
Proceedings of the 29th International Conference on Computational Linguistics, pages 971–983
October 12–17, 2022.

971

Community Topic: Topic model inference by consecutive word community
discovery

Eric Austin and Osmar R. Zaïane
University of Alberta

Alberta Machine Intelligence Institute
Edmonton, Alberta

eaustin@ualberta.ca
zaiane@ualberta.ca

Christine Largeron
Université Jean Monnet

Hubert Curien Laboratory
Saint-Etienne, France

largeron@univ-st-etienne.fr

Abstract

We present our novel, hyperparameter-free
topic modelling algorithm, Community Topic.
Our algorithm is based on mining communi-
ties from term co-occurrence networks. We
empirically evaluate and compare Community
Topic with Latent Dirichlet Allocation and the
recently developed top2vec algorithm. We find
that Community Topic runs faster than the com-
petitors and produces topics that achieve higher
coherence scores. Community Topic can dis-
cover coherent topics at various scales. The net-
work representation used by Community Topic
results in a natural relationship between topics
and a topic hierarchy. This allows sub- and
super-topics to be found on demand. These
features make Community Topic the ideal tool
for downstream applications such as applied
research and conversational agents.

1 Introduction

Topic modelling discovers the themes and concepts
of large collections of unstructured text documents.
These topics can fulfill multiple roles. They can act
as features for document classification and indices
for information retrieval. However, one of the most
important functions of these topics is to assist in
the exploration and understanding of large corpora.
Researchers in all fields and domains seek to better
understand the main ideas and themes of document
collections too large for a human to read and sum-
marize. This requires topics that are interpretable
and coherent to the human users.

In more recent years, another new area has
emerged where topics can provide a great deal of
utility: conversational agents or “chat bots”. A
conversational agent is a computer program that
is able to carry on a conversation with a human.
The conversation is an end in itself; the purpose of
speaking with a conversational agent is to converse,
to be entertained, to express emotion and be sup-
ported. This goes well beyond asking Siri to set

a timer. One key component of having an actual
conversation with a human is the awareness and
use of the topic of conversation. Work has been
done on enriching the agent’s response using the
detected topic (Dziri et al., 2019). However, more
can be done with topics to improve a conversational
agent given the right topic model. It can be used to
detect and control topic drift in the conversation so
that the agent’s responses make sense in context. If
the user is engaged with the current topic, then the
agent can stay on topic or detect sub-topics to focus
the conversation. The agent can detect super-topics
to broaden the range of conversation. The agent
should be able to move to related topics or, if the
user becomes bored or displeased, jump to dissimi-
lar topics. This type of control over the flow of the
conversation is crucial to human communication
and is needed for human-computer interaction.

The features that make a topic model useful for
a conversational agent are the same that make it
useful as a tool of applied research. The topics
must be coherent and interpretable to be useful to
a researcher and for an agent’s response to fit into
a conversation. A measure of relatedness between
topics allows for a natural flow to exploration and
conversation. A natural hierarchical structure al-
lows both a researcher and a conversational agent
to drill down into more specific sub-topics or find
broader super-topics on the fly.

The most widely used topic model, Latent
Dirichlet Allocation (LDA), lacks many of these
features and has other drawbacks. The number of
topics must be specified, requiring multiple runs
with different numbers of topics to find the best
topics. It performs poorly on short documents. Dif-
ferent runs on the same corpus can produce differ-
ent topics, especially if the order of the documents
is different (Mantyla et al., 2018). Common terms
can appear in many different topics, reducing the
uniqueness of topics (Nan et al., 2019).

Neural networks have recently pushed forward

972

the state-of-the-art in topic modelling. While neu-
ral topic models have produced topics of greater
coherence, they retain many of the weaknesses of
LDA, such as the need to specify the number of
topics, while having a tendency to find models with
many redundant topics (Burkhardt and Kramer,
2019) and demanding greater computational re-
sources and specialized hardware, i.e. GPUs.

These drawbacks have inspired us to search for
an alternative approach to topic modelling, one that
can operate quickly on commodity hardware and
that provides not only a set of topics but their re-
lationships and a hierarchical structure. Given the
growing importance of relational data and graphs
in representing complex systems (Sakr et al., 2021),
it seems natural to take a network-based approach
to topic modelling. Our topic modelling algorithm,
Community Topic (CT), mines communities from
networks constructed from term co-occurrences.
These topics are collections of vocabulary terms
and are thus interpretable by humans. The network
representation provides a natural topic structure
and hierarchy. The topics themselves form a net-
work with connections of varying strength between
the topics and on which super-topics can be mined.
Each topic is a sub-graph that can be mined to find
sub-topics. Our algorithm can run quickly on sim-
ple hardware which makes it ideal for researchers
from all fields for exploring a document collection.

In this paper, we review related work on topic
modelling. We describe our algorithm, how it con-
structs term co-occurrence networks, and how it
mines topics from these networks. We empirically
evaluate our algorithm and compare it to LDA as
a standard benchmark as well as a recently devel-
oped clustering approach based on word embed-
dings. Our results show that our approach is able
to find more coherent topics in a shorter period of
time with more stable results while also providing
a natural topic structure and hierarchy.

2 Related Work

Topic modelling emerged from the field of informa-
tion retrieval and methods for document indexing,
query matching, and classification. The perfor-
mance of topic models on these tasks has been
surpassed by deep neural models but topic models
have become extremely popular tools of applied
research to better understand large document col-
lections (Hoyle et al., 2021) in fields as varied as
political science (Isoaho et al., 2021) and bioinfor-

matics (Liu et al., 2016).
One early approach was Latent Semantic Analy-

sis (LSA) (Deerwester et al., 1990). LSA decom-
poses the term-by-document matrix to find vectors
representing the latent semantic structure of the
corpus. These vectors relate terms and documents
and can be viewed as topics, although they are un-
interpretable. Another method based on matrix de-
composition is Non-negative Matrix Factorization
(NMF) (Lee and Seung, 1999). Unsatisfied with
the lack of a solid statistical foundation to LSA,
researchers developed Probabilistic Latent Seman-
tic Analysis (pLSA) (Hofmann, 1999) which has a
generative probabilistic model of the data with the
topics as the latent variables.

One major drawback of pLSA is that the topic
mixture is estimated separately for each docu-
ment. To remedy this, researchers developed La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003).
LDA is also a hierarchical probabilistic model, but
it is a fully generative model as it places a Dirich-
let distribution prior on the latent topic mixture of
a document. The probability of a topic z given
a document d, p(z|d), is a multinomial distribu-
tion over the possible topics parameterized by θ
where θ is itself a random variable sampled from
the prior Dirichlet distribution parameterized by α.
The generative process of a document is thus:

• Sample θ from the Dirichlet distribution
p(θ;α)

• For each term position in the document, sam-
ple a topic z from the multinomial distribu-
tion p(z; θ). Then sample a term t from the
multinomial distribution over the vocabulary
p(t|z;β) with β estimated from the corpus.

The number of topics must be specified. LDA
maximizes the probability of the observed corpus
assuming that it was generated by the hidden latent
variables. This computation is intractable (Blei
et al., 2003) but can be approximated by varia-
tional inference (Jordan et al., 1999) or Markov
chain Monte Carlo (Jordan, 1999). The topics are
probability distributions over terms which are in-
terpretable to human users. The trained model can
discover the topic mix of unseen documents.

While LDA has been extremely successful and
is widely used, there have been many attempts to
improve upon it. Researchers have tried promoting
named entities to become the most frequent terms
in the document (Krasnashchok and Jouili, 2018).

973

In (Yang et al., 2016), the authors use a two-step
LDA process to identify and re-weight words that
are topic-indiscriminate. To improve the perfor-
mance of LDA on tweets, the authors of (Mehrotra
et al., 2013) pool tweets into longer documents
based on various schemes such as common author
and same hashtag. The MetaLDA model (Zhao
et al., 2017) incorporates document and word meta
information such as document labels, WordNet
synonyms (Miller, 1995), and word embeddings
(Mikolov et al., 2013). The author-topic model
(Steyvers et al., 2004) extends LDA by condition-
ing the topic mixture on document author. The
Correlated Topic Model (CTM) (Blei and Lafferty,
2006a) models the correlations between topics. The
Dynamic Topic Model (Blei and Lafferty, 2006b)
allows for the modelling of topic evolution over
time. The Hierarchical LDA model (HLDA) (Grif-
fiths et al., 2003) allows for a hierarchy of topics
using a tree structure. A flexible generalization of
LDA is the Pachinko Allocation Model (PAM) (Li
and McCallum, 2006). Like HLDA, PAM allows
for a hierachy of topics but this hierarchy is repre-
sented by a directed acyclic graph rather than a tree
of fixed depth, allowing for a variety of relation-
ships between topics and terms in the hierarchy.

In recent years, new types of topic models have
emerged based on neural networks and deep learn-
ing. Some of these methods remain close to the
LDA framework while others are completely dif-
ferent approaches. The Embedded Topic Model
(ETM) (Dieng et al., 2020) combines word em-
beddings trained using the continuous Skip-gram
algorithm (Mikolov et al., 2013) with the LDA
probabilistic generative model. Another approach
is to use deep neural networks to learn the probabil-
ity distributions of a generative probabilistic model.
This can be done using a variational autoencoder
(VAE) (Kingma and Welling, 2014; Kingma et al.,
2019). There have been many VAE-based topic
models developed, including the neural variational
document model (NVDM) (Miao et al., 2016), the
stick-breaking variational autoencoder (SB-VAE)
(Nalisnick and Smyth, 2017), ProdLDA (Srivastava
and Sutton, 2017), and Dirichlet-VAE (Burkhardt
and Kramer, 2019). These models discover top-
ics that are qualitatively different than those found
by traditional LDA, although there is debate as to
whether they are truly superior (Hoyle et al., 2021).

Other approaches use the word embeddings
learned by a neural network but do not use the

probabilistic generative model framework. The
top2vec algorithm (Angelov, 2020) clusters docu-
ment vectors learned by the doc2vec algorithm (Le
and Mikolov, 2014). To find the topics for collec-
tions of related documents, first the dimensionality
of the document embeddings is reduced to two di-
mensions using the UMAP algorithm (McInnes
et al., 2018). Then dense clusters are found us-
ing HDBSCAN (Campello et al., 2013). The topic
for a cluster of documents is the centroid of all
those document vectors in the original embedding
space and the most relevant terms are those whose
embeddings are closest to the topic embedding.

The approach closest to ours is Vec2GC (Rao
and Chakraborty, 2021). Like top2vec, this algo-
rithm uses doc2vec to learn document embeddings.
Vec2GC creates a network of the documents where
edges exist between documents that have a cosine
similarity over a certain threshold. Community
mining is then applied to the network to find com-
munities of related documents. Our approach dif-
fers in that it finds interpretable communities of
terms, i.e. topics, rather than groups of similar doc-
uments. Our approach does not rely on learning
embeddings with a neural network and comput-
ing pairwise similarities but uses the co-occurrence
information present in the documents themselves.

3 Preliminaries

3.1 Networks and Communities

A comprehensive review of network theory is be-
yond the scope of this work and we refer the reader
to (Newman, 2018). We define sufficient terminol-
ogy to be able to understand our algorithm.

A network is represented by a graph G = (V,E)
where V is the set of vertices and E is the set of
edges. A network may be unweighted, in which
case there is a binary alternative between the ex-
istence or non-existence of an edge ei,j between
any two vertices vi, vj ∈ V that indicates a rela-
tionship between those vertices. A network may
be weighted, in which case an edge ei,j has an
associated weight wi,j which is a numeric value
that characterizes in some way the relationship be-
tween vertices vi and vj . The degree of a vertex
vi, denoted ki, is the number of edges connected
to that vertex, i.e. ki = |{ei,j : vj ∈ V }|. The
internal degree of a vertex vi, denoted kinti , is
the number of edges that connect vi to another
vertex of the same community. The weighted de-
gree of a vertex vi, denoted kwi , is the sum of the

974

weights of all edges connected to that vertex, i.e.
kwi =

∑
vj∈V wi,j . The internal weighted degree

of a vertex vi, denoted kw,int
i , is the sum of the

weights of all edges that connect vi to another ver-
tex of the same community. The embeddedness
of a vertex vi is kinti /ki. The weighted embedded-
ness of a vertex vi is kw,int

i /kwi .
Community structure is the tendency of net-

works to consist of groups of vertices where the
density of edges within the group is much higher
than the density of edges between groups. These
groups of highly-connected vertices are called com-
munities. There is no single formal accepted defini-
tion of a community or how dense the connections
must be to form a community. Certainly a fully
connected group of vertices, i.e. a clique, would
constitute a community, but communities need not
be so densely connected. We are interested in find-
ing all of the communities of the network. This
global partitioning of the network into communi-
ties is called community detection. Many different
community detection algorithms have been devel-
oped over the years and are reviewed in (Coscia
et al., 2011; Fortunato, 2010; Fortunato and Hric,
2016).

3.2 Datasets

We use three datasets to evaluate the different topic
modelling approaches: 20Newsgroups1, Reuters-
215782, and BBC News3. The 20Newsgroups
dataset consists of 18,846 posts on the Usenet dis-
cussion platform which come from 20 different top-
ics such as “atheism” and “hockey”. The Reuters-
21578 dataset consists of 21,578 financial articles
published on the Reuters newswire in 1987 and
have economic and financial topics such as “grain”
and “copper”. The BBC News dataset consists of
2225 articles in five categories: “business”, “enter-
tainment”, “politics”, “sport”, and “tech”.

3.3 Preprocessing

We use spaCy4 to lowercase and tokenize the doc-
uments and to identify sentences, parts-of-speech
(POS), and named entities. We only detect noun-
type entities which are merged into single tokens
e.g. the terms “united”, “states”, “of”, and “amer-
ica” become “united_states_of_america”. While

1https://scikit-learn.org/stable/modules/generated/
sklearn.datasets.fetch_20newsgroups.html

2https://huggingface.co/datasets/reuters21578
3https://www.kaggle.com/competitions/learn-ai-bbc/data
4https://spacy.io/

stemming and lemmatization have been commonly
used in the topic modelling literature, the authors
of (Schofield and Mimno, 2016) found that they
do not improve topic quality and hurt model stabil-
ity so we do not stem or lemmatize. We remove
stopwords and terms that occur in > 90% of docu-
ments. Following (Hoyle et al., 2021), we remove
terms that appear in fewer than 2(0.02|d|)1/log10
documents. It was shown in (Martin and Johnson,
2015) that topic models constructed from noun-
only corpora were more coherent so we detect and
tag parts-of-speech to be able to filter out non-noun
terms as in (Chen et al., 2008). This is intuitive
as adjectives and verbs can be used in many differ-
ent contexts, e.g. one can “play the piano”, “play
baseball”, “play the stock market”, and “play with
someone’s heart”, but music, sports, finance, and
romance are separate topics. However, we will
compare the quality of topics with and without this
filtering as different algorithms may be more sen-
sitive to the presence of generic terms. Even with
nouns there are issues with polysemy, i.e. words
with multiple meanings and thus multiple differ-
ent common contexts. To help with this problem,
we use Gensim5 to extract meaningful n-grams
(Bouma, 2009). An n-gram is a combination of
n adjacent tokens into a single token so that a
term such as “microsoft_windows” can be found
and the computer operating system can be distin-
guished from the windows of a building. We ap-
ply two iterations so that longer n-grams such as
“law_enforcement_agencies” can be found.

3.4 Term Co-occurrence Networks

The network that we construct from a corpus has
terms as vertices. An edge exists between a pair
of vertices vi and vj if the terms ti and tj co-occur.
Co-occurrence can be defined in multiple ways.
The first definition that we use is that two terms
co-occur if they both occur in the same sentence.
This is based on the assumption that two terms in
the same sentence are more likely to be related than
two terms in different sentences. This definition
also results in an insensitivity to document length
as the corpus could be split into documents of one
sentence each and the resulting network would be
unchanged. However, it is likely that two terms in
adjacent sentences of the same document are also
related so an alternative definition of co-occurrence
is that two terms co-occur if they both occur within

5https://radimrehurek.com/gensim/

975

a fixed-size sliding window over a document.
The weights of edges come from the frequency

of co-occurrence. One method is to use the raw
count as the edge weight. However, this does not
adjust for the frequency of the terms themselves
so more common terms will tend to have higher
edge weights. An alternative weighting scheme is
to use normalized pointwise mutual information
(NPMI) between terms (Eq. 1). This adjusts for the
frequency of the terms and assigns high values to
terms that co-occur more frequently than expected.

NPMI(ti, tj) =
log

p(ti,tj)
p(ti)p(tj)

−log(p(ti, tj))
(1)

The edges can be thresholded, i.e. those edges
whose weights fall below a certain threshold are
removed from the network. For the count co-
occurrence networks, we use a threshold of > 2 as
co-occurrence once or twice in thousands of doc-
uments is likely noise rather than a relationship.
This greatly reduces the number of edges in the
network. For the NPMI network, a threshold of
> 0.35 removes a similar number of edges which
are presumably the low information edges.

4 Community Topic

We call our community detection-based topic mod-
elling algorithm Community Topic. The algorithm
takes in a corpus of documents that have been pre-
processed as described in Section 3.3. First, a net-
work is constructed from the document corpus. The
user can select whether to use a sentence-based
co-occurrence window or a sliding window of a
fixed size. The user can also select whether to
assign edge weights based on raw co-occurrence
counts or NPMI and whether to threshold the edge
weights. As a practical matter, the NPMI edge
weights should at minimum be thresholded at 0 as
negative edge weights cannot be handled by most
community detection algorithms. Very few of the
NPMI edge weights are negative so the impact
of this thresholding on network structure is small.
After the network is constructed, CT applies a com-
munity detection algorithm to find the communities
in the network. Communities of size 1 or 2 are fil-
tered out as outlier terms that belong to no proper
topic. Finally, each topic (i.e. community) is sorted
so that the most important and relevant terms for
the topic come first and the topics are returned.

Algorithm 1 Community Topic

Require: Preprocessed corpus D, parameters
window, weight, threshold
G ← buildNetwork(D, window, weight,
threshold)
Communities← communityDetection(G)
Topics← {}
for community ∈ Communities do

if community.length() > 2 then
sort(community)
Topics.add(community)

end if
end for
return Topics

5 Empirical Evaluation

We conduct empirical evaluations both to deter-
mine the best hyperparameters for CT as well as
comparing Community Topic to two other topic
modelling approaches, LDA and top2vec. The
code and data for the experiments in this sec-
tion are available at a public GitHub repository:
https://github.com/eric-austin/topic_modelling.

5.1 Evaluation Metrics

To compare different topic models, we use two
coherence measures: CV (Röder et al., 2015) and
CNPMI (Aletras and Stevenson, 2013). These mea-
sures both calculate the similarity of terms of the
same topic, with more similar terms leading to
higher coherence scores. The CV measure com-
pares the context vectors of two terms found using
a 110-term sliding window over the test corpus,
while CNPMI computes pairwise NPMI computed
using a 10-term sliding window. Both measures
have been shown to correlate with human judge-
ments of topic quality with CV having the strongest
correlation (Röder et al., 2015). Even though CV

has stronger correlation that CNPMI with human
evaluations, CNPMI is more commonly used in the
literature (Hoyle et al., 2021), possibly due to the
extra computation required by CV . We prefer the
CV measures as, in addition to being more highly
correlated with human judgement, it considers the
similarity of the contexts of the terms, not just their
own co-occurrence. We use Gensim6 to compute
both measures. Each dataset has a train/test split.
We train all models on the train documents and eval-

6https://radimrehurek.com/gensim/models/coherencemodel
.html

976

uate using the test documents. We use the standard
110-term window for CV and 10-term window for
CNPMI .

5.2 Hyperparameter Combinations

We train on three datasets using both no parts-of-
speech filtering and filtering all non-nouns. We cre-
ate co-occurrence networks using both raw count
and NPMI edge weights and threshold at 0 and
2 for the count networks and 0 and 0.35 for the
NPMI networks. We use a sentence co-occurrence
definition as well as sliding windows of size 5 and
10. We detect communities using WalkTrap (WT)
(Pons and Latapy, 2005) and Leiden (Traag et al.,
2019) with resolution parameters of 1, 1.5, 2, and
2.5. The Leiden resolution parameter controls the
scale of discovered communities with larger values
of the parameter finding more, smaller communi-
ties. We have previously evaluated many different
community detection algorithms and while other
algorithms perform better on synthetic benchmark
networks, WalkTrap and Leiden were the two that
worked best on the term co-occurrence networks.
Other common community detection algorithms
struggled to find distinct topics. We try order-
ing topics by degree, weighted degree, internal
degree, internal weighted degree, embeddedness,
and weighted embeddedness. We evaluate with CV

and CNPMI with top-N ∈ {5, 10, 20}. This gives
us a total of 18,144 different evaluations which we
use as data for comparing the various settings.

5.3 Hyperparameter Evaluation

CT has several hyperparameters that can be set, but
we desire an algorithm with as few hyperparame-
ters to tune as possible. We thus conduct a series of
experiments to determine whether there are good
default values for term ordering, co-occurrence
window, edge weight, and thresholding.

Ranking the terms is important both for topic
labelling and evaluation. The topics produced by
LDA are probability distributions over terms so the
top terms are simply those with the highest prob-
abilities. The topics produced by CT are groups
of vertices so we use the properties of the vertices
to rank the terms by importance. We found that
ranking terms in the topics by internal weighted de-
gree kw,int

i produced the highest coherence scores.
Table 3 in the appendix presents full results.

Filtering out non-noun POS tended to improve
the coherence scores when using Leiden but did

not have a significant effect on WT. Results are
presented in Table 4 in the appendix.

The different co-occurrence windows definitions
did not have a significant effect on any coherence
scores, as shown in Table 5 in the appendix.

Table 6 in the appendix shows that WT perform
best with raw count edge weights and no threshold-
ing but also performs well with non-thresholded
NPMI edge weights. Leiden performs well with
either count or NPMI edge weights and with or
without thresholding.

The Leiden algorithm has a resolution parameter
that controls the size of detected communities. Ta-
ble 7 in the appendix shows that Leiden performs
better with a smaller resolution parameter which
results in finding larger communities.

These results do not suggest a single best hyper-
parameter combination across community detec-
tion algorithms. The best hyperparameters differ
by corpus when using WT. Fortunately, with Lei-
den a single combination of noun-only POS filter-
ing, sentence co-occurrence window, NPMI edge
weights, and no thresholding worked well on all
datasets. This is a major point in favour of Lei-
den as using it turns CT into a hyperparameter-free
algorithm. When using Leiden, CT’s coherence
scores were not quite as strong as with WT, but not
having to tune hyperparameters outweighs a slight
increase in automated coherence scores, especially
give the questions that have been raised in recent
years about the reliability of these metrics (Hoyle
et al., 2021; Doogan and Buntine, 2021). Full re-
sults for each algorithm are given in Tables 8 and 9
in the appendix.

Before declaring a best community detection
algorithm to use in CT, we want to consider fac-
tors other than just the automated coherence scores.
The run time of the algorithms and their stability
also impact the choice. We will now evaluate these
factors and compare CT with LDA and top2vec.

5.4 Topic Modelling Algorithm Comparisons

We compare the best coherence scores achieved
by CT using WT and Leiden to those achieved by
top2vec and LDA. We ran LDA on all datasets
with both noun-only POS filtering and no filtering
for 5, 10, 20, 50, 100, and 200 topics. We ran
LDA for 2000 iterations with symmetric dirichlet
prior of α = 1/number of topics and used the best
hyperparameters for each dataset. The top2vec
algorithm does not have hyperparameters to tune.

977

We can see from Table 1 that CT produces more
coherent topics than both LDA and top2vec.

Algorithm Coherence 20Newsgroups Reuters BBC
Community Topic
(WalkTrap)

CV 0.759 0.621 0.683
CNPMI 0.235 0.274 0.031

Community Topic
(Leiden)

CV 0.665 0.642 0.676
CNPMI 0.106 0.113 0.028

top2vec
CV 0.625 0.532 0.638
CNPMI 0.052 0.016 -0.023

LDA
CV 0.510 0.471 0.366
CNPMI 0.027 0.025 -0.191

Table 1: Best coherence scores achieved by all algo-
rithms on all datasets.

Noun-only, threshold > 2 No POS filter, no threshold
Time CV Time CV

CT

Build net. 3.12± 0.02 3.12± 0.01
Sorting 0.07± 0.00 0.08± 0.01
WT 1.88± 0.08 0.535± 0.000 21.34± 1.21 0.690± 0.000
Leiden 0.05± 0.00 0.539± 0.039 0.55± 0.11 0.565± 0.022

top2vec 65.52± 3.54 0.516± 0.115 65.60± 3.45 0.535± 0.088

LDA 6.93± 0.13 0.483± 0.021 6.96± 0.09 0.492± 0.025

Table 2: Run times and stability of algorithms on
20Newsgroups corpus. All times in seconds.

To compare the run times and stability of the
algorithms over repeated runs, we ran 10 runs
of each algorithm on the 20Newsgroups corpus
with no POS filtering and noun-only filtering. The
co-occurrence networks were created using the
sentence co-occurrence window and count edge
weights. The edge weights were not thresholded on
the corpus with no POS filtering and were thresh-
olded at > 2 on the noun-only corpus. This demon-
strates the sensitivity of the community detection
algorithm run times to the size of the networks.
Results of this experiment are presented in Table 2.

We can see that the run times of LDA and
top2vec are unaffected by the POS filtering that
reduces the number of tokens in each document.
The network creation and topic sorting steps of CT
are also the same for the larger corpus and network.
However, the run times of the community detec-
tion algorithms are greatly affected by the size of
the network. Leiden is the fastest, taking only 50
ms on the smaller network while WT takes under
2 seconds. On the larger network, the run times
of the algorithms increase by about one order of
magnitude. This only takes Leiden up to about half
a second while WT takes over 20 seconds. LDA
takes about 7 seconds on both corpora and top2vec
takes about 65 seconds. On the smaller network,
the total run time of CT is comparable to LDA with
WT and about twice as fast using Leiden; both
LDA and CT are much faster than top2vec. On the

larger network, CT is still fastest with Leiden, but
slower than LDA with WT. CT is still faster than
top2vec.

In addition to comparing the coherence of the
topics, we evaluate the use of the discovered topics
for clustering the documents. To cluster the docu-
ments with the CT topics, we first create a mapping
from terms to topics which can be done in a sin-
gle pass through the topics. The topic proportions
of a document can be computed in a single pass
over the document, counting the number of terms
of each topic to get the topic proportions. We then
assign the document to a topic cluster based on the
topic with the highest proportion. We perform this
clustering on the BBC corpus with noun-only POS
filtering. CT discovers 5 topics using Leiden with
resolution parameter 1.0, sentence co-occurrence,
NPMI edge weights, and no thresholding. We com-
pare to LDA trained on the same corpus for five
topics. LDA provides topic proportions for docu-
ments as well, and we take the top topic for each
document as the cluster. The document clusters
found using the CT topics are much closer to the
article categories than those found with LDA as
measured by Normalized Mutual Information, a
standard clustering quality measure. The CT clus-
tering achieves a NMI of 0.790 while the LDA
clustering only scores 0.098. The topics produced
by LDA have a lot of overlap of top terms, with
general terms such as “year” and “government” ap-
pearing in most topics. CT has no overlap between
topics, making the distinctions between the topics
of a document clearer.

5.5 Topic Hierarchy and Relationships

A major advantage of the network representation
is a natural way to produce sub- and super-topics.
A community is a sub-graph with its own network
structure. Applying the community detection al-
gorithm on the community sub-graph produces a
new set of smaller communities, i.e. sub-topics.
Super-topics can be found by applying community
detection to the network of topics, where vertices
represent a topics and edges are aggregated from
the connections between individual terms.

WT struggles to find sub- and super-topics. This
may be due to the high density of the community
sub-graphs, which are the denser parts of the orig-
inal graph by definition, and the topic network,
which tends to be fully connected. However, CT us-
ing Leiden is able to find both sub- and super-topics

978

Figure 1: Hierarchy of BBC corpus topics found by iteratively applying CT algorithm using Leiden.

at multiple levels. Using a resolution parameter of
1, five large topics corresponding to the article cat-
egories are found on the BBC corpus. Applying
CT with Leiden again to the “Tech” topic finds 7
sub-topics such as “video games”, “the web”, and
“cellphones”. “The web” sub-topic produces an-
other set of 5 sub-sub-topics such as “email”, “web
search”, and “internet security.” This hierarchy can
be seen in Figure 1. With a resolution parameter of
2, CT with Leiden initially finds a set of 48 small
topics. Performing community detection on the net-
work of topics results in 9 super-topics, 5 of which
are large and correspond to the article categories.
These super-topics are shown in Figure 2 in the
appendix.

As CT with Leiden provides the richest topic
hierarchy, finds communities of different sizes as
desired, works well on all datasets with the same
set of CT hyperparameters, and is extremely fast,

we conclude that it is the best community detection
algorithm to use in CT.

6 Conclusion

We have presented our novel topic modelling al-
gorithm, Community Topic. We have conducted a
thorough empirical evaluation of the algorithm to
determine that it works best and needs no hyper-
parameter tuning with the Leiden community de-
tection algorithm. CT discovers topics with higher
coherence scores than LDA and top2vec. It is hy-
perparameter free and automatically discovers the
number of topics with the user able to set the scale
of the topics using the Leiden resolution parame-
ter. The discovered topics have a natural network
hierarchy and relationships, allowing for the discov-
ery of sub- and super-topics as desired. It is time
and resource efficient, requiring no special hard-
ware and discovering topics in less time than LDA

979

and top2vec and much less time than the hours
of GPU training required by VAE-based models
(Hoyle et al., 2021). CT produces topics with no
redundancy, a known issue with LDA and neural
topic models. These features make it an ideal tool
for downstream applications such as conversational
agents and corpus exploration by researchers.

In the future, we will empirically evaluate CT
against other models that provide a topic hierarchy.
As many community detection algorithms failed to
find quality topics on the co-occurrence networks,
we will investigate ways to improve both the al-
gorithms and the network representation. While
automated coherence metrics give some idea of the
topic quality, we plan to integrate CT into a con-
versational agent to truly test the coherence of the
topics and the quality of the topic structure.

References
Nikolaos Aletras and Mark Stevenson. 2013. Evaluating

topic coherence using distributional semantics. In
Proceedings of the 10th International Conference on
Computational Semantics (IWCS 2013)–Long Papers,
pages 13–22.

Dimo Angelov. 2020. Top2vec: Distributed representa-
tions of topics. arXiv preprint arXiv:2008.09470.

David Blei and John Lafferty. 2006a. Correlated topic
models. Advances in Neural Information Processing
Systems, 18:147.

David Blei and John Lafferty. 2006b. Dynamic topic
models. In Proceeding of the 23rd International
Conference on Machine Learning, pages 113–120.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of Machine
Learning Research, 3(Jan):993–1022.

Gerlof Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. Proceedings
of GSCL, 30:31–40.

Sophie Burkhardt and Stefan Kramer. 2019. Decoupling
sparsity and smoothness in the dirichlet variational
autoencoder topic model. Journal of Machine Learn-
ing Research, 20(131):1–27.

Ricardo JGB Campello, Davoud Moulavi, and Jörg
Sander. 2013. Density-based clustering based on
hierarchical density estimates. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining,
pages 160–172. Springer.

Jiyang Chen, Osmar R Zaïane, and Randy Goebel. 2008.
An unsupervised approach to cluster web search re-
sults based on word sense communities. In 2008
IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology, vol-
ume 1, pages 725–729. IEEE.

Michele Coscia, Fosca Giannotti, and Dino Pedreschi.
2011. A classification for community discovery
methods in complex networks. Statistical Analysis
and Data Mining: The ASA Data Science Journal,
4(5):512–546.

Scott Deerwester, Susan T Dumais, George W Furnas,
Thomas K Landauer, and Richard Harshman. 1990.
Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6):391–
407.

Adji B. Dieng, Francisco J. R. Ruiz, and David M. Blei.
2020. Topic Modeling in Embedding Spaces. Trans-
actions of the Association for Computational Linguis-
tics, 8:439–453.

Caitlin Doogan and Wray Buntine. 2021. Topic model
or topic twaddle? re-evaluating semantic inter-
pretability measures. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3824–3848.

Nouha Dziri, Ehsan Kamalloo, Kory Mathewson, and
Osmar R Zaïane. 2019. Augmenting neural response
generation with context-aware topical attention. In
Proceedings of the First Workshop on NLP for Con-
versational AI, pages 18–31.

Santo Fortunato. 2010. Community detection in graphs.
Physics Reports, 486(3-5):75–174.

Santo Fortunato and Darko Hric. 2016. Community
detection in networks: A user guide. Physics Reports,
659:1–44.

Thomas Griffiths, Michael Jordan, Joshua Tenenbaum,
and David Blei. 2003. Hierarchical topic models and
the nested chinese restaurant process. Advances in
Neural Information Processing Systems, 16.

Thomas Hofmann. 1999. Probabilistic latent semantic
indexing. In Proceedings of the 22nd Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 50–57.

Alexander Hoyle, Pranav Goel, Andrew Hian-Cheong,
Denis Peskov, Jordan Boyd-Graber, and Philip
Resnik. 2021. Is automated topic model evaluation
broken? the incoherence of coherence. Advances in
Neural Information Processing Systems, 34.

Karoliina Isoaho, Daria Gritsenko, and Eetu Mäkelä.
2021. Topic modeling and text analysis for qual-
itative policy research. Policy Studies Journal,
49(1):300–324.

Michael I Jordan, Zoubin Ghahramani, Tommi S
Jaakkola, and Lawrence K Saul. 1999. An intro-
duction to variational methods for graphical models.
Machine learning, 37(2):183–233.

https://aclanthology.org/W13-0102/
https://aclanthology.org/W13-0102/
https://arxiv.org/pdf/2008.09470.pdf
https://arxiv.org/pdf/2008.09470.pdf
http://www.cs.columbia.edu/~blei/papers/BleiLafferty2006.pdf
http://www.cs.columbia.edu/~blei/papers/BleiLafferty2006.pdf
https://doi.org/10.1145/1143844.1143859
https://doi.org/10.1145/1143844.1143859
https://doi.org/10.1016/B978-0-12-411519-4.00006-9
https://svn.spraakdata.gu.se/repos/gerlof/pub/www/Docs/npmi-pfd.pdf
https://svn.spraakdata.gu.se/repos/gerlof/pub/www/Docs/npmi-pfd.pdf
https://jmlr.csail.mit.edu/papers/volume20/18-569/18-569.pdf
https://jmlr.csail.mit.edu/papers/volume20/18-569/18-569.pdf
https://jmlr.csail.mit.edu/papers/volume20/18-569/18-569.pdf
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1109/WIIAT.2008.24
https://doi.org/10.1109/WIIAT.2008.24
https://doi.org/10.1002/sam.10133
https://doi.org/10.1002/sam.10133
https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
https://doi.org/10.1162/tacl_a_00325
https://doi.org/10.18653/v1/2021.naacl-main.300
https://doi.org/10.18653/v1/2021.naacl-main.300
https://doi.org/10.18653/v1/2021.naacl-main.300
https://doi.org/10.18653/v1/W19-4103
https://doi.org/10.18653/v1/W19-4103
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://people.eecs.berkeley.edu/~jordan/papers/lda-crp.pdf
https://people.eecs.berkeley.edu/~jordan/papers/lda-crp.pdf
https://doi.org/10.1145/312624.312649
https://doi.org/10.1145/312624.312649
http://umiacs.umd.edu/~jbg//docs/2021_neurips_incoherence.pdf
http://umiacs.umd.edu/~jbg//docs/2021_neurips_incoherence.pdf
https://doi.org/10.1111/psj.12343
https://doi.org/10.1111/psj.12343
https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1023/A:1007665907178

980

Michael Irwin Jordan. 1999. Learning in Graphical
Models. MIT press.

Diederik P Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR).

Diederik P Kingma, Max Welling, et al. 2019. An in-
troduction to variational autoencoders. Foundations
and Trends in Machine Learning, 12(4):307–392.

Katsiaryna Krasnashchok and Salim Jouili. 2018. Im-
proving topic quality by promoting named entities in
topic modeling. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 247–253.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196. PMLR.

Daniel D Lee and H Sebastian Seung. 1999. Learning
the parts of objects by non-negative matrix factoriza-
tion. Nature, 401(6755):788–791.

Wei Li and Andrew McCallum. 2006. Pachinko allo-
cation: Dag-structured mixture models of topic cor-
relations. In Proceedings of the 23rd International
Conference on Machine Learning, ICML ’06, page
577–584, New York, NY, USA. Association for Com-
puting Machinery.

Lin Liu, Lin Tang, Wen Dong, Shaowen Yao, and Wei
Zhou. 2016. An overview of topic modeling and its
current applications in bioinformatics. SpringerPlus,
5(1):1–22.

Mika V Mantyla, Maelick Claes, and Umar Farooq.
2018. Measuring lda topic stability from clusters
of replicated runs. In Proceedings of the 12th
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 1–4.

Fiona Martin and Mark Johnson. 2015. More efficient
topic modelling through a noun only approach. In
Proceedings of the Australasian Language Technol-
ogy Association Workshop 2015, pages 111–115.

Leland McInnes, John Healy, and James Melville. 2018.
Umap: Uniform manifold approximation and pro-
jection for dimension reduction. arXiv preprint
arXiv:1802.03426.

Rishabh Mehrotra, Scott Sanner, Wray Buntine, and
Lexing Xie. 2013. Improving lda topic models for
microblogs via tweet pooling and automatic label-
ing. In Proceedings of the 36th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 889–892.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural
variational inference for text processing. In Inter-
national Conference on Machine Learning, pages
1727–1736. PMLR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in Neural Information Processing Systems,
26.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Eric Nalisnick and Padhraic Smyth. 2017. Stick-
breaking variational autoencoders. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR).

Feng Nan, Ran Ding, Ramesh Nallapati, and Bing Xi-
ang. 2019. Topic modeling with wasserstein autoen-
coders. arXiv preprint arXiv:1907.12374.

Mark Newman. 2018. Networks. Oxford University
Press.

Pascal Pons and Matthieu Latapy. 2005. Computing
communities in large networks using random walks.
In International Symposium on Computer and Infor-
mation Sciences, pages 284–293. Springer.

Rajesh N Rao and Manojit Chakraborty. 2021. Vec2gc–
a graph based clustering method for text representa-
tions. arXiv preprint arXiv:2104.09439.

Michael Röder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the space of topic coherence
measures. In Proceedings of the Eighth ACM Interna-
tional Conference on Web Search and Data Mining,
pages 399–408.

Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru
Iosup, Khaled Ammar, Renzo Angles, Walid Aref,
Marcelo Arenas, Maciej Besta, Peter A Boncz, et al.
2021. The future is big graphs: a community view
on graph processing systems. Communications of
the ACM, 64(9):62–71.

Alexandra Schofield and David Mimno. 2016. Com-
paring apples to apple: The effects of stemmers on
topic models. Transactions of the Association for
Computational Linguistics, 4:287–300.

Akash Srivastava and Charles Sutton. 2017. Autoencod-
ing variational inference for topic models. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR).

Mark Steyvers, Padhraic Smyth, Michal Rosen-Zvi, and
Thomas Griffiths. 2004. Probabilistic author-topic
models for information discovery. In Proceedings of
the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
306–315.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck.
2019. From louvain to leiden: guaranteeing well-
connected communities. Scientific Reports, 9(1):1–
12.

https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1312.6114.pdf
https://doi.org/10.1561/9781680836233
https://doi.org/10.1561/9781680836233
https://doi.org/10.18653/v1/P18-2040
https://doi.org/10.18653/v1/P18-2040
https://doi.org/10.18653/v1/P18-2040
https://arxiv.org/pdf/1405.4053.pdf
https://arxiv.org/pdf/1405.4053.pdf
https://doi.org/10.1038/44565
https://doi.org/10.1038/44565
https://doi.org/10.1038/44565
https://doi.org/10.1145/1143844.1143917
https://doi.org/10.1145/1143844.1143917
https://doi.org/10.1145/1143844.1143917
https://doi.org/10.1186/s40064-016-3252-8
https://doi.org/10.1186/s40064-016-3252-8
https://doi.org/10.1145/3239235.3267435
https://doi.org/10.1145/3239235.3267435
https://aclanthology.org/U15-1013.pdf
https://aclanthology.org/U15-1013.pdf
https://arxiv.org/pdf/1802.03426.pdf
https://arxiv.org/pdf/1802.03426.pdf
https://doi.org/10.1145/2484028.2484166
https://doi.org/10.1145/2484028.2484166
https://doi.org/10.1145/2484028.2484166
https://arxiv.org/pdf/1511.06038.pdf
https://arxiv.org/pdf/1511.06038.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://openreview.net/pdf?id=S1jmAotxg
https://openreview.net/pdf?id=S1jmAotxg
https://doi.org/10.18653/v1/P19-1640
https://doi.org/10.18653/v1/P19-1640
https://doi.org/10.1007/11569596_31
https://doi.org/10.1007/11569596_31
https://arxiv.org/pdf/2104.09439.pdf
https://arxiv.org/pdf/2104.09439.pdf
https://arxiv.org/pdf/2104.09439.pdf
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/3434642
https://doi.org/10.1145/3434642
https://doi.org/10.1162/tacl_a_00099
https://doi.org/10.1162/tacl_a_00099
https://doi.org/10.1162/tacl_a_00099
https://arxiv.org/pdf/1703.01488.pdf
https://arxiv.org/pdf/1703.01488.pdf
https://doi.org/10.1145/1014052.1014087
https://doi.org/10.1145/1014052.1014087
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z

981

Kai Yang, Yi Cai, Zhenhong Chen, Ho-fung Leung, and
Raymond Lau. 2016. Exploring topic discriminating
power of words in latent dirichlet allocation. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical
Papers, pages 2238–2247.

He Zhao, Lan Du, Wray Buntine, and Gang Liu. 2017.
Metalda: A topic model that efficiently incorporates
meta information. In 2017 IEEE International Con-
ference on Data Mining (ICDM), pages 635–644.

A Appendix

A.1 Term Ordering

Table 3 shows the coherence scores by ordering
scheme. Internal weighted degree tended to per-
form best across algorithms and datasets.

Ordering Coherence Leiden WalkTrap

Internal Weighted Degree
CV 0.533± 0.002 0.545± 0.007
CNPMI −0.058± 0.004 0.041± 0.007

Internal Degree
CV 0.521± 0.002 0.545± 0.007
CNPMI −0.064± 0.004 0.042± 0.007

Weighted Degree
CV 0.458± 0.002 0.492± 0.006
CNPMI −0.146± 0.005 −0.020± 0.011

Degree
CV 0.450± 0.002 0.489± 0.006
CNPMI −0.150± 0.005 −0.023± 0.010

Weighted Embeddedness
CV 0.470± 0.003 0.481± 0.006
CNPMI −0.277± 0.004 −0.223± 0.011

Embeddedness
CV 0.470± 0.003 0.484± 0.006
CNPMI −0.295± 0.004 −0.245± 0.011

Table 3: Average scores for each community detection
algorithm by ordering scheme ± the standard error of
the mean. Bold indicates best result for each algorithm.

A.2 POS Filtering

Table 4 shows that filtering out non-noun POS can
improve coherence scores, but not for WT.

POS Coherence Leiden WalkTrap

All
CV 0.515± 0.003 0.554± 0.010
CNPMI −0.082± 0.006 0.051± 0.012

Noun only
CV 0.549± 0.003 0.537± 0.009
CNPMI −0.035± 0.006 0.031± 0.009

Table 4: Average scores for each community detection
algorithm by parts-of-speech filtering ± the standard
error of the mean.

A.3 Co-occurrence Window

Table 5 shows that there is no statistically signif-
icant difference between the three different co-
occurrence window definitions.

A.4 Weights and Thresholding

Table 6 shows that WT perform best with raw count
edge weights and no thresholding but also performs
well with non-thresholded NPMI edge weights.

Window Coherence Leiden WalkTrap

Sentence
CV 0.533± 0.004 0.541± 0.011
CNPMI −0.069± 0.008 0.042± 0.013

Sliding 5
CV 0.530± 0.004 0.542± 0.012
CNPMI −0.049± 0.007 0.037± 0.014

Sliding 10
CV 0.535± 0.004 0.553± 0.011
CNPMI −0.057± 0.008 0.044± 0.012

Table 5: Average scores for each community detection
algorithm by co-occurrence window ± the standard er-
ror of the mean.

Leiden performs well with either count or NPMI
edge weights and with or without thresholding.

Weight Threshold Coherence Leiden WalkTrap

Count
> 0

CV 0.521± 0.004 0.577± 0.016
CNPMI −0.045± 0.008 0.113± 0.012

> 2
CV 0.534± 0.004 0.537± 0.009
CNPMI −0.003± 0.006 0.051± 0.016

NPMI
> 0

CV 0.535± 0.005 0.557± 0.012
CNPMI −0.081± 0.010 0.071± 0.007

> 0.35
CV 0.541± 0.005 0.509± 0.013
CNPMI −0.104± 0.008 −0.070± 0.011

Table 6: Average scores for each algorithm by weight
type and threshold ± the standard error of the mean.

A.5 Leiden Resolution Parameter
Table 7 shows that Leiden performs better with a
smaller resolution parameter which results in find-
ing larger communities.

Resolution Coherence Leiden

1.0
CV 0.562± 0.005
CNPMI 0.037± 0.005

1.5
CV 0.552± 0.005
CNPMI −0.025± 0.007

2.0
CV 0.519± 0.004
CNPMI −0.097± 0.008

2.5
CV 0.499± 0.003
CNPMI −0.148± 0.008

Table 7: Average scores for CT with Leiden for various
resolution parameters ± the standard error of the mean.

A.6 Best Results for Community Detection
Algorithms

Tables 8, and 9 show the best scores achieved by
CT using Leiden and WT, respectively. While WT
tends to achieve the highest scores, it has a different
set of best hyperparameters on each dataset.

A.7 Topic Hierarchy
Figure 2 shows the aggregation of an initial set of
small topics found with a high resolution param-
eter into super-topics by applying Leiden on the
network of topics.

https://aclanthology.org/C16-1211.pdf
https://aclanthology.org/C16-1211.pdf
https://doi.org/10.1109/ICDM.2017.73
https://doi.org/10.1109/ICDM.2017.73

982

Figure 2: Super-topics found by applying community detection on network of small topics.

983

Coherence All Datasets 20NG Reuters BBC
PDS PAV G PDS PAV G PDS PAV G

CV 0.655 (1) 0.665 (1) 0.665 (1) 0.642 (1) 0.642 (1) 0.676 (1) 0.659 (2)
CNPMI 0.114 (1) 0.106 (4) 0.106 (4) 0.113 (2) 0.113 (2) 0.028 (16) 0.122 (1)

Table 8: Best coherence scores using Leiden. Average
results on all datasets and results for each using both
the best parameters for that corpus PDS as well as the
best parameters for the average PAVG. The rank of that
combination is given in parentheses next to the score.

Coherence All Datasets 20NG Reuters BBC
PDS PAV G PDS PAV G PDS PAV G

CV 0.632 (1) 0.759 (1) 0.720 (2) 0.621 (1) 0.576 (5) 0.683 (1) 0.598 (6)
CNPMI 0.150 (1) 0.235 (1) 0.185 (5) 0.274 (1) 0.199 (3) 0.031 (11) 0.067 (6)

Table 9: Best coherence scores using WT. Average re-
sults for all datasets and results for each using both the
best parameters for that corpus PDS as well as the best
parameters for the average PAVG. The rank of that com-
bination is given in parentheses next to the score.

