with standard deviation of 0.27 (w/o
KG), 0.69 (Tok-KTrans), 0.23 (KG Explicit) and 0.36 (Trans-
KBLSTM). All improvements are statistically significant with
Student’s t-test p < 0.05 except α2 with KG Explicit.

Limited Supervision Setting. To ensure that our
model works effectively in low-resource scenarios
(i.e., RQ2), we analyze models trained under lim-
ited supervision. We randomly sampled {1, 2, 3, 5,
10, 15, 20, 25, 30, 50, and 100} data in an incremen-
tal method 6. We experimented three times using
random seeds for sampling/training to account for
sample variability.

Figure 2 shows the accuracy for all models. We
observe a huge performance improvement with
Tran-KBLSTM over other baseline models for low
data regimes. All improvements are statistically
significant with Student’s t-test p < 0.05 except
dev results with 3% and 5%. For precise numbers
and standard deviation plots, see Table refer Table
8 in the Appendix §D. Additionally, as the train-
ing supervision increases, the performance margin
across models narrows. This improvement can be
attributed to the fact that the model’s reasoning
ability increases when more training data is added,
resulting in more accurate predictions without ex-
plicitly necessitating external knowledge addition.
As a result, adding external knowledge may not be
as beneficial if there is adequate supervision.

Reasoning Analysis To investigate the reason-
ing behind a model’s prediction (i.e., RQ3(a)), IN-
FOTABS adapted the set of reasoning categories
from GLUE (Wang et al. (2018a)) for tabular
premises. Thus, we also analyze performance
across several reasoning types on the development
5 reaches maximum in 6-7 epochs while Neeraja et al. (2021)
takes 14-15 epochs 6 Higher % include all instances from
lower %, i.e. a 20% includes all instances from a 10%
samples.

set of INFOTABS . We utilized the reasoning an-
notated instances from INFOTABS for our analy-
sis. Figure 3 show the performance across various
reasoning types on the development set for 1%
and 3% of INFOTABS development set. Trans-
KBLSTM model shows improvements in several
reasoning types including “Lexical”, “Multi-Row”,
and “KCS”.

• Lexical Reasoning involves inferencing through
words independent of context, where the
word falls. Since we add relational connec-
tions between words which include synonyms,
antonyms, etc. lexical reasoning ability of the
model enhances. For example, in the table

“Chibuku Shake”, the key “Ingredients” contains
“Sorghum” and “Maize” while the hypothesis
requires us to infer about Corn as an ingredi-
ent in the Chibuku shake. The relation {“corn”
Synonym←−−−−−− “Maize”} helps the model in making

the correct prediction. For details refer to table
13 in Appendix §E.

• Multi-Row Reasoning involves making an infer-
ence using multiple rows of the table. When
the reasoning involves multiple rows, the model
needs to extract the relevant rows and rightly fo-
cus on selected related connected phrases. The
relational connections that we propose between
premise and hypothesis tokens establish these
extractions and connections and thus enhanc-
ing the multi-row reasoning ability of the Trans-
KBLSTM model. For example in a “Person” ta-
ble relations such as { “born” RelatedTo←−−−−−→ “young”

; “born” RelatedTo←−−−−−→ “child” ; “child” RelatedTo←−−−−−→
“age” ; “year active”

Co−Hyponym←−−−−−−−−→ “child” }
help in connected both the born, child and year
active keys with the concern hypothesis. For de-
tails refer to table 12 in Appendix §E.

• Knowledge and Common Sense Reasoning. This
reasoning is related to the World Knowledge
and Common Sense category from GLUE-
Benchmark (Wang et al., 2018b), which is quoted
as “. . . the entailment rests not only on correct
disambiguation of the sentences, but also, ap-
plication of extra knowledge, whether factual
knowledge about world affairs or more common-
sense knowledge about word meanings or social
or physical dynamics.” Knowledge databases
like ConceptNet contain many knowledge rela-
tions capable of enhancing these reasoning type.
For example, in a “Country” table relations such
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Figure 2: Performance in terms of accuracy in limited supervision setting. w/o KG represent RoBERTa INFOTABS (Gupta
et al., 2020) baseline, KG Explicit represent Knowledge-INFOTABS (Neeraja et al., 2021) baseline, Tok-KTrans is the token
appended transformers and Trans-KBLSTM represent our proposed model. Reported results are average over 3 random seed
runs with average standard deviation of 0.233 (w/o KG), 0.49 (KG Explicit), 0.50 (Tok-KTrans) and 0.30 (Trans-KBLSTM). All
the improvements are statistically significant with Student’s t-test p < 0.05 of one-tailed Student t-test.

Figure 3: Number of correct model predictions across various reasoning types. w/o represents without knowledge (KG) i.e.
original RoBERTa models and w represents Trans-KBLSTM model with explicitly added relational connection knowledge (KG).

as { “kingdom” IsA←−→ “monarchy” ; “democracy”
RelatedTo←−−−−−→ “Government” } add additional infor-

mation necessary for inference. For details refer
to table 14 in Appendix §E.

Improvement across Inference Labels. In our
analysis, we observe a performance improvement
across the Entailment and Neutral labels, but only
a negligible increase, for example, in instances la-
beled with the Contradiction label. Contradictory
label prediction requires noise-free, contextually
relevant knowledge to ascertain the negation. Ex-
ternal knowledge addition with minimal noise can
lead to the predicted Neutral or Entailment label.
Additional ways for relational connection trimming
may be explored in future studies.

3.3 Ablation Study
We perform ablation studies (i.e., RQ4) to under-
stand the importance of individual model compo-

nents further. The ablation study was conducted to
ascertain the significance of (a) Trans-KBLSTM
Skip Connection, (b) Knowledge Relations, (c) Im-
plicit KG addition via. MNLI pre-training (Em-
beddings), and (d) Transformer Model Param Size.
(e) Independent Component training.

Effect of Skip Connections. We study the sig-
nificance of embedding skip connection and the
knowledge relations (i.e., RQ4(a,b)). The knowl-
edge relations are initialized with random vectors
to examine model performance variations.

Table 3 shows the Trans-KBLSTM performance
with several ablations. We observe that adding
knowledge and the introduction of skip connec-
tion improve the model performance. The addition
of knowledge to the model improves the perfor-
mance on Dev, α1, and α2 sets. The inclusion of
knowledge improves performance the most for De-

68



velopment, α2 , and α3 sets, whereas the addition
of skip connection improves performance substan-
tially in α1 set. The performance improvement in
α3 set demonstrates that using external informa-
tion benefits zero-shot settings (i.e., cross-domain
transfer learning). The improved performance by
the addition of skip connection demonstrates that
effective knowledge integration significantly im-
pacts model performance.

Ablations Dev α1 α2 α3

Trans-KBLSTM 67.55 65.16 64.00 63.38
- Skip Connect 65.72 62.83 60.00 61.55

- KB 60.44 61.88 56.94 55.55
- (KB + Skip Connect) 60.11 61.50 55.94 57.38

Table 3: Ablation study performance on stratified 1% split
of dataset. We systematically eliminate model components in
order to evaluate the performance improvement.

Implicit Knowledge Addition. We examine the
effect of implicit knowledge addition (i.e., RQ4(b))
in Trans-KGLSTM model. Thus, similar to the KG
Implicit baseline of Knowledge-INFOTABS (Neer-
aja et al., 2021), we supplement implicit knowledge
using the MNLI via data augmentation. To en-
sure a fair comparison, we compare the two Trans-
KBLSTM RoBERTa-based classifiers, one with
and the other without MNLI data pre-training.

Figure 4: Performance improvement with MNLI pre-training
across various models.

We observe an improvement in performance for
all percentages of train data after pre-training us-
ing MNLI data. Pre-training enables the model
to acquire domain-specific information, hence en-
hancing its performance. There is a more signifi-
cant gain in performance for non-pre-trained than
for MNLI pre-trained models, suggesting that ex-
ternal information addition is more beneficial for
models without any implicit knowledge. In com-
parison, our approach uses relational connections
to augment the model’s knowledge in the phase,
final training avoiding the computational, time, and
economic cost of large MNLI pre-training.

Figure 5: Improvement in model performance across varying
models sizes.

Effect of Transformer Size. We substitute
RoBERTaLARGE with RoBERTaBASE to study the
effect of transformer size on performance (i.e. RQ4
(d)) of INFOTABS test sets. We pre-train both the
transformers model using the MultiNLI dataset for
all percentages. The performance is depicted in
Figure 5. We see an increase in performance as
the model’s size increases, especially for external
knowledge addition, i.e., Trans-KBLSTM model.

Independent Training. We examine the effect
of training transformer and KBLSTM components
independently. For independent training, we first
train RoBERTaLARGE transformer model on IN-
FOTABS . Then we utilize these weights to initial-
ize the transformer component of Trans-KBLSTM.
Finally, we trained the KBLSTM component of
Trans-KBLSTM on INFOTABS while keeping
these pre-trained transformer weights frozen (con-
stant). Table 4 shows the results of training Trans-
KBLSTM with different regimes. We observe that
training the components together shows a more
significant improvement in performance than train-
ing the KBLSTM component independently. Joint
training of transformer and KBLSTM generates
representations in the same embedding space, en-
hancing external knowledge integration.

Ablations Dev α1 α2 α3

RoBERTaLARGE 77.30 76.44 70.49 69.05
+ KBLSTM (Independent) 79.22 78.38 71.00 69.22
+ KBLSTM (Joint Train) 79.92 79.62 72.10 70.21

Table 4: Joint/Independent training performance on IN-
FOTABS dataset. First row shows results of training
only RoBERTaLARGE model without knowledge. Sec-
ond row shows results of training KBLSTM indepen-
dently after freezing RoBERTaLARGE parameters. Third
row shows the results of our proposed approach i.e.
Joint-training of RoBERTaLARGE and KBLSTM.
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4 Comparison with Related Work

Recently, several papers have been published focus-
ing on NLP tasks involving semi-structured Tabular
data. Examples include tabular NLI (Gupta et al.,
2020), and fact verification (Chen et al. (2020); Aly
et al. (2021); Zhang and Balog (2019)). The use of
external knowledge into Tabular data was first ex-
plored by Neeraja et al. (2021) through KG-Explicit
model described in §3.1. We aim to improve on
this benchmark through this extensive study.

Knowledge Integration. Traditional approaches
to integrating external knowledge into deep learn-
ing models do not use contextual embeddings from
pre-trained language models. The Knowledge-
based Inference Model (KIM) (Chen et al., 2018)
incorporates lexical relations (such as antonyms
and synonyms) into the premise and hypothesis
representations using attention and composition
units. Lin et al. (2017) provides a method to mine
and exploit commonsense knowledge by defining
inference rules between elements under different
kinds of commonsense relations, with an infer-
ence cost for each rule. KG-Augmented Entail-
ment System (KES) (Kang et al., 2018) augments
the NLI model with external knowledge encoded
using graph convolutional networks. ConseqNet
(Wang et al., 2019) concatenates the output of
the text-based model and the graph-based model
and then feeds it to a classifier. Lin et al. (2019)
uses LSTMs and a novel knowledge-aware graph
network module named KagNet to achieve state-
of-the-art performance on CommonSenseQA. Bi-
CAM (Gajbhiye et al., 2020) models incorporate
knowledge from ConceptNet and AristoTuple KGs
(Dalvi Mishra et al., 2017) by factorized bilinear
pooling to improve performance on NLI Datasets.

Incorporating external knowledge into language
models has been extensively explored in recent
times. Approaches similar to the Tok-KTrans base-
line described in §3.1 where external knowledge
is added at input level were explored in Chen et al.
(2021); Xu et al. (2021); Mitra et al. (2019). At the
representational level, the model understands these
external knowledge additions and interacts with
these representations using multi-head attention
modules (Chang et al., 2020). Other approaches
include, pretraining on external knowledge cor-
pus to inject knowledge (Wang et al., 2021; Pe-
ters et al., 2019; Umair and Ferraro, 2021), bet-
ter knowledge representations (Bauer et al., 2021),

modifications to multi-head attention in pre-trained
language models (Li and Sethy, 2019; Haihong
et al., 2019), designing relation-aware tasks (Xia
et al., 2019) and integration of knowledge through
multi-head attention (Gajbhiye et al., 2021).

Closely Related Work. Li et al. (2019) finds
that when explicit knowledge is added in the form
of word-pair information, models such as Chen
et al. (2018) improve performance. However, such
models necessitate the use of classic seq2seq archi-
tectures such as BiLSTM to integrate word-level
knowledge. In our proposed approach, external
knowledge is separately added to the premise and
hypothesis using a multi-head attention dot prod-
uct. To encode the contextual relationships between
premise and hypothesis, we use a pre-trained lan-
guage model, RoBERTa (Liu et al., 2019). We com-
bine the LM embeddings (Gajbhiye et al., 2021)
and BiLSTM embeddings using a skip connection
which preserves the premise-hypothesis relational
context and integrates knowledge effectively.

5 Conclusion and Future Work

In this paper, we introduce Trans-KBLSTM, a
novel architecture to integrate external knowledge
into tabular NLI models. Trans-KBLSTM is shown
to improve reasoning on the INFOTABS dataset.
The performance advantage is particularly pro-
nounced in low-data regimes. The reasoning study
demonstrates that the model enhances lexical, nu-
merical, and multiple-row reasoning. Ablation ex-
periments demonstrate the critical nature of each
component in the model’s design. We believe that
our findings will be valuable to researchers work-
ing on the integration of external knowledge into
deep learning architectures. Performance of the
proposed architecture on more datasets can be ex-
plored in future studies. Looking forward, the ap-
plication of this architecture to other NLP tasks
that can benefit from external knowledge enhanced
relational connections between sentence pairs, such
as question answering and dialogue understanding.
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A Hypothesis Attention Module

In Hypothesis attention module, we calculate hy-
pothesis relation values by normalizing Rijk with
respect to row-axis(2), to generate Rhyp

ik ∈ Rm×k

which is the average hypothesis relation for every
premise word.

Rhypik =
∑

i = 1n
Rijk

n

We reduce the dimension by applying the dot prod-
uct attention.

Rr
ik = F r

H(Rhyp
ik ) ∈ Rm×lk

F r
N can again be a single layer neural network. We

then use the Hypothesis attention head to highlight
the importance of the hypothesis and its relations
to the premise. The context-aware premise hid-
den state ps is used as queries, the hypothesis hid-
den state is used as keys, and reduced hypothesis
premise relation values are used. The attention
function can be defined as follows:

Attention(ps, hs, Rr
ik) = softmax(

pshsT√
l

)Rr
ik

Then the multi-head attention is as follows:

patth = MH(ps, hs, Rr
ik)

= Concat(head1, ..., headh)W o

where, headi = Attention(psW q
i , h

sW k
i , R

rikW v
i )

and W q
i ,W

k
i , and W v

i are projection matrices and
i is the number of attention heads. The output
patth ∈ Rm×lk is an attention-weighted context ma-
trix measuring the importance of premise and re-
lations to each of the hypothesis. We calculate
patth ∈ Rm×lk , attention-weighted context matrix
measuring the importance of premise and relations
to each of the hypothesis. We also extract Hatt,
the attention weights of the hypothesis multi-head
attention.

B Knowledge Relations to Sentence
Conversion

We create templates to convert knowledge relations
in ConceptNet & WordNet to natural language sen-
tences. These templates resemble natural English
text, which can be encoded using pretrained lan-
guage models. The templates can be seen in table
5.
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KB Relation Natural Language

Antonym is opposite of
AtLocation is at location
CapableOf is capable of
Causes causes
CausesDesire causes desire to
CreatedBy is created by
DefinedAs is defined as
DerivedFrom is derived from
Desires desires
DistinctFrom is distinct from
Entails entailes
EtymologicallyDerivedFrom is etymologically derived from
EtymologicallyRelatedTo is etymologically related to
ExternalURL external url
FormOf is a form of
HasA has a
HasContext has context
HasFirstSubevent has first subevent
HasLastSubevent has last subevent
HasPrerequisite has prerequisite
HasProperty has property
HasSubevent has subevent
InstanceOf is an instance of
IsA is a
LocatedNear is located near
MadeOf is made of
MannerOf is manner of
MotivatedByGoal is motivated by goal
NotCapableOf is not capable of
NotDesires does not desire
NotHasProperty does not have property
PartOf is part of
ReceivesAction receives action
RelatedTo is related to
SimilarTo is similar to
SymbolOf is a symbol of
Synonym is same as
UsedFor is used for
dbpedia/capital has capital
dbpedia/field has field
dbpedia/genre has genre
dbpedia/genus has genus
dbpedia/influencedBy is influenced by
dbpedia/knownFor is known for
dbpedia/language has language
dbpedia/leader has leader
dbpedia/occupation ‘ has occupation
dbpedia/product has product
Hypernym is hypernym of
Hyponym is hyponym of
Co-Hyponym is co-hyponym of

Table 5: ConceptNet and Wordnet Relations with their
Natural language templates

C Domain Analysis

To understand the models performance across tabu-
lar domains (i.e. RQ3(b)), we analyse domain-wise
table category results. We evaluate the twelve ma-
jor categories contained in the INFOTABS datasets.
All remaining categories are grouped together in
the “Other” category. Table summarizes the per-
formance of models (trained with 2% and 5% IN-

FOTABS train data)7 on the INFOTABS develop-
ment set across several categories.

Category
1% 3% 10%

w/o KG w KG w/o KG w KG w/o KG w KG

Album 65.87 65.87 73.81 76.98 77.78 73.02
Animal 60.49 66.67 75.31 66.67 67.9 72.84
City 64.05 64.71 56.21 61.44 63.4 64.71
Country 56.48 54.63 56.48 55.56 60.19 62.96
Food & Drinks 69.44 70.83 72.22 73.61 83.33 79.17
Movie 61.11 63.89 63.89 63.89 70 73.89
Musician 62.57 69.88 73.1 74.56 75.73 76.9
Organization 61.11 58.33 55.56 66.67 69.44 72.22
Painting 80.25 80.25 75.31 77.78 77.78 80.25
Person 57 62.96 62.35 67.28 74.9 75.72
Sports 65.08 73.02 61.9 71.43 68.25 69.84
Others 63.89 65.28 66.67 70.84 63.89 61.11

TOTAL 62 65.83 65.88 68.61 72.27 73.22

Table 6: Accuracy (%) across different categories ob-
served in the Development set (Others (<10%) includes
the categories, University, Awards, Event, Book and Air-
craft), trained on 1%, 3% and 5% samples of the data.
w/o KG represents RoBERTa and w KG represents
Trans-KBLSTM model.

As the supervision increases from 1% to 10%,
we observe an increasing accurate prediction
trend across the categories. Our proposed model
shows significant improvements in “Musician” and

“Sports” categories. We attribute these huge gains
to two main reasons: (a) . Under minimal super-
vision, knowledge relations enable the model to
concentrate on relevant context, thus helping in es-
tablishing premise rows and hypothesis tokens con-
nections. For example refer to table 10 in Appendix
§E. (b) and the acquisition of additional knowledge
enhances the models’ overall world knowledge and
common sense reasoning capability. E.g. in the ta-
ble 1, the understanding of the California is located
at the coast.

Additionally, we observe that our proposed
model performs poorly in a few categories.
This part comprises instances from “Album”,

“Food & Drinks”, and “University”. This can be at-
tributed to the noisy addition of knowledge. Some-
times knowledge relations give out the relational
context that might not be needed. For example refer
to table 11 in Appendix §E. Additional knowledge
filtering may be addressed in future studies. For
domain analysis results of models trained on 2%
and 5% training data, refer to table 7.

D Limited Supervision

We present detailed results on limited supervision
experiments. All the reported numbers are aver-
7 For details results on other percentages refer to Appendix
§C Table 7.
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Category
2% 5%

w/o KG w KG w/o KG w KG

Album 68.25 67.46 72.22 73.81
Animal 65.43 64.20 72.84 69.14
City 55.56 58.17 60.13 61.44
Country 58.33 62.96 61.11 68.52
Food&Drinks 69.44 66.67 75.00 73.61
Movie 58.33 65.00 65.56 65.56
Musician 68.42 71.64 71.35 76.32
Organization 58.33 61.11 66.67 66.67
Painting 66.67 59.26 75.31 76.54
Person 61.32 60.49 68.72 67.08
Sports 66.67 69.84 61.90 68.25
Others 62.50 66.67 63.89 65.28

TOTAL 63.11 64.44 68.22 69.50

Table 7: Accuracy (%) across different categories ob-
served in the Development set (Others (<10%) includes
the categories, University, Awards, Event, Book and Air-
craft), trained on 2% and 5% samples of the data. w/o
KG represents RoBERTa baseline and w KG represents
Trans-KBLSTM

age over three seed runs with a standard deviation
of 0.233 (w/o KG), 0.49 (KG Explicit), 0.5 (Tok-
KTrans), and 0.30 (Trans-KBLSTM). All the im-
provements are statistically significant with p <
0.05 of one-tailed Student t-test.

E Qualitative Examples

Table 10, 11, 12, 13, and 14 present examples to
supplement the results presents in Section 3.

F Additional Results Reasoning Analysis

Table 15 detailed results of performance across
reasoning keys for models trained on 1%, 3%, 5%
and 10% data.

G Training and Hyperparameters Details

Trans-KBLSTM is implemented in PyTorch
(Paszke et al., 2019) using Huggingface (Wolf et al.,
2020) implementation of RoBERTa (Liu et al.,
2019). We pretrain the transformer components
on MultiNLI dataset (Williams et al., 2018) for fair
comparison with the Knowledge-INFOTABS base-
line of Neeraja et al. (2021). We use AdaGrad
optimizer (Duchi et al., 2011) with an initial learn-
ing rate of 1e-4 for RoBERTa and 1e-3 for non-
RoBERTa i.e. LSTM parameters with a scheduler.
The batch size is slected from {3,4, 5}. All the
hyper-parameters are fined tuned on the develop-
ment set of INFOTABS .

% Train Model Dev α1 α2 α3

1%

w/o KG 66.05 63.81 64.00 62.59
KG Explicit 65.15 63.22 62.24 60.63
Tok-KTrans 63.57 61.96 58.83 59.18
Trans-KBLSTM 68.03 65.18 64.83 64.12

2%

w/o KG 68.42 66.24 66.22 64.55
KG Explicit 66.70 65.07 63.77 62.11
Tok-KTrans 67.74 66.59 62.46 62.78
Trans-KBLSTM 69.72 67.02 66.51 65.36

3%

w/o KG 69.48 66.14 66.16 64.61
KG Explicit 68.12 66.05 64.85 62.85
Tok-KTrans 67.52 66.57 63.98 64.07
Trans-KBLSTM 70.00 67.09 67.00 64.90

5%

w/o KG 70.50 67.44 67.33 65.18
KG Explicit 68.78 66.65 65.20 63.74
Tok-KTrans 69.44 67.31 65.14 63.53
Trans-KBLSTM 70.98 67.50 68.01 66.11

10%

w/o KG 72.23 69.27 68.14 66.27
KG Explicit 70.68 68.77 67.07 64.70
Tok-KTrans 71.24 69.79 65.25 65.29
Trans-KBLSTM 72.51 70.18 68.40 66.77

15%

w/o KG 72.92 70.27 68.46 66.66
KG Explicit 72.05 70.16 67.37 65.05
Tok-KTrans 72.47 70.94 66.68 65.20
Trans-KBLSTM 73.61 70.96 68.90 67.29

20%

w/o KG 74.09 71.25 69.31 67.68
KG Explicit 72.70 70.99 67.89 65.55
Tok-KTrans 73.05 70.77 67.72 65.94
Trans-KBLSTM 74.29 72.16 69.77 67.29

25%

w/o KG 74.50 72.25 68.90 67.53
KG Explicit 74.46 72.32 68.61 66.91
Tok-KTrans 74.44 72.79 68.22 66.83
Trans-KBLSTM 75.09 73.20 69.57 68.18

30%

w/o KG 74.70 72.86 69.61 67.55
KG Explicit 74.83 72.26 68.69 66.89
Tok-KTrans 74.17 73.96 68.03 66.63
Trans-KBLSTM 75.57 74.25 69.62 67.57

50%

w/o KG 75.93 73.79 69.59 67.90
KG Explicit 75.99 74.05 70.36 68.51
Tok-KTrans 78.44 76.38 70.66 70.38
Trans-KBLSTM 76.71 74.86 70.68 68.93

100%

w/o KG 77.30 76.44 70.49 69.05
KG Explicit 78.97 77.84 71.13 69.58
Tok-KTrans 78.17 76.19 70.75 69.77
Trans-KBLSTM 79.73 78.92 71.62 70.21

Table 8: Shows the results of of our experiments, where
we train under limited supervision setting. w/o KG
Original RoBERTa baseline, KG Explicit KG-Explicit
knowledge addition, Tok-KTrans Token appended
transformers, Trans-KBLSTM Proposed model. We
train these models on data samples 1, 2, 3, 5, 10, 15, 20,
25, 30, 50, 100 %s. For full results, see appendix.
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Figure 6: The figures show error bar plots of limited supervision training on 1,2,3,5,10 and 15% of data. for
Trans-KBLSTM and RoBERTa baseline. We notice that the error overlap increases with increase in supervision.
The improvements are higher under low-data regimes.

Hyperparameter Value

LSTM Max Length 200
LSTM layers 2
LSTM learning rate 1e-3
LSTM Hidden state size 128
Word Embedding Dimension 300
RoBERTa Hidden state size 768
RoBERTa learning rate 1e-4
# Attention heads 4
Embedding Spatial Dropout 0.3
Dropout (Final classification) 0.2

Table 9: Enlists the hyperparameters used while training
the baselines and proposed model on INFOTABS

Joe Budden Premise

Premise Joe Budden was Born on ( 1980-
08-31 ) August 31, 1980 (age 38)
in New York, New York. The Ori-
gin of Joe Budden are Jersey City,
New Jersey. The Years active
of Joe Budden are 1999-present.
The Labels of Joe Budden are
Mood Muzik, EMPIRE (current),
Desert Storm, Def Jam, Amal-
gam Digital, and E1 (former)

Hypothesis Joe Budden started his career in
his twenties.

Focused Relation age
Co−Hyponym←−−−−−−−−→ twenties

Gold Label Contradiction

Prediction

RoBERTa Neutral

Trans-KBLSTM Contradiction

Table 10: In the absence of knowledge, the model is un-
able to understand the word twenties and concludes that
the information is not present in the text. However, ad-
dition of knowledge re-enforces the connection between
age and twenties thereby producing correct label
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Crooked Teeth Premise

Premise The Released of Crooked Teeth
are May 19, 2017. The Studio
of Crooked Teeth are Steakhouse
Studios, North Hollywood, CA.
The Genre of Crooked Teeth are
Hard rock, nu metal, and rap rock.
The Label of Crooked Teeth are
Eleven Seven.

Hypothesis The album Crooked Teeth took
over a year to make.

Focused Relation genre
Co−Hyponym←−−−−−−−−→ make ||

metal RelatedTo−−−−−−→ make || rap
Hypernym−−−−−−−→ make

Gold Label Neutral

Prediction

RoBERTa Neutral

Trans-KBLSTM Contradiction

Table 11: The baseline prediction correctly predicts the
gold label. Our proposed model gets confused with
semantically irrelevant relations and hence concludes
the statement as contradiction.

Jeff Bridges Premise

Premise The Born of Jeff Bridges are De-
cember 4, 1949 (age 69) Los
Angeles, California, U.S.. The
Years active of Jeff Bridges are
1951-present. The Children of
Jeff Bridges are 3. The Family
of Jeff Bridges are Beau Bridges
(brother), and Jordan Bridges
(nephew).

Hypothesis Jeff Bridges started his career as
a young child.

Focused
Relations

born RelatedTo−−−−−−→ young

born RelatedTo−−−−−−→ child

child RelatedTo−−−−−−→ age

active
Co−Hyponym−−−−−−−−−→ child

Gold Label Entailment

Prediction

RoBERTa Contradiction

Trans-KBLSTM Entailment

Table 12: The inference of the hypothesis requires the
model to focus on 1st and 2nd sentences at the same
time. The original model gets confused due to mention
of age 69 and young and concludes contradiction. The
focused relations develop appropriate connections to the
first two sentences and enable better understanding to
the model.

Chibuku Shake Premise

Premise The Type of Chibuku Shake
shake are Opaque Beer. The
Alcohol by volume of Chibuku
Shake shake are 3.3% to 4.5%.
The Colour of Chibuku Shake
shake are Tan-pink to white. The
Ingredients of Chibuku Shake
shake are Sorghum, and Maize.

Hypothesis Corn is an ingredient found in a
Chibuku Shake.

Focused
Relations

corn
Synonym←−−−−−→ maize

Gold Label Entailment

Prediction

RoBERTa Entailment

Trans-KBLSTM Entailment

Table 13: The inference of the given hypothesis requires
the knowledge of Synonymy between Corn and Maize

Hashemite Kingdom of Jordan Premise

Premise The Legislature of Hashemite
Kingdom of Jordan are Parlia-
ment. The Religion of Hashemite
Kingdom of Jordan are 95% Is-
lam (official), 4% Christianity,
and 1% Druze, Baha’i. The
Government of Hashemite King-
dom of Jordan are Unitary parlia-
mentary constitutional monarchy.
The Monarch of Hashemite King-
dom of Jordan is Abdullah II.

Hypothesis Hashemite Kingdom of Jordan
does not have any democracy.

Focused Relation Kingdom IsA←−→Monarch
Gold Label Contradiction

Prediction

RoBERTa Neutral

Trans-KBLSTM Contradiction

Table 14: The focused external knowledge relation con-
nects the Monarchy in premise to Kingdom in hypothe-
sis.
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Percent(%)Reasoning
keys

Entailment Neutral Contradiction
B.L KtLSTM . B.L KtLSTM . B.L KtLSTM .

KCS 64.52 70.97 31 85.71 85.71 21 50.00 62.50 24
coref 50.00 62.50 8 81.82 68.18 22 30.77 15.38 13
entitytype 83.33 83.33 6 87.50 87.50 8 50.00 50.00 6
lexicalreasoning 40.00 60.00 5 33.33 33.33 3 25.00 25.00 4
multirowreasoning 60.00 75.00 20 68.75 75.00 16 52.94 47.06 17

1% nameidentity 0.00 0.00 2 0.00 100.00 2 100.00 100.00 1
negation 0.00 0.00 0 0.00 0.00 0 66.67 83.33 6
numerical 63.64 54.55 11 66.67 100.00 3 42.86 42.86 7
quantification 25.00 25.00 4 100.00 92.31 13 16.67 16.67 6
subjectiveoot 33.33 33.33 6 75.61 80.49 41 50.00 50.00 6
temporal 73.68 78.95 19 45.45 45.45 11 56.00 60.00 25

KCS 67.74 83.87 31 66.67 80.95 21 75.00 70.83 24
coref 37.50 50.00 8 54.55 63.64 22 53.85 53.85 13
entitytype 50.00 50.00 6 62.50 87.50 8 66.67 50.00 6
lexicalreasoning 60.00 80.00 5 33.33 66.67 3 75.00 75.00 4
multirowreasoning 60.00 70.00 20 56.25 68.75 16 76.47 76.47 17

3% nameidentity 50.00 100.00 2 100.00 100.00 2 100.00 100.00 1
negation 0.00 0.00 0 0.00 0.00 0 100.00 100.00 6
numerical 54.55 81.82 11 66.67 66.67 3 71.43 71.43 7
quantification 75.00 75.00 4 69.23 76.92 13 66.67 66.67 6
subjectiveoot 50.00 50.00 6 65.85 80.49 41 66.67 66.67 6
temporal 47.37 63.16 19 54.55 72.73 11 64.00 40.00 25

KCS 87.10 83.87 31 71.43 90.48 21 66.67 62.50 24
coref 75.00 62.50 8 68.18 81.82 22 30.77 30.77 13
entitytype 83.33 83.33 6 87.50 87.50 8 83.33 83.33 6
lexicalreasoning 60.00 80.00 5 33.33 66.67 3 50.00 50.00 4
multirowreasoning 85.00 85.00 20 68.75 81.25 16 58.82 76.47 17

5% nameidentity 100.00 100.00 2 50.00 100.00 2 100.00 0.00 1
negation 0.00 0.00 0 0.00 0.00 0 100.00 66.67 6
numerical 72.73 90.91 11 100.00 100.00 3 71.43 85.71 7
quantification 75.00 50.00 4 92.31 100.00 13 33.33 16.67 6
subjectiveoot 66.67 33.33 6 73.17 87.80 41 50.00 50.00 6
temporal 94.74 84.21 19 36.36 63.64 11 56.00 52.00 25

KCS 74.19 80.65 31 95.24 90.48 21 70.83 70.83 24
coref 50.00 75.00 8 77.27 77.27 22 46.15 23.08 13
entitytype 66.67 83.33 6 87.50 87.50 8 100.00 83.33 6
lexicalreasoning 80.00 80.00 5 66.67 66.67 3 25.00 75.00 4
multirowreasoning 80.00 80.00 20 81.25 81.25 16 76.47 70.59 17

10% nameidentity 50.00 50.00 2 100.00 100.00 2 100.00 100.00 1
negation 0.00 0.00 0 0.00 0.00 0 83.33 100.00 6
numerical 81.82 100.00 11 100.00 100.00 3 71.43 71.43 7
quantification 50.00 50.00 4 84.62 92.31 13 33.33 33.33 6
subjectiveoot 33.33 50.00 6 82.93 87.80 41 50.00 33.33 6
temporal 78.95 89.47 19 63.64 63.64 11 68.00 68.00 25

Table 15: The above numbers represent accuracy on development dataset across different reasoning types with
varying percentage of data. The third number indicates the number of examples corresponding to the reasoning type
and label.
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