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Abstract

Information extraction systems analyze text to
produce entities and beliefs, but their output
often has errors. In this paper we analyze the
reading consistency of the extracted facts with
respect to the text from which they were de-
rived and show how to detect and correct er-
rors. We consider both the scenario when the
provenance text is automatically found by an
IE system and when it is curated by humans.
We contrast consistency with credibility; define
and explore consistency and repair tasks; and
demonstrate a simple, yet effective and general-
izable, model. We analyze these tasks and eval-
uate this approach on three datasets. Against
a strong baseline model, we consistently im-
prove both consistency and repair across three
datasets using a simple MLP model with atten-
tion and lexical features.

1 Introduction

Information Extraction (IE) systems read text to
extract entities, and relations and create beliefs rep-
resented in a knowledge graph. Current systems
though are far from perfect: e.g., in the 2017 Text
Analysis Conference (TAC) Knowledge Base Pop-
ulation task, participants created knowledge graphs
with relations like cause of death and city of head-
quarters from news corpora (Dang, 2017). When
manually evaluated, no system had achieved an F1
score above 0.3 (Rajput, 2017).

One reason for such low scores is inconsistency
between the text and the extracted beliefs. We con-
sider a belief to be consistent if the text from which
it was extracted linguistically supports it (regard-
less of any logical or real-world factual truth). We
show the difference between consistent and incon-
sistent readings, along with a potential correction,
in Fig. 1. In Fig. 1a, the system considered Harry

Reid was charged with an assault, which is not
∗*This work was done while the first author was doing his

Ph.D. at the University of Maryland, Baltimore County and
before joining Philips Research North America.

consistent with the provenance sentence. In Fig. 1b
the system is consistent in constructing its belief.

Belief learned by IE system:
per:charges(Harry Reid, assault)

Provenance identified by IE system:
Nevada’s Harry Reid switches longtime stance to
support assault weapon ban

Analysis output:
Is reading consistent: Inconsistent
Suggested relation: no repair

(a) An inconsistent reading with no correction.

Belief learned by IE system:
per:cause_of_death(Edward Hardman,
Typhoid fever)

Provenance identified by IE system:
The Western Australian government agreed to offer
the Government Geologist post to Hardman shortly
before news of his death reached them . Early in April
, he contracted typhoid fever , and died a few days
later in a Dublin hospital on 6 April

Analysis output:
Is reading consistent: Consistent
Suggested relation: per:cause_of_death

(b) A consistent reading not requiring a correction. Notice the
relation is unchanged.

Figure 1: Examples of beliefs extracted from real IE
systems on the TAC 2015 English news corpus, demon-
strating the consistency and repair tasks. Multiple sen-
tences can contribute to a belief (1b).

We study two problems: (i) whether an extracted
belief is consistent with its text (called consistency),
and (ii) correcting it if not (called repair). We be-
lieve we are the first to study these problems jointly.
We model these problems jointly, arguing that ad-
dressing both of these is important and can benefit
one another. Our use of consistency here refers to
a language-based sense that text supports the belief
even if its contradicts world knowledge.

We are concerned with methods that can be
standalone—that is, reliant on neither a precise
schema (Ojha and Talukdar, 2017) nor an ensemble
of IE systems, e.g., Yu et al. (2014); Viswanathan
et al. (2015). Previous work on determining the
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consistency of an IE extraction was not standalone.
We want a standalone approach because the results
from non-standalone approaches cannot be applied
when only the beliefs and associated provenance
text is available without the IE ensemble systems
and schema. (For this study we consider English
beliefs and provenance sentences.) Parallel to the
broad IE domain, schema-free and standalone sys-
tems have been developed to verify the credibility
of news claims (Popat et al., 2018; Riedel et al.,
2017a; Rashkin et al., 2017), but we are not aware
of a study of their performance on IE system tasks.
We incorporate these credibility systems into our
study in order to determine their applicability for
our tasks. We make the following contributions.

A study of real IE inconsistencies. We catalog
and examine the understudied aspect of language-
based consistency (§3).

A novel framework. To our knowledge we are
the first to study and propose a framework for
joint consistency and repair (§4).

Analysis of techniques. We show the effective-
ness of straightforward techniques compared to
more complicated approaches (§5).

Study of different provenance settings. We con-
sider and contrast cases where provenance sen-
tences are retrieved by an IE system (as in TAC)
vs. where they are curated by humans (as in Zhang
et al. (2017, TACRED)).

2 Task Setup

2.1 Consistency and Repair
We say the belief was consistently read if the
text lexically supports the belief. While this can
be viewed as a lexical entailment, it is not a
logical, causal, or broader inferential/knowledge
entailment. For example the belief <Barack

Obama,per:president_of,Kenya> is consistent
with a provenance sentence “Barack Obama,

president of Kenya, visited the U.S. for

talks" even though the sentence falsely claims
that Obama is president of Kenya. .

The belief is considered repaired if the relation
extracted by the IE system was not supported by
the text, but when replaced by another relation that
is supported by the text.

2.2 Datasets
We use three datasets: TAC 2015, TAC 2017, and
a novel dataset we call TACRED-KG. All datasets

use actual output from real IE systems. Each
dataset is split into train/dev/test splits: in Table 2
(in the appendix) we show the size of each split, in
terms of the number of provenance-backed beliefs.

TAC 2015 and 2017. These include the output
of 70+ IE systems, from the TAC 2015 and TAC
2017 shared tasks, with belief triples supported
by up to four provenance sentences. Each belief
was evaluated by an LDC expert (Ellis, 2015a).
We used these LDC judgments as the consistency
labels for our experiments. For TAC 2015, 27%
of the 34k beliefs are judged consistent; for TAC
2017, 36% of the 57k beliefs are judged consistent.

These TAC datasets do not, however, contain in-
formation on possible corrections when the belief
is inconsistent. To overcome this limitation, we
used negative sampling on the consistent beliefs
with their provenance to create an inconsistent pair.
We first selected an entity and then identified a set
of relations that apply to the entity. We randomly
chose one of the relations with uniform probability
and shuffled it with another relation, keeping the
provenance the same. For example, given two con-
sistent beliefs Barack_Obama,president_of,US,
and Barack_Obama,school_attended,Harvard,
we swap president_of with school_attended,
keeping the provenance unchanged. This yields
inconsistent beliefs associated with corresponding
provenance and the correct labels.

TACRED-KG. The TACRED-KG dataset is
a novel adaptation from the existing TACRED
(Zhang et al., 2017) relation extraction dataset. TA-
CRED is focused on providing data for typical
relation extraction systems. As such, it contains
4-tuples (subject, object, provenance sentence, cor-
rect relation), where relation extraction systems
are expected to predict that relation for the given
subject-object pair and the sentence. We turn
this relation extraction dataset into a KG-focused
dataset. We then used a relation extraction position-
aware attention RNN model (Zhang et al., 2017)
system on the TACRED data to produce 5-tuples
(subject, object, provenance sentence, correct rela-
tion, predicted relation). From these we created a
provenance-backed KG dataset, TACRED-KG, as
(subject, predicted relation, object, provenance sen-
tence). In TACRED-KG, we treat the gold standard
relation as the repair label. We consider beliefs
consistent when the predicted and gold standard
relations are the same.
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Category Definition Extracted Belief followed by IE extracted provenance text
Incorrect subject & object present but Harry Reid per:charges assault
relation relation not triggered/entailed Nevada’s Harry Reid switches longtime stance to support assault weapon ban
Subject entity is not mentioned in Eleanor Catton gpe:subsidiaries Bain
missing provenance Buying into Canada Goose is the latest Canadian investment for Bain .
Misc fact does not adhere to Reginald Wayne Miller per:charges felony

schema-specific guidelines
and requirements

Various news outlets have reported that federal agents have probable cause to charge
Reginald Wayne Miller with forced labor, a felony that can carry up to a twenty-
year prison sentence per charge.

Object entity is not mentioned in Kermit Gosnell per:cities_of_residence America
missing provenance Historic crowdfunding for movie about abortionist Kermit Gosnell - YouTube

Table 1: Examples for each of the four identified error categories from the TAC 2015 dataset.

Observational Comparison. We note some qual-
itative observations about these datasets, though
traceable back to how each dataset was constructed.
First, TAC 2015 and TAC 2017 contain more prove-
nance examples per relation than TACRED-KG.
Second, because the provenance was provided by
varied IE systems in TAC 2015/2017, the prove-
nance may be the result of noisy extractions and
matching: the provenance for TAC 2015/2017 is
often noisier than TACRED-KG (e.g., portions of
sentences vs. full sentences).

3 What Errors Do IE Systems Make?

We begin with an analysis of errors in the beliefs
from actual IE systems. This analysis is enlighten-
ing, as each system used different approaches and
types of resources to extract potential facts.

We sampled 600 beliefs and their provenance
text each from the training portions of three dif-
ferent knowledge graph datasets: TAC 2015, TAC
2017, and TACRED-KG. As described in §2.2, they
all contain provenance-backed beliefs that were ex-
tracted from actual IE systems (but ones which are
generally not available for subsequent downstream
examination). All of the beliefs are represented
as a relation between two arguments. The authors
manually assessed these according to available and
published guidelines (Ellis, 2015a,b; Dang, 2017)
to understand the kinds of errors made by the IE
systems. We identified four types of errors: the sub-
ject (first argument) not present in the provenance
text; the object (second argument) not present in the
provenance; an insufficiently supported relation be-
tween two present arguments; and relations that run
afoul of formatting requirements, e.g., misformed
dates. We show examples of these in Table 1.

Our analysis, summarized in Fig. 2, found that
the most frequent error type is an incorrect relation,
followed by missing subject, missing object and (at
a trace level) formatting errors. Though it varied

Figure 2: Error categorization of 600 beliefs extracted
by IE systems on three datasets. Multiple categories
can apply as beliefs can have incorrect relations and
incomplete provenance.

based on dataset, approximately two-thirds of the
sampled belief-provenance pairs had errors. The
prevalence of incorrect relations motivates the im-
portance of the relation repair task. It should be
noted that while TAC 2015 and 2017 have a number
of instances of missing subjects and objects, this
is not the case for TACRED-KG. This illustrates a
fundamental difference in selecting provenance in-
formation manually vs. automatically, and one that
we observe to be experimentally important (§5.3),
between TAC 2015/2017 and TACRED-KG.

4 Approach

Our approach computes both the consistency of a
belief bi and a “repaired” belief with respect to a
given set of provenance sentences. We represent bi
as a triple ⟨subjecti, predicatei, objecti⟩ and the set
of provenance sentences as Si,1, Si,2, ...Si,n. The
system outputs two discrete predictions: (1) a bi-
nary one indicating whether the belief is consistent
with the sentences, and (2) a categorical one sug-
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Figure 3: Given a belief and a set of n provenance sentences, our framework determines its consistency and suggests
a repair when if is deemed inconsistent. Our approach has three main modules: representation (4.1), combination
(4.2), and feature learning and classification (4.3).

gesting a repair. Fig. 3 illustrates our approach for
representing and combining the beliefs and prove-
nance sentences to jointly learn the two tasks.

Our approach has three main steps: embedding
a belief and its provenance sentences in a vector
space (§4.1), combining/aggregating these repre-
sentations (§4.2), and using the result for additional
feature learning and classification (§4.3). We de-
scribe our loss objective in §4.4. As we show, our
framework can be thought of as generalizing high
performing credibility models, such as DeClarE
(Popat et al., 2018) or LSTM-text (Rashkin et al.,
2017).

4.1 Belief & Provenance Representation

We process and tokenize a belief’s arguments and
relation. For example, the belief ⟨Barack_Obama,
per : president_of, United_States⟩ yields a
subject span (“Barack Obama”), a relation span
(“president of”), and an object span (“United
States”). We input processed text through an em-
bedding function fbelief to get a single embedding b
for the belief. Here, fbelief could be average of pre-
trained word embeddings, or final hidden state ob-
tained from a sequence model (LSTM or Bi-LSTM)
or the embedding from a transformer model (e.g.,
BERT (Devlin et al., 2019)). As we discuss in §5.2,
we experiment with all of these.

We represent the provenance sentences at two
granularities. The first is by representing each sen-
tence separately. We get a representation si for
each provenance sentence via an embedding func-
tion fevidence that embeds and combines them into a

single vector. We define fevidence similarly to fbelief.
The second level considers all sentences at the

same time. We refer to this as blob-level processing
(rather than paragraph- or document-level) since
the provenance sentences may come from different
documents and we cannot assume any syntactic
continuity between sentences. We obtain a repre-
sentation of the blob from fblob. In principle any
method of distilling potentially disjoint text could
be used here: we found TF-IDF to be effective, es-
pecially as multiple sentences of provenance selec-
tively extracted from different sources could result
in lengthy, but non-narratively coherent text (which
can be problematic for transformer models).

4.2 Belief and Provenance Combination

Given the belief and provenance representations,
we compute their similarity αi as the cosine of
the angle between their embedded representations:
αi =

bTi si
||bi||·||si|| . The intuition is that sentences that

are more consistent with the belief will score higher
than those which are less. Scoring is important, as
each IE system may give multiple provenance sen-
tences (e.g., TAC allowed four). The sentences can
be correct and support the belief, or be poorly se-
lected and unsupportive. Higher scores suggest the
provenance is related to the belief and helps differ-
entiate supportive from unsupportive provenance.
We use the computed similarity scores to combine
the provenance representations and take a weighted
average as our final input, capturing the semantics
of the belief and provenance, as x = 1

n

∑
i αi · si.

We pass the created representation x as the input
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to the feature learning module.
Though our computation of αi and x operate at

the sentence-level, our approach can also be ap-
plied to individual word representations. For this
word-level attention, we replace each sentence rep-
resentation si with a word representation wij in our
computation of αi and x. While we experimented
with this word-level attention we found the model
had trouble learning, frequently classifying beliefs
nearly all as consistent, or inconsistent with “no re-
pair.” We note that a similarly effective word-level
attention was provided in DeClarE.

We selected a similarity-based, rather than
position-based, attention. Applying position-based
attention, as Zhang et al. (2017) did on the TA-
CRED dataset, assumes that provenance sentences
contain an explicit mention of the subject and ob-
ject. In our setting that explicitly is not the case
(recall the prevalence of missing arguments in our
datasets, c.f. Fig. 2). There is also an assumption
that there is exactly one provenance sentence as
opposed to TAC, where an IE system can select
up to four provenance sentences without explicitly
mentioning either the subject or object.

4.3 Feature Learning and Classification

Prior to classification we may learn a more targeted
representation z by, e.g., passing the combined rep-
resentation x into a multi-layer perception. If we
do not, then the consistency and repair classifiers
operate directly on z = x.

We noticed through development set experi-
ments that while adding additional layers initially
helped, using more than three layers marginally
decreased performance. For a k-layer MLP we
obtained the projections h(j), for 1 ≤ j ≤ k, as:
h(j) = g

(
W (j)h(j−1) + b(j)

)
. h(0) = x indi-

cates the input, W (j) and b(j) are each layer’s
learned weights and biases (respectively), and g
is the activation function. Through dev set experi-
mentation we set g to be ReLU (Glorot et al., 2011).
We found the MLP gave better performance (§5)
and that it was parametrically and computationally
efficient. We note that the effectiveness of an MLP
was also noted by the two top systems from the
Fake News Challenge (Hanselowski et al., 2018;
Riedel et al., 2017b) for the verification task. On
dev, we evaluated from one to five hidden layers
and found the performance to be consistent after
three layers, with the mean close the scores in Ta-
bles 3 and 4 and a maximum standard deviation

across all the dataset and evaluation metrics to be
less then one F1 point.

In addition to the learned features learned h(k),
we experiment with a lexically-based skip connec-
tion, where the input from the previous layer skips
a few layers and is connected to a deeper one.
We found this to be effective when making use
of “blob” level features, computed via fblob. We
further found computing fblob as the TF-IDF vec-
tor of all provenance text to be especially effective
(§5.5). When using this connection, we compute
z =

[
h(k), fblob(blob)

]
. If this connection is not

used, z = h(k).

Classification. We use the final repre-
sentation z as input to the consistency
(ŷc = sigmoid (W cz + bc)) and repair classifiers
(ŷr = softmax (W rz + br)). The parameters
W c and W r have sizes 1 × (dtf-idf + dhidden) and
drelations × (dtf-idf + dhidden), respectively. Here
dtf-idf, dhidden, and drelations are the dimension of
the TF-IDF vector, hidden vector and number of
relations considered by the IE systems.

4.4 Joint Optimization
We train the parameters using back propagation of
both losses, Lconsistency and Lrepair, jointly:

L = Lconsistency (yc, ŷc) + Lrepair (yr, ŷr) (1)

Each subloss is a cross-entropy loss between
the true (yc,yr) and predicted (ŷc, ŷr) responses,
weighted inversely proportional to the prevalence
of the correct label. The tasks are not independent.
In our formulation they share the same provenance
and belief representations so learning both tasks
jointly helps in learning these shared parameters.1

While in this paper we present a joint loss ob-
jective, we note that we separately experimented
with alternative, non-joint approaches to Eq. (1).
However, in development we found they performed
worse than the joint approach. First we evaluated
pipelined approaches, e.g., where the repair clas-
sifier also considered the output of the credibility
model, but found its performance to be inferior to
the joint approach. Second, we also tried using
the repair output as input to the credibility classi-
fier, and found that it resulted in high recall with
poor precision, with inconsistent instances being
classified as consistent. The shared abstract rep-
resentation of belief and provenance used in our

1See §5 for discussion of alternative losses.
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TAC 2015 TAC 2017 TACRED-KG
Train 20575 45841 68124
Dev 6859 5734 22631
Test 6856 5729 15509

Table 2: Dataset statistics, in the number of provenance-
backed beliefs, for the train/dev/test splits per dataset.

formulation presented above allows fine tuning for
both subtasks. We also experimented on dev with
other types of weighting, such as a uniform weight-
ing. However, the inversely proportional weighting
scheme we describe in the main paper is what per-
formed best on dev experiments.

A Generalizing Framework. We note that we
can represent DeClarE by defining the belief en-
coder fbelief as averaging word embeddings, a
provenance encoder fevidence to be a Bi-LSTM,
combining these representations with word level
attention, and passing them to a two layer MLP
without lexical skip connections. To achieve this
specialization, we can optimize either Lconsistency
or Lrepair. Representing LSTM-text is similar. This
shows that our framework encompasses prior work.

5 Experiments

We centered our study around four questions, an-
swered throughout §5.3. (1) As our approach
subsumes credibility models, can those credibility
models also be used for the consistency and/or re-
pair tasks (§5.3.1)? (2) What features and represen-
tations are important for the consistency and repair
tasks (§5.3.2)? (3) How important is it to model
the realized (sequential) order of words within the
provenance sentences for our tasks (§5.3.3)? (4)
What are the differences between relation repair
and extraction (§5.3.4)?

5.1 Datasets and Hyperparameter Tuning

Table 2 provides statistics on the train/dev/test
splits. On dev, we tuned hyper-parameters over all
the models and datasets, using learning rates from
{10−1,...,10−5} by powers of 10, dropout (Srivas-
tava et al., 2014) from {0.0, 0.2}, and L2 regu-
larizing penalty values from {0.0, 0.1..., 0.0001}
(powers of 10). We ran each model until conver-
gence or for 20 epochs (whichever came first) with
a batch size of 64.

5.2 Components

We evaluated the effect of each of the four ma-
jor components mentioned below. We used Glove

(Pennington et al., 2014) as pre-trained word em-
beddings, except for BERT models, where we used
the uncased base model (Devlin et al., 2019).

Representations (Rep.): We evaluated three
ways to represent beliefs and provenance text (com-
pute fbelief and fevidence): Bag-of-Words (BoW) em-
bedding which is the average of Glove embeddings,
the final output from the LSTM and Bi-LSTM mod-
els, and the BERT representation output. While an
average of embeddings may seem simple, this ap-
proach has empirically performed well on other
tasks compared to more complicated models (Iyyer
et al., 2015).

Combining belief & provenance (Comb.):
When beliefs and provenance are used, we con-
sidered similarity as sentence-level attention (“Yes
(S)”) as well as word-level attention (“Yes (W)”).

Feature Learning (Feat.): In our primary ex-
periments to do further feature learning we used
a three layer multi-layer perceptron (“MLP”) to
do further feature learning. We indicate no further
feature learning with a value of “None.”

“Blob” Sparse Connection (“Sparse”): If used,
we set fblob to compute either a TF-IDF or binary-
lexical vector based on the blob (concatenation of
all sentences for a belief). This computed represen-
tation skips the feature learning component and is
provided directly to the classifier.

5.3 Results

The overall test results across our three datasets
are shown in Table 3 for the consistency task and
Table 4 for the repair task. Each of the selected
models was, prior to evaluation on the test set, cho-
sen due to its performance on development data.
The results are averaged across three runs.

5.3.1 Can Credibility Models be Used?
We first examine and compare our proposed frame-
work against two different strong performing cred-
ibility models. These external methods are our
baselines and we indicate them in Tables 3 and 4
by “♣” (Popat et al., 2018) and “♠” (Rashkin et al.,
2017). We find they both perform poorly compared
to other models, indicating that while both tasks
learn similar functions the credibility models can-
not be used “as-is” for consistency. This highlights
the fact that the consistency task is sufficiently dif-
ferent from the existing credibility task.

Moreover, in examining whether credibility mod-
els transfer to the repair task, word level attention
with a Bi-LSTM sentence encoder, as in DeClarE
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fbelief fevidence Comb. Feat. Sparse TACRED-KG TAC-17 TAC-15
P R F1 P R F1 P R F1

None None No None Binary 63.96 83.46 72.42 19.65 5.29 8.34 28.08 0.81 1.58
None None No None TF-IDF 63.95 83.24 72.33 57.58 30.66 14.05 22.68 15.08 18.12

None ♠ LSTM No MLP No 42.59 66.66 51.98 52.05 30.76 27.78 17.01 9.21 11.95
BoW ♣ Bi-LSTM Yes (W) MLP No 42.59 66.66 51.98 37.31 52.44 43.54 31.17 36.55 33.65
BERT BERT Yes (S) MLP TF-IDF 66.42 76.26 69.99 48.10 88.56 62.34 51.70 59.69 55.40
BoW BoW Yes (S) MLP TF-IDF 65.99 64.14 65.05 48.09 98.03 63.17 50.83 65.22 57.13

Table 3: Consistency performance (average of 3 runs) from our models (see §5.2 for a detailed explanation of the
columns). We indicate existing credibility models with ♣ (Popat et al., 2018) and ♠ (Rashkin et al., 2017). BoW
refers to bag of GLoVE embeddings.

fbelief fevidence Comb. Feat. Sparse TACRED-KG TAC-2017 TAC-2015
Macro Micro MRR Macro Micro MRR Macro Micro MRR

None None No None Binary 2.16 41.65 0.83 44.86 53.10 0.83 22.78 16.50 0.19
None None No None TF-IDF 14.50 43.48 0.83 75.49 76.80 0.76 76.35 77.57 0.76
None ♠ LSTM No MLP No 1.87 78.56 0.82 3.05 33.04 0.53 1.46 61.30 0.68
BoW ♣ Bi-LSTM Yes (W) MLP No 1.24 52.39 0.8 1.04 32.02 0.43 1.46 61.30 0.66
BERT BERT Yes (S) MLP TF-IDF 4.10 7.72 0.28 72.17 81.85 0.89 54.91 58.61 0.69
BoW BoW Yes (S) MLP TF-IDF 7.22 64.43 0.74 76.39 85.33 0.91 65.76 78.02 0.86

Table 4: Repair Performance (averaged over 3 runs) of models with abbreviations as in Table 3.

fbelief and Comb. Sparse Consistency Repair
fevidence P R F1 Macro Micro MRR

BoW No No 12.01 33.33 17.65 0.92 22.08 0.38
BoW Yes (S) No 12.01 33.33 17.65 0.89 21.16 0.34
BoW No TF-IDF 47.98 90.75 62.77 75.71 85.24 0.90
BoW Yes (S) TF-IDF 48.09 92.03 63.17 76.39 85.33 0.91

Bi-LSTM Yes (S) TF-IDF 59 87.71 70.53 75.76 83.86 0.89
BERT Yes (S) TF-IDF 48.11 91.47 63.06 76.30 85.25 0.91

Table 5: Consistency and repair performance ablation
study, averaged over three runs. "Comb." is belief and
provenance combination, and "Skip" is the use of skip
connection. All use an MLP for feature learning. For
space, we only consider TAC 2017 in these experiments.

(Popat et al., 2018, ♣), performs poorly in the re-
pair task too (with one exception on TACRED-KG).
These results highlight differences in the credibil-
ity vs. consistency tasks, and the applicability of
existing credibility models to both consistency and
repair, suggesting that a dedicated framework and
study such as ours is needed.

5.3.2 What Representations are Effective?
Consistency: Both sentence attention and a TF-IDF
sparse connection improve the overall F1 of our
framework’s embedding-based models. We noticed
that precision and recall vary across the datasets
due to their different characteristics. This can be
seen with the two methods that rely only on the
lexically-based sparse connections (the first two
rows of Table 3): while performance was strong
on TACRED-KG consistency, it was quite poor on
TAC 2015 and 2017. These latter two datasets have
more provenance sentences per belief, and make

fewer assumptions about what must be contained in
the provenance. Together, this results in greater lex-
ical variety, which suggests that while non-neural
lexical-based consistency approaches can be effec-
tive in settings with limited provenance, stronger
approaches are needed for greater and more diverse
provenance. Learning refined embeddings (rows 5
and 6) suggests that these pre-trained models are
helpful in the task. BERT benefits from the less
noisy provenance in TACRED-KG. However, simi-
lar or slightly better performance is achieved when
simple word embeddings are used, especially for
TAC 2015/2017, highlighting the difficulty of the
consistency task with noisier provenance.

Repair: Perhaps surprisingly, an embedding
model with a TF-IDF sparse connection yielded
good performance. The sparse-based lexical fea-
tures are most influential, as evident from when just
TF-IDF or binary lexical features are used. Look-
ing across the three datasets, we notice that a TF-
IDF only model provides a surprisingly strong base-
line, outperforming the existing credibility models
in almost all cases. Using BoW embedding with
sentence attention, MLP feature learning, and a
TF-IDF sparse connection, we can surpass a sparse-
only TF-IDF approach. The BERT-based represen-
tation, fine-tuned or not, performed nearly equally
to a BoW embedding on the repair task, indicating
both the effectiveness of its pre-trained model and
highlighting the difficulty of this repair task.
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Belief: Marty Walsh; org:city_of_headquarters; Neighborhood House Charter School
Summary: (✓, fixed)
Human(C): No; Predicted(C): No; Human(R): org:founded_by; Predicted(R): org:founded_by
Provenance: Walsh was a founding board member of Dorchester’s Neighborhood House Charter School,
and makes clear that he would support lifting the cap on charters in the city, something that hardly wins
him the favor of the Boston Teachers Union.
Belief: Alan M. Dershowitz; per:title; professor
Summary: (✗, incorrect_fixed)
Human(C): Yes; Predicted(C): No; Human(R): per:title; Predicted(R): per:religion
Provenance: Harvard Law professor Alan Dershowitz said Sunday that the Obama administration was
naive and had possibly made a "cataclysmic error of gigantic proportions" in its deal to ease sanctions on
Iran in exchange for an opening up of the Islamic Republic s nuclear program.

Figure 4: Examples of our model’s predictions on the TAC 2015 datasets. Human: gold standard label, Predicted:
our model’s label, C: Consistency, R: Repair, Human(C): Human Consistency label, and Predicted(C): Predicted
consistency label. Similarly for repair. Summary indicates overall prediction analysis of example. (✓, fixed) means
consistency correctly predicted and incorrect belief was fixed.

5.3.3 How Helpful Is Sequential Modeling?
As indicated by Zhang et al. (2017), the sentences
in TACRED and TAC are long. Consistency and
repair models must be able to handle that. Note
that BoW representation methods do not consider
word order, while LSTM, Bi-LSTM and BERT em-
beddings do. From Tables 3 and 4, we see that
TF-IDF sparse features and a sentence level com-
bination of the belief and provenance give the best
performance on both tasks when using a BoW rep-
resentation, as compared to an LSTM, Bi-LSTM
with word attention, and BERT. This indicates that
for consistency and repair, unordered lexical fea-
tures can be sufficient to get better performance.

We further examine this in Table 5, where due
to space we focus on TAC 2017. Notice that while
sequence-based encodings can improve some as-
pects (e.g., precision and F1 for consistency), there
are not across-the-board improvements. We ex-
perimented with replacing the BoW embedding
with a sentence-level Bi-LSTM representation. A
Bi-LSTM representation with just attention and
TF-IDF sparse features gives better consistency
precision and F1 compared to BoW embedding ap-
proaches. However, the Bi-LSTM results in overall
lower performance for repair. While the differences
are not very large, they indicate that simple meth-
ods can outperform, or perform competitively
with, sequential and autoencoding methods.

5.3.4 Relation Repair vs. Re-Extraction
While the repair task can be viewed as relation
re-extraction, we examine the implications of this.
Tables. 3 and 4 show a large performance drop

for TACRED-KG vs. TAC 2015/2017. First, TA-
CRED was created from a TAC dataset and mod-
ified and augmented by crowd-sourced workers.
When the belief was found with abstract or gen-
eralized provenance, workers were shown a set of
sentences containing the subject-object pairs and
asked to pick the representative sentence which was
most specific. Second, each sentence is guaranteed
to include the subject and object mentions, which
is not always true for TAC 2015 and 2017, where a
significant number of TAC provenance sentences
were missing one or both the subject and object
mentions. This highlights some of the differences
in the core assumptions made in the construction
of a relation extraction dataset.

5.4 Prediction Error Analysis

Fig. 4 demonstrates our framework’s performance
on some examples from TAC 2015. The first ex-
ample describes the case where the belief was con-
sistent with the provenance information and there
was no recommendation of an alternate relation.
Depending on the provenance the fix may not be
appropriate, as in the second example of per:title vs.
per:religion where we believe an indicative word
like “Islamic” influenced the repair prediction.

5.5 Ablation Study

Our results show the strength of attention with lex-
ical features. We further examine the impact of
lexical features, using the first four rows of Table 5.

Lexical Impact on Consistency. From the first
row of Table 5, we see BoW embedding for both
the belief and provenance results in low precision
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and recall. While adding attention does not help,
using TF-IDF sparse features drastically improves
performance. Meanwhile, removing sentence-
based attention only has a small impact on perfor-
mance. All together this indicates the provenance
found by the IE system is more lexically systematic.

Lexical Impact on Repair. A similar trend is
seen for the repair task: our combined represen-
tation with TF-IDF is better than relying only on
embeddings. Combining belief and provenance
sentences gets slightly better micro overall com-
pared to macro. This affects the MRR score too.
However, the best performance is achieved when
all components are combined.

6 Related Studies

There has been research on determining the consis-
tency of beliefs using either schemas or ensembles,
but none that are language-based, do not require
access to IE system details, or attempt to repair
inconsistent facts. Our work addresses all these.

Schema and Ensemble Based approaches: Pre-
vious work by Ojha and Talukdar (2017) and Pu-
jara et al. (2013) determined the consistency of
the extracted belief using a schema as the side in-
formation and coupling constraints to satisfy the
schema’s axioms. Rather than applying schemas,
Yu et al. (2014) proposed an unsupervised method
applying linguistic features to filter credible vs.
non-credible belief. However, it required access
to multiple IE systems with different configuration
settings that extracted information from the same
text corpus. Viswanathan et al. (2015) used a su-
pervised approach to build a classifier from the
confidence scores produced by multiple IE systems
for the same belief. These are not standalone sys-
tems, as they assume the availability of multiple IE
systems.

Language based approaches: The FEVER
(Thorne et al., 2018) fact-checking study proposes
a framework for credibility task and performs
provenance-based classification without attempting
to repair errors. This task has inspired a number
of efforts (Yin and Roth, 2018, i.a.,), including Ma
et al. (2019) who tackle a problem similar to our
consistency. Guo et al. (2022) outlines additional
language-based approaches for consistency predic-
tion (they term it “verdict prediction”). However, a
crucial difference is that we aim to operate on KG
tuple outputs as the belief (not sentences).

Overall, our study differs from previous ones in

two important ways. (1) We address the problem of
determining consistency and potential corrections
without access to an underlying semantic schema.
(2) Our standalone approach treats the underlying
IE systems as blackboxes and requires no access to
the original IE systems or detailed system output
containing confidence scores.

7 Conclusions

We propose a task of refining the beliefs produced
by a blackbox IE system that provides no access
to or knowledge of its internal workings. First we
analyze the types of errors made. Then we propose
two subtasks: determining the consistency of an ex-
tracted belief and its provenance text, and suggest-
ing a repair to fix the belief. We present a modular
framework that can use a variety of representation,
and learning techniques, and subsumes prior work.
This framework provides effective techniques for
the consistency and repair tasks.
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