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Abstract

Hierarchical Text Classification (HTC), which
aims to predict text labels organized in hier-
archical space, is a significant task lacking in
investigation in natural language processing.
Existing methods usually encode the entire hier-
archical structure and fail to construct a robust
label-dependent model, making it hard to make
accurate predictions on sparse lower-level la-
bels and achieving low Macro-F1. In this paper,
we explore the level dependency and path de-
pendency of the label hierarchy in a generative
way for building the knowledge of upper-level
labels of current path into lower-level ones, and
thus propose a novel PAAM-HiA-T5 model for
HTC: a hierarchy-aware T5 model with path-
adaptive attention mechanism. Specifically, we
generate a multi-level sequential label structure
to exploit hierarchical dependency across differ-
ent levels with Breadth-First Search (BFS) and
T5 model. To further improve label dependency
prediction within each path, we then propose
an original path-adaptive attention mechanism
(PAAM) to lead the model to adaptively focus
on the path where the currently generated la-
bel is located, shielding the noise from other
paths. Comprehensive experiments on three
benchmark datasets show that PAAM-HiA-T5
greatly outperforms all state-of-the-art HTC
approaches especially in Macro-F1.

1 Introduction

Hierarchical text classification (HTC), where text
labels are predicted within a hierarchical structure,
is a challenging task that has not yet received due
attention within the field of multi-label classifica-
tion. HTC methods have been extensively applied
in industry domains, e.g., news article classifica-
tion (Sandhaus, 2008), product classification in E-
commerce (Yu et al., 2018), bidding strategy in
paid search marketing (Agrawal et al., 2013).
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†Corresponding Author

Root

NewsFeatures

Arts

Dance Music

Opinions

SportsBusiness

HockeyBaseball Football

Root

NewsFeatures

Arts

Dance Music

Opinions

SportsBusiness

HockeyBaseball Football

Root

NewsFeatures

Arts

Dance Music

Opinions

SportsBusiness

HockeyBaseball Football

(a) Overall hierarchy (b) Level dependency (c) Path dependency   

Figure 1: (a): the static labeling process is uniform and
simultaneous for all labels in the label hierarchy. (b):
the dynamic labeling process where the lower-level la-
bels depend on the upper-level labels. (c): the dynamic
labeling process focuses on ancestor labels already gen-
erated on the current path.

In HTC tasks, labels at lower-level are inevitably
sparse due to the hierarchical structure. Many stud-
ies (Barbedo and Lopes, 2006; Xiao et al., 2007;
Johnson and Zhang, 2015) completely or partially
neglect such hierarchical structure and fail to ac-
curately predict those lower-level labels, achieving
low Macro-F1 score. Existing studies (Peng et al.,
2021; Wu et al., 2019) have proved that introduc-
ing structure information can boost the predictive
power on low-level labels and thus improve the
overall task performance. A number of studies
(Cesa-Bianchi et al., 2006; Shimura et al., 2018;
Wehrmann et al., 2018; Banerjee et al., 2019) pro-
pose to construct multi-level classifiers that are
trained independently and predicted sequentially,
where only local maximum is achieved and propa-
gation of error negatively impacts model prediction.
Some studies design end-to-end models that intro-
duce various strategies (such as Tree-LSTM/GCN
(Zhou et al., 2020), label semantics matching net-
work (Chen et al., 2021), graph-CNN (Peng et al.,
2018) and hierarchical fine-tuning based CNN
(Shimura et al., 2018)) to encode the overall hi-
erarchy information (as depicted in Figure 1 (a)),
where label dependency across different levels (as
depicted in Figure 1 (b)) is not captured in a more
principled way and unnecessary noises are intro-
duced. Such models tend to predict all labels simul-
taneously and independently with sigmoid function,
and they could cause serious label inconsistencies
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(One label is predicted positive but its ancestors
are not. For example, in Figure 1 (b), the “Foot-
ball” is predicted while the “Sports” is not.) and
require post-processing to rectify these contradic-
tions (Mao et al., 2019). Although one recent study
(Mao et al., 2019) develops label-dependent models
with reinforcement learning, it still fails to address
label dependency within each path (as depicted in
Figure 1 (c)) and fails to fully integrate labels and
text information.

This paper seeks to close the gap by proposing
the PAAM-HiA-T5. We are not only the first to cap-
ture lower-level label dependency on upper-level
ones with generation model, but also the first to ac-
curately explore the level dependency within each
path. In each step of prediction phase, our model
generates next label based on the text sequence and
labels previously generated on current path. As il-
lustrated in Figure 1(c), our model sequentially pre-
dicts “Features”, “News”, “Arts”, “Sports”, “Mu-
sic”, “Football” labels. In the process where label
“Football” is generated, our model pays more at-
tention on “News” and “Sports” labels on its own
path instead of “Features” and “Arts” labels on an-
other path. Therefore, our model is less likely to
cause label inconsistency. For example, when la-
bels “News” and “Sports” are known to the model,
it is easier to predict the label “Football” as Figure
1 (b) shows.

Our PAAM-HiA-T5 model follows a two-step
design.

Hierarchy-aware T5 (HiA-T5), a variant of
T5 that is fully aware of the level dependency in
a multi-level sequential generative manner. In-
spired by the idea that conventional classification
routines often follow the order that from coarse-
grained to fine-grained to predict labels, we firstly
use Breadth-First Search (BFS) to flatten hierarchi-
cal labels into multi-level sequential label structure,
transforming the hierarchy to sequence. T5 model
is applied to map the text sequence to label se-
quence, where the text sequence and upper-level
labels generated earlier are then integrated in order
to determine the next label.

Path-adaptive attention mechanism (PAAM),
a mechanism to exploit the label correlation within
each path and shield the noise from other paths.
Through the PAAM, the model can adaptively ob-
tain a more reasonable attention distribution be-
longing to the path where the currently generated
label is located. PAAM is implemented by means

of a regularization method.
This study makes the following major contribu-

tions:

• We propose a novel HiA-T5, a multi-level
sequential label generative model to exploit
label dependency across different levels. The
mapping relationship between text sequence
and label sequence is examined in each step
of prediction.

• We propose an original PAAM to lead the
model to adaptively focus on the path where
the currently generated label is located, shield-
ing the noise from other paths to further im-
prove prediction performance.

• Experiments on various datasets show that
our proposed PAAM-HiA-T5 achieves signif-
icantly and consistently better performance
than state-of-the-art models. Experimental
analysis shows that PAAM-HiA-T5 is es-
pecially benefical to those lower-level long-
tailed labels. And our model can obtain better
label consistency.

2 Related Work

Hierarchical text classification (HTC) is a critical
task with numerous applications (Qu et al., 2012;
Agrawal et al., 2013; Zhang et al., 2019; Peng et al.,
2016). By methods of hierarchical information
modeling, HTC approaches can be categorized into
flat, local and global approaches (Silla and Freitas,
2011).

Flat approaches (Hayete and Bienkowska, 2005;
Barbedo and Lopes, 2006; Xiao et al., 2007; John-
son and Zhang, 2015) completely or partially ig-
nore the label hierarchy and each label is inde-
pendently predicted. Some of them simply ignore
the invaluable hierarchical information and achieve
poor performance. Some others predict leaf nodes
first and then mechanically add their ancestor la-
bels, which is only applicable where different paths
in the label hierarchy share the same length.

Local approaches (Koller and Sahami, 1997;
Cesa-Bianchi et al., 2006; Shimura et al., 2018;
Wehrmann et al., 2018; Banerjee et al., 2019) con-
struct multiple local classifiers so that the misclassi-
fication at a certain level is propagated downwards
the hierarchy, easily leading to the exposure of
bias (Silla and Freitas, 2011). Specifically, Peng
et al. (2018) proposes deep graph convolutional
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neural networks with hierarchical regularization.
Wehrmann et al. (2018) utilizes a multi-label neu-
ral network architecture with local and global opti-
mization. To address the lower-level labels sparsity
problem, Shimura et al. (2018) takes advantage of
a CNN-based model with the fine-tuning method.
Banerjee et al. (2019) proposes to transfer the pa-
rameters of parent classifiers to initialize child clas-
sifiers for HTC task.

Global approaches (Gopal and Yang, 2013; Mao
et al., 2019; Wu et al., 2019; Zhou et al., 2020;
Peng et al., 2021), where the entire structural infor-
mation is encoded and all labels are simultaneously
predicted, has become recent mainstream due to
its better performance. Mao et al. (2019) handles
HTC task with reinforcement-learning-based label
assignment method. Wu et al. (2019) uses meta-
learning to model the label interaction for multi-
label classification. Zhou et al. (2020) utilizes the
Bi-TreeLSTM and GCN to model hierarchical rela-
tionship and makes flat predictions for hierarchical
labels. Peng et al. (2021) combines CNN, RNN,
GCN, and CapsNet to model hierarchical labels.
Chen et al. (2021) formulate HTC as a semantic
matching problem to mine the text-label seman-
tics relationship. Although recent researchers have
managed to introduce hierarchical information in
different fashions, most of them still regard flat
multi-label classification as the backbone of HTC
where all labels are predicted simultaneously and
independently. Their exploitation of hierarchical
structure is far from sufficient.

3 Problem Definition

For HTC, we define the overall label hierarchy as a
tree-like structure, denoted by T = (L,E), where
L = {l1, l2, . . . , lK} refers to the set of all label
nodes in the corpus and K is the total number of
them. E refers to the set of edges indicating the
nodes’ parent-child relations. Formally, we denote
text objects as X = {X1, X2, . . . , XN} and their
labels as L = {L1, L2, . . . , LN}.

Each text object is represented by a text sequence
Xi = [x1, x2, . . . , xJ ], where xj is a word and J is
the number of words in the text object. Meanwhile,
each text object Xi is mapped to a original label
set Li = {l1, l2, . . . , lk, 1 ≤ k < K} that contains
multiple labels. We then define a set of special
symbols S = {_, /, EOS} to identify special hier-
archical relationships in the hierarchy.

All labels L in the corpus constitute the overall

label hierarchy T . The original label set Li =
{l1, l2, . . . , lk, 0 ≤ k < K} of any text object Xi

constitute an partial label hierarchy Ti and Ti ⊂ T .
We aim to train a model to predict corresponding
label set Li for each text object Xi, where the label
set Li is constrained by the hierarchy Ti.

4 Background

The T5 model consists of an encoder-decoder ar-
chitecture, which mainly includes the Multi-head
Attention Mechanism, the Feed-Forward Network
and so on (Raffel et al., 2020), as depicted in the
Figure 2.

Feed Forward

Self-Attention

N x
Block

Feed Forward

Casual Self-Attention

Encoder-Decoder 
Attention N x

Block

Encoder

Decoder

Figure 2: Structure of T5. Following each Multi-head
Attention sublayer and Feed-Forward sublayer, there
are a series of dropout, residual connection and layer
normalization. These parts are omitted in the figure and
the following formulas for simplicity’s sake.

Attention mechanism Attn(·) is calculated as:

Attn(Q,K, V ) = Score(Q,K)V

Score(Q,K) = softmax(
QKT

√
dk

)
(1)

where Q,K, V ∈ Rn×dmodel and the length of se-
quence is n. The output attention score matrix of
Score(Q,K) is denoted as Score ∈ Rn×n.

Multi-head attention independently executes at-
tention mechanism of H heads and then concate-
nate their results, and it is denoted as MH(·). The
Feed-Forward Network consists of two linear trans-
formations with a nonlinear activation function in
between, and it is represented as FFN(·).

T5 encoder is composed of a stack of “en-
coder blocks” and we define the number of blocks
as B. Each block contains a self-attention sub-
layer and a feed-forward sublayer. The input se-
quence of encoder is mapped to the embedding
Qencoder,Kencoder, Vencoder ∈ Rn×dmodel , which
are then passed into the encoder. The output of
encoder is denoted as Oencoder.

BlockEncoder(Qencoder,Kencoder, Vencoder)

= FFN(MH(Qencoder,Kencoder, Vencoder))

Encoder(Qencoder,Kencoder, Vencoder)

= stack(BlockEncoder(Qencoder,Kencoder, Vencoder))

(2)
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Figure 3: The overall structure of PAAM-HiA-T5. PAAM-HiA-T5 consists of a HiA-T5 and a PAAM. The dataflows
of one decoder layer are illustrated in the yellow dashed box.

The structure of the decoder looks similar to
that of the encoder, except that it has an additional
encoder-decoder attention sublayer that attends to
the output of the encoder stack, following each ca-
sual self-attention sublayer. The causal attention
mechanism of decoder only permits the model at-
tend to past outputs. In the end, we obtain the
decoder output denoted as Odecoder.
BlockDecoder(Qdecoder,Kdecoder, Vdecoder, Oencoder)

= FFN(MH(MH(Qdecoder,Kdecoder, Vdecoder), Oencoder, Oencoder))

Decoder(Qdecoder,Kdecoder, Vdecoder, Oencoder)

= stack(BlockDecoder(Qdecoder,Kdecoder, Vdecoder, Oencoder))

(3)

5 Hierarchy-Aware T5 with
Path-Adaptive Attention Mechanism

As depicted in Figure 3, we propose a PAAM-HiA-
T5 model for HTC: a Hierarchy-Aware T5 model
with Path-Adaptive Attention Mechanism. PAAM-
HiA-T5 consists of the HiA-T5 for level-dependent
label generation and the PAAM for path-specific
label generation.

5.1 Hierarchy-Aware T5
Level-dependent HiA-T5 The major shortcom-
ing of previous HTC methods is the inadequate
application of hierarchy information. In contrast,
HiA-T5 exploits label dependency across different
levels of the hierarchy with Breadth-First Search
(BFS) and multi-head attention mechanism.

HiA-T5 firstly explore the label hierarchy Ti

with Breadth-First Search (Cormen et al., 2001)
to flatten the label set Li = {l1, l2, l3, l4, l5}
into multi-level sequential label MLi =
[CLS, l1, _, l3, /, l2, _, l4, /, l5], transforming the
hierarchy to multi-level label sequence, as illus-
trated in Figure 4 (a). In this process, ‘_’ between
labels denotes intra-level relationship, while ‘/’ sig-
nifies inter-level relationship.
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Figure 4: (a): A text with the content “David Beckham
attends art exhibition launch during Paris Fashion Week”
is tagged with “News”, “Sports”, “Football”, “Features”
and “Arts”. And its label hierarchical structure is ex-
plored in Breadth-First Search (blue dash line). (b):
path-adaptive mask matrix makes the ith output ele-
ment use current input element and all its ancestors.

On one hand, the text sequence Xi =
[x1, x2, . . . , xJ ] is mapped to embedding sequence
Qtext,Ktext, Vtext ∈ Rnt×dmodel of length nt,
which are then passed into T5 encoder:

Otext = Encoder(Qtext,Ktext, Vtext) (4)

The output encoder representation for semantic fea-
tures of varied granularities is Otext.

On the other hand, the multi-level label sequence
MLi = [CLS, l1, _, l3, /, l2, _, l4, /, l5] is mapped
to embeddings sequence Qlabel,Klabel, Vlabel ∈
Rnl×dmodel of length nl, which are passed into T5
decoder together:

Ohierarchy = Decoder(Qlabel,Klabel, Vlabel, Otext) (5)

Specifically, HiA-T5 fully explores the label de-
pendency across different levels through the self-
attention mechanism. With the help of the intra-
level separator ’_’ and the inter-level separator ’/’,
the causal decoder self-attention mechanism fully
excavates the intra-level parallel and mutually ex-
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clusive relationship, as well as the inter-level de-
pendent and appurtenant relationship. The output
representation of the decoder causal self-attention
mechanism incorporating level dependency infor-
mation is Alabel = MH(Qlabel,Klabel, Vlabel).

So far, we have obtained the text representation
Otext highlighting the semantic features of texts
with different granularities and the label representa-
tion Alabel incorporating label dependency across
different levels. The output representation of the
encoder-decoder attention mechanism integrating
these two is Across = MH(Alabel, Otext, Otext),
which is a sufficient crossover information for fol-
lowing prediction.

Loss of HiA-T5 We have obtained the final de-
coder block output Ohierarchy of HiA-T5, which
fully integrates the label hierarchy information and
the text semantic information of different granular-
ities. Then Ohierarchy is passed into a fully con-
nected layer with a softmax output, which is also
the final result of HiA-T5 denoted as Pred. Pred
is the result of nl timesteps and Pred ∈ Rnl×K .

Pred = softmax(OhierarchyW3 + b3) (6)

where W3 ∈ Rdmodel×K , b3 ∈ RK . In addition,
any multi-level label sequence MLi is transformed
into Truth ∈ Rnl×K , which is composed of one-
hot vectors corresponding to all labels. Therefore,
the cross-entropy loss of HIA-T5 is expressed as:

LHiA−T5 = crossentropy(Truth, Pred) (7)

5.2 Path-Adaptive Attention Mechanism

PAAM is a mechanism that can lead the model to
adaptively focus on the path where the currently
generated label is located, shielding the noise from
other paths. It is a regularization method designed
in the training phase to encourage the model to
pay more attention to ancestor labels on current
path while penalizing those on other paths. We first
obtain the path-adaptive mask matrix containing
hierarchy information. Then path-adaptive atten-
tion loss is obtained according to operations on the
path-adaptive mask matrix and the causal attention
score matrix.

Path-Adaptive Mask Matrix Now the text se-
quence Xi = [x1, x2, . . . , xJ ] is taken as input,
which is fed into HiA-T5 for training, and its corre-
sponding multi-level label sequence MLi is taken
as output.

According to the T5 structure of Figure 2, the
sequence MLi is first passed into causal attention
sub-layer of decoder. Within this sub-layer, and
according to formula (1), we get causal attention
score matrix Score of one head corresponding to
the sequence MLi, as depicted in Figure 5 (a).
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Figure 5: (a): Causal attention score matrix Score. The
input and output of the causal self-attention mechanism
are denoted as I and O respectively. Score = {si,j} ∈
Rnl×nl . Each element si,j at row i and column j repre-
sents the weight at which the self-attention mechanism
attends to input element j at output timestep i. The gray
cell indicates the corresponding attention score si,j = 0.
(b): Element-wise product result of Score and M .

Then we define the path-adaptive mask matrix
M , which can mask different parts of the label se-
quence at different decoding timestep i. The matrix
M is obtained from the hierarchical structure of
the label sequence corresponding to each text ob-
ject. Specifically, the shape of matrix M is same as
that of attention score matrix Score. Mask matrix
M = {mi,j} ∈ Rnl×nl is also a lower triangular
matrix, and it is only composed of 0 or 1 as shown
below.

M =


m1,1 0
m2,1 m2,2

...
...

. . . . . .
mnl,1 mnl,2 · · · mnl,nl−1 mnl,nl

 (8)

Oi represents the input of the attention mecha-
nism at the timestep i, and Oi ∈ L ∪ S. If Oi ∈ L,
we define ancestor(Oi) as label Oi’s ancestor la-
bels and the special symbol immediately following
them.

Then we define the following formula to fill the
matrix M based on the parent-child relationship
contained in each path of label hierarchy. The out-
put timestep i and input timestep j correspond to
the i-th row and j-th column of the matrix M. The
element mi,j is determined by both the output Oi

and the input Ij , and the formula is as follows:

mi,j =


1 {Oi ∈ L, Ij ∈ ancestor(Oi)}

∪{Oi ∈ S, Ij ∈ ancestor(Oi−1) or Ij = Oi−1}
∪{Oi ∈ L ∪ S, Ij = CLS}

0 else

(9)
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Path-Adaptive Attention Loss With text se-
quence and labels previously generated in hand, we
now introduce regularization and apply the path-
adaptive dynamic mask matrix M , such that HiA-
T5 decoder learns the weight of the attention matrix
and pays more attention on the label’s current path.

Having obtained the multi-level label sequence
MLi of a certain training sample, we use it as the
input of causal self-attention of HiA-T5’s decoder.
According to the definition above, we get its path-
adaptive mask matrix M , as depicted in Figure 4
(b). Furthermore, we get path-adaptive attention
score matrix Scorepath as depicted in Figure 5 (b)
by multiplying attention score matrix Score and
the path-adaptive mask matrix M element-wise:

Scorepath = Score⊙M = softmax(QKT
√
dk

)⊙M (10)

We define C as the index set of ancestor(Ii).
At any decoding timestep i, our goal is to make
the sum of the attention scores

∑
j∈C si,j of cur-

rent path’s labels as close to 1 as possible. Corre-
sponding to attention scores matrix Scorepath of
decoder’s causal attention, that is, to make the sum
of elements of each row in the matrix close to 1
as much as possible. According to the definition
section, suppose Score is the causal attention score
matrix corresponding to the h-th head of b-th de-
coder “blocks”, where 1 ≤ h ≤ H, 1 ≤ b ≤ B.
The path-adaptive attention loss is defined as:

LPAAM =
B∑
b=1

(

∑H
h=1(

∑nl
i=1(1−

∑
j∈C si,j))

H
) (11)

Therefore, the path-adaptive attention loss is
added to the loss of HiA-T5 as total loss for train-
ing. The total loss function Loss is obtained as
below, where ρ is the coefficient of path-adaptive
attention loss item.

L = LHiA−T5 + ρLPAAM (12)

6 Experiments

6.1 Experiment Setup
Datasets We conduct experiments on three pub-
lic datasets, including RCV1-V2 (Lewis et al.,
2004), NYTimes(NYT) (Sandhaus, 2008) and Web-
of-Science(WOS) (Kowsari et al., 2017). RCV1-
V2 is an English news categorization dataset and
NYT is a news dataset from the New York Times
in America. WOS is about scientific literature cate-
gorization. Labels of these datasets are organized

Dataset |L| Depth Avg(|Li|) Max(|Li|) Train Val Test
RCV1 103 4 3.24 17 20833 2316 781265
NYT 166 8 7.6 38 23345 5834 7292
WOS 141 2 2.0 2 30070 7518 9397

Table 1: Statistical analysis of datasets: |L| is the num-
ber of all labels in the hierarchy. Depth denotes the
maximum level of the label hierarchy. Avg(|Li|) and
Max(|Li|) denote average and maximum number of la-
bels in each sample.

Dataset level1 level2 level3 level4 level5 level6 level7 level8
RCV1 236334 20523 11850 23211 - - - -
NYT 15161 2923 1160 842 1066 925 992 1460
WOS 6712 351 - - - - - -

Table 2: Statistics of the average number of each label’s
occurrence at each level: leveli denotes the level in the
label hierarchy. In general, the labels of most samples
are screwed towards upper levels and lower-level labels
are more sparse.

into a tree-like structure. Relevant information of
datasets is summarized in Table 1 and Table 2.

We split RCV1-V2 in the benchmark split man-
ner and take a small portion of the training set as
validation set. For NYT and WOS, we randomly
split data into training, validation and test sets.

Evaluation Metrics We use standard evalua-
tion metrics, including Micro-F1 and Macro-F1
(Gopal and Yang, 2013; Peng et al., 2018; Huang
et al., 2019), to measure the performance of all
HTC methods. Micro-F1 equally weights all sam-
ples, while Macro-F1 gives equal weight to each
label. As such, Micro-F1 gives more weight to fre-
quent labels, while Macro-F1 equally weights all
labels and is more sensitive to lower-level sparse
labels which are shown in Table 2.

Experimental Settings The backbone pre-
trained model we adopt is T5-base (Raffel et al.,
2020) containing about 220M parameters. Tok-
enizer from T5 is utilized to preprocess the text.
For PAAM-HiA-T5, the maximum sequence length
of encoder is set as 300 for all datasets, and the
maximum sequence length of decoder for RCV1,
NYT and WOS are respectively set as 90, 120 and
20. When the model is trained, Adam optimizer
is employed in a batch size of 10 with learning
rate of 5e-4. The search range of coefficient ρ is
{0.1,1,10,100,200}, and we set it to 100, 10, and
100 for RCV1, NYT and WOS respectively accord-
ing to validation results. In the inference phase,
greedy search is adopted. We set random seeds be-
fore experiments for the reproducibility of results,
and the results reported in this paper are from the
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Models Micro-F1 Macro-F1
Flat Models

HAN (Mao et al., 2019) 75.30 40.60
TextCNN (Mao et al., 2019) 76.60 43.00

TextRCNN (Zhou et al., 2020) 81.57 59.25

Local Models
HR-DGCNN-3 (Peng et al., 2018) 76.18 43.34

HFT(M) (Shimura et al., 2018) 80.29 51.40
Htrans (Banerjee et al., 2019) 80.51 58.49

HMCN (Mao et al., 2019) 80.80 54.60

Global Models
SGM (Zhou et al., 2020) 77.30 47.49

HE-AGCRCNN (Peng et al., 2021) 77.80 51.30
HiLAP-RL (Mao et al., 2019) 83.30 60.10
HiAGM (Zhou et al., 2020) 83.96 63.35
HiMatch (Chen et al., 2021) 84.73 64.11

Pretrained Language Models
BERT 86.26 67.35

T5 86.14 67.39
BERT+HiAGM1 86.12 68.08

BERT+HiMatch (Chen et al., 2021) 86.33 68.66
PAAM-HiA-T5 87.22 70.02

Table 3: Performance comparison on RCV1-V2. The
results of HAN (Yang et al., 2016), TextCNN (Kim,
2014) and HMCN (Wehrmann et al., 2018) are reported
by Mao et al. (2019). Zhou et al. (2020) reports the
results of TextRCNN (Lai et al., 2015) and SGM (Yang
et al., 2018).

average of 3 random runs of the model.

6.2 Performance Comparison

The experimental comparison between PAAM-
HiA-T5 and the state-of-the-art HTC methods are
shown in Table 3 and 4, and our model outper-
forms all SOTA results of flat, local and global
methods, both on Micro-F1 and Macro-F1. This
demonstrates the strong power of PAAM-HiA-T5
in solving HTC by better mining hierarchical struc-
ture information. The level-dependency modeling
and the path-adaptive attention mechanism bring
significant improvement. HiAGM and HiMatch
are effective baselines because they achieved the
latest SOTA results in HTC. Our model greatly sur-
passes them on both metrics especially on Macro-
F1. In general, the greater improvement on Macro-
F1 shows that our model has greater capability in
predicting sparse lower-level labels. In fact, it can
be shown from Table 2 that sample labels become

1The results of BERT+HiAGM on RCV1-V2 are im-
plemented upon the released projects of HiAGM (https:
//github.com/Alibaba-NLP/HiAGM) and the BERT
with mutli-label settings. We follow the MIT License.

2The results of HiMatch and BERT+HiMatch on NYT is
reproduced upon the released project of HiMatch (https://
github.com/RuiBai1999/HiMatch) and the BERT
with mutli-label settings. We follow the MIT License.

Model NYT WOS
Micro-F1 Macro-F1 Micro-F1 Macro-F1

Flat Models
TextRNN (Zhou et al., 2020) 70.29 53.06 77.94 69.65
TextCNN (Zhou et al., 2020) 70.11 56.84 82.00 76.18

TextRCNN (Zhou et al., 2020) 70.83 56.18 83.55 76.99

Local & Global Models
HMCN (Mao et al., 2019) 72.2 47.4 − −

HiAGM (Zhou et al., 2020) 74.97 60.83 85.82 80.28
HiMatch (Chen et al., 2021) 74.62 59.28 86.20 80.53

Pretrained Language Models
BERT+HiMatch2 (Chen et al., 2021) 76.79 63.89 86.70 81.06

PAAM-HiA-T5 77.52 65.97 90.36 81.64

Table 4: Performance comparison on the NYT and WOS
datasets. We mainly compare the best performing flat,
local, global and pre-trained models on RCV1-V2. The
results of TextRNN (Liu et al., 2016), TextCNN (Kim,
2014) and TextRCNN (Lai et al., 2015) on NYT and
WOS are reported by Zhou et al. (2020).

more sparse as level grows. Due to insufficient
training, the lower-level label prediction becomes
difficult. But our model utilizes the knowledge of
upper-level labels in predicting lower-level ones
by modeling level dependency and path depen-
dency, and this explains the reason why our model
achieves greater boost in Macro-F1 and has greater
capability in predicting sparse lower-level labels.

Pre-trained language models are effective meth-
ods, which can often be combined with the existing
model structure to improve the performance of spe-
cific tasks. BERT+HiMatch and BERT+HiAGM
denote that HiMatch and HiAGM are respec-
tively equiped with a pre-trained BERT (Kenton
and Toutanova, 2019) compatible with their struc-
tures. The model sizes of BERT+HiMatch and
BERT+HiAGM are in the same order of magni-
tude as that of PAAM-HiA-T5. Our model can
still significantly outperform them, which shows
the powerful capabilities of it (see Appendix C for
more analysis on this). For a more detailed discus-
sion about computational complexity please refer
to the Appendix A.

6.3 Performance Analysis

Method Micro-F1 Macro-F1
T5 86.14 67.39
HiA-T5 86.67 69.09
PAAM-HiA-T5 87.22 70.02

Table 5: Ablation study of PAAM-HiA-T5 on RCV1-
V2. Note that original T5 neither model the hierarchical
structure information nor capture the hierarchial depen-
dencies. It takes HTC as a generic multi-label classifica-
tion task to generate unordered label sets corresponding
to the text.

https://github.com/Alibaba-NLP/HiAGM
https://github.com/Alibaba-NLP/HiAGM
https://github.com/RuiBai1999/HiMatch
https://github.com/RuiBai1999/HiMatch
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Ablation Study and Analysis on Level Depen-
dency Modeling The performance comparison
of HiA-T5 and the original T5 is shown in Table 5.
It is evident that HiA-T5 greatly outperforms the
T5 both in Micro-F1 and Macro-F1. This result il-
lustrates the effectiveness of capturing level depen-
dency by introducing upper-level label knowledge
to assist lower-level label prediction. Compared
with T5, HiA-T5 boosts Macro-F1 by 1.70% and
achieves substantial 0.53% improvement in Micro-
F1. Greater boost in Macro-F1 demonstrates HiA-
T5 is especially beneficial to lower-level long-tailed
labels by introducing level dependency modeling.

Ablation Study and Analysis on Path-adaptive
Attention Mechanism The performance compar-
ison of PAAM-HiA-T5 and HiA-T5 is also shown
in Table 5. PAAM-HiA-T5 greatly increases Micro-
F1 and Macro-F1 especially in Macro-F1 compared
with HiA-T5. This indicates that PAAM signif-
icantly improves the performance of HiA-T5 in
more challenging multi-path scenarios by captur-
ing precise path dependency.

As shown in Figure 6, the heat map of the causal
self-attention score in PAAM-HiA-T5’s encoder
proves the effectiveness of PAAM, where the atten-
tion score is mainly distributed on the path of the
label current being decoded.
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Figure 6: Heatmap of causal self-attention score for a
random sample. Note that symbols instead of original
labels are used and the score of each label is the average
of its tokens’ attention score for ease of display.

Performance Analysis on Label Granularity
To find the origin of performance improvement,
we analyze performance on label granularity based
on different levels for T5, HiA-T5 and PAAM-HiA-
5 on RCV1-V2. Figure 7 shows the level-based
Macro-F1 of models and the absolute Macro-F1

differences among models. In general, our mecha-
nism and strategy brings performance improvement
on all levels, especially on lower levels.

In addition, the gap between HiA-T5 and T5
gets bigger as level deepens, and the phenomenon
between HiA-T5 and PAAM-HiA-T5 is consistent.
This illustrates that as the level grows, label predic-
tion becomes more and more difficult, and the intro-
duction of upper-level label knowledge by leverag-
ing level dependency modeling and path-adaptive
attention mechanism becomes more and more valu-
able. Specifically, the Macro-F1 of second and
third levels for T5 are relatively low because there
are some long-tailed labels among lower levels, but
HiA-T5 and PAAM-HiA-T5 greatly enhance them.
More performance comparison on label granularity
with SOTA methods are provided in Appendix B.
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Figure 7: Ablation analysis based on different levels.

Analysis of Label Consistency Label incon-
sistency is a serious problem in many HTC ap-
proaches, due to the fact that they focus on flat
multi-label classification and make independent
predictions for all labels. It is worth mentioning
that PAAM-HiA-T5 has outstanding classification
performance while maintaining an ultra-low label
inconsistency rate of 0.31%, as shown in Table 6.
This is because our model fully leverages the con-
straints of upper-level labels generated earlier to
predict the most accurate lower-level labels.

TextCNN HMCN HiAGM HiMatch BERT+HiAGM BERT+HiMatch PAAM-HiA-T5
3.74% 3.84% 1.35% 1.33% 1.52% 1.14% 0.31%

Table 6: Comparison of label inconsistency on RCV1-
V2. We calculate the label inconsistency as the ratio
of predictions with inconsistent labels. The results of
TextCNN and HMCN are reported in Mao et al. (2019).

7 Conclusion

For HTC task, we explicitly define the concepts
of “level dependency” and “path dependency” for
the first time. Furthermore, in order to build the
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knowledge of upper-level labels into lower-level
ones in HTC task, we devise an innovative PAAM-
HiA-T5 methodology by exhaustively exploring
level dependency and path dependency of hierar-
chy in a generative manner. Comprehensive experi-
ments on three benchmark datasets show that our
model greatly outperforms all state-of-the-art HTC
approaches especially in Macro-F1.
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all test data is about 3 times that of BERT+HiMatch
and BERT+HiAGM. PAAM-HiA-T5 establishes
new SOTA results on HTC task, so we think that
the enlargement in computational complexity due
to the generative model properties is acceptable.

B Performance Comparison on Label
Granularity with SOTA Methods

To further clarify the superiority of PAAM-HiA-
T5, we perform the level-based performance analy-
sis between our approach and other best perform-
ing SOTA methods on RCV1-V2. The level-based
Micro-F1 scores and Macro-F1 scores are shown
in Table 8. There is a dip in Micro-F1 score at
second level for all models because there are lots
of confusing labels with close concepts at second
level. The relatively low Macro-F1 scores at the
second and third levels are due to the presence of
long-tailed labels. Figure 8 shows that our model
maintains advanced performance on all levels, espe-
cially on lower levels. This reflects that our model
has a huge advantage in dealing with lower-level
long-tailed labels with sparse data.
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Figure 8: Performance analysis on label granularity
based on different levels.

C Exploring the Impact of
Hierarchy-Aware Module on the
Pre-trained Base Model

We find that BERT+HiAGM, BERT+HiMatch and
PAAM-HiA-T5 are most competitive methods ac-
cording to previous experiments. On the one hand,
the pre-trained models, including BERT and T5,
can be viewed as the base models. On the other
hand, different mechanisms and strategies, includ-
ing HiAGM, HiMatch and PAAM-HiA, are utilized
to exploit hierarchical structure information based
on the pre-trained base models, and they can be
regarded as different hierarchy-aware modules. We
want to study the improvement of the pre-trained
base models brought by different hierarchy-aware
modules in HTC task.

Table 7 shows that the base models’ performance
of BERT+HiAGM, BERT+HiMatch and PAAM-
HiA-T5 is close, both on Micro-F1 and Macro-
F1. Therefore, it is fair to discuss the improve-
ment brought by different hierarchy-aware mod-
ules to the pre-trained base model, and the per-
formance changes are illustrated in Figure 9. For
BERT+HiAGM, not only did the HiAGM not im-
prove BERT’s Micro-F1 score, it actually lowered
the Micro-F1 score. The reason may be that Hi-
AGM introduces noise in the process of encoding
the overall hierarchy information. This degrades
the performance of BERT+HiAGM on frequent la-
bels. For BERT+HiMatch, HiMatch brings a rela-
tively large improvement on Macro-F1, but a slight
improvement on Micro-F1. This demonstrates that
HiMatch has limited improvement for BERT on
predicting middle-level and upper-level labels. But
for PAAM-HiA-T5, PAAM-HiA module greatly
boosts both Micro-F1 and Macro-F1 and estab-
lishes new SOTA results.

In conclusion, starting from base models with
close performance, the improvement brought by
the PAAM-HIA module to T5 significantly exceeds
that brought by the HiMatch and HiAGM to BERT.
Moreover, thanks to the PAAM-HiA module, our
model outperforms all SOTA methods. All of the
above fully illustrate that our mechanism and strat-
egy (PAAM-HiA module), not just the powerful
pre-trained base model, are important reasons for
the strong power of our model in HTC task.

Ablation
BERT+HiAGM BERT+HiMatch PAAM-HiA-T5

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
BASE MODEL 86.26 67.35 86.26 67.35 86.14 67.39

+ Hierarchy-Aware Module 86.12 68.08 86.33 68.66 87.22 70.02

Table 7: Ablation study of hierarchy-aware modules on
pre-trained base models. Specifically, “BASE MODEL”
is either BERT or T5. “+ Hierarchy-Aware Module”
denotes adding a hierarchy-aware module to the corre-
sponding base model to obtain the final models.
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Figure 9: Model performance changes brought about
by the hierarchy-aware modules. Specifically, the fig-
ure above shows the absolute difference between the
performance of BERT+HiAGM, BERT+HiMatch and
PAAM-HiA-T5 and that of BERT, BERT, and T5.
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