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Abstract

This work deploys linguistically motivated fea-
tures to classify paragraph-level text into fic-
tion and non-fiction genre using a logistic re-
gression model and infers lexical and syntactic
properties that help distinguish the two genres.
Previous works have focused on classifying
document-level text into fiction and non-fiction
genres, while in this work, we deal with shorter
texts which are closer to real-world applications
like sentiment analysis of tweets. For the task
of short-text classification on the Brown corpus,
a model containing linguistically motivated fea-
tures confers a substantial accuracy jump over a
baseline model consisting of simple POS-ratio
features found effective in previous work. The
efficacy of the above model containing a lin-
guistically motivated feature set also transfers
over to another dataset viz, Baby BNC corpus.
Subsequently, we compared the classification
accuracy of the logistic regression model with
two deep-learning models. A 1D-CNN model
gives an increase of 2% accuracy over the lo-
gistic regression classifier on both datasets. A
BERT-based model gives state-of-the art clas-
sification accuracies of 97% on Brown corpus
and 98% on Baby BNC corpus. Although, both
these deep learning models give better results
in terms of classification accuracy, the prob-
lem of interpreting these models remains an
open question. In contrast, regression model
coefficients revealed that fiction texts tend to
have more character-level diversity and have
lower lexical density (quantified using content-
function word ratios) compared to non-fiction
texts. Moreover, subtle differences in word or-
der exist between the two genres, i.e., in fiction
texts Verbs precede Adverbs in contrast to the
opposite pattern in non-fiction texts (inter-alia).

1 Introduction

Written text can be classified into various cate-
gories based on its content or writing style. This pa-
per focuses on classifying shorter texts into fiction
and non-fiction genres based on their writing style.

In general, the fiction writing has an imaginative
writing style and involves non-factual prose content.
In contrast, the non-fiction writing deals with actual
events, places, and persons and is written purely
based on the facts. In some cases, distinguishing
between these two writing categories is easy due to
the content of the text. However, classification be-
comes challenging in many instances due to blurry
boundaries between them. For example, a short
story may contain imaginary characters situated in
real-life settings. Therefore it is essential to factor
in the writing style of texts while classifying them
into fiction and non-fiction genres.

The problem of genre identification using lin-
guistically motivated features has been extensively
investigated in NLP (see references in the rest of
this section). However, the particular problem
of fiction vs. non-fiction genre classification has
started receiving serious attention only in recent
years (Vicente et al., 2021; Qureshi et al., 2019).
In the cited works, different features have been
studied for classifying document-level texts (or
long texts) into fiction and non-fiction genres. In
contrast, very little effort has been expended to
investigate the set of relevant features which are
effective for the classification of shorter texts, i.e.,
paragraph-level texts into fiction and non-fiction
genres. Shorter texts or paragraph-level texts are
more common on the internet and have several im-
portant practical applications like breaking news
detection, opinion mining, micro-blog summa-
rization, and discovering trending topics (Kateb
and Kalita, 2015). Genre identification tools for
shorter text can potentially be deployed to filter
out specific categories of tweets, news headlines,
product reviews, and online app reviews which
have been written to manipulate or influence the
users/customers. For such applications, fiction vs.
non-fiction classification technology capable of an-
alyzing writing styles can play a crucial role.

The main objective of this paper is to identify the
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most relevant features that not only enable one to
build an effective classifier but also provide deeper
insights about the properties that can be used to
distinguish these two genres in shorter texts. To
this end, we deployed features belonging to four
categories, i.e., Raw features, POS-ratio features,
Lexical features and Syntactic features (Karlgren
and Cutting, 1994; Buongiovanni et al., 2019; Biber
and Stubbs, 2002; Cleuziou and Poudat, 2007).
Raw text features quantify the basic properties of
the text, like sentence length and variation in sen-
tence length within a paragraph. Lexical features
are based on the statistics of words or characters
present in the corpus. In writing, vocabulary plays
an important role as it involves the coordination of
many higher levels and lower levels of cognitive
skills (Hayes, 2000; Olinghouse and Leaird, 2008).
Previous studies have also used various measures
of lexical diversity to discern differences between
genres (Milička and Kubát, 2013; Sadeghi and Dil-
maghani, 2013). We deployed a character-level
diversity estimate and a lexical density estimate
(ratio of content to function words). POS-ratio fea-
tures proposed by Qureshi et al. (2019) compute the
ratios of different parts of speech tags present in the
corpus, e.g. ADVERB/NOUN, ADJECTIVE/VERB,
and VERB/PRONOUN. They found these ratios
to be very effective for document-level fiction vs
non-fiction classification (accuracy of 96.31 % on
Brown corpus text (Francis and Kučera, 1989)).
While most of our features were adapted from prior
work, we introduce 3 novel syntactic features ex-
tracted from parse trees in this paper. Prominently,
we modelled word order variation across genres
by extracting head-dependent bigrams (containing
linear order precedence as well). Inspired from the
theoretical psycholinguistics literature, we also in-
corporated features quantifying syntactic complex-
ity (Sampson, 1997; Szmrecsanyi, 2004) as well as
argument-adjunct patterns (Tutunjian and Boland,
2008).

We extracted the aforementioned features1 from
Brown Corpus paragraphs and performed feature
selection experiments using the Recursive Feature
Elimination Cross-validation algorithm (RFECV
Guyon et al., 2002) on individual and combined
feature sets. We report the performance of differ-
ent classification models trained on several feature
combinations and compare them with a baseline

1Scripts to extract various linguistic features used in
this work can be accessed here: https://github.com/
armankazmi/Linguistic-features-of-text

model with only two POS-ratio features found ef-
fective in prior work (Qureshi et al., 2019). Our
classification model containing the best 28 features
confers an accuracy score of 91.89% on Brown Cor-
pus (Francis and Kučera, 1989) paragraphs with an
accuracy jump of 15.56% over the baseline model
containing Qureshi et al.’s simple POS ratio fea-
tures (76% accuracy on short-text classification in
the Brown corpus).

In order to check the transferability and general-
izability of our results, we used the aforementioned
model trained on the Brown corpus (American En-
glish text) to classify shorter texts obtained from
the Baby BNC Corpus of British English (Con-
sortium, 2007). Our model obtained an accuracy
score of 94% which attests its utility for novel text
and demonstrates how it is not biased w.r.t. lan-
guage variety, i.e., American English (Brown) vs
British English (Baby BNC). Following previous
work in the NLP literature (Worsham and Kalita,
2018; Kim, 2014; Dauphin et al., 2017), we also
compared our classification results based on a tra-
ditional logistic regression model (containing hand-
crafted features) with 2 deep learning models. On
shorter text from both Brown and BNC corpora, a
1D CNN model induces a 2% increase in accuracy
score over the Logistic Regression classifier. Fi-
nally, we used a pre-trained BERT-base-uncased
model (Devlin et al., 2018) resulting in state-of-the-
art accuracy of 97% on Brown Corpus and 98%
on Baby BNC Corpus respectively. Although both
the deep learning models (CNN models and the
BERT-base-uncased models) result in better results
in terms of classification accuracy, they are not eas-
ily interpretable i.e., linguistic properties captured
by these deep learning models are not obvious.

Another issue is that CNN and BERT models
are expensive to train from scratch and are more
prone to overfitting when compared to the Logistic
Regression classifier. On the other hand, our ex-
perimental results using simple logistic regression
models are interpretable in terms of the impact of
specific features. Our regression coefficients indi-
cate that fiction texts tend to be more diverse in
terms of characters and have lower lexical density
than non-fiction texts. Subtle differences in word
order between the two genres can also be inferred
from the coefficients our dependency bigram fea-
tures. For example, Verbs tend to precede Adverbs
and Pronouns in the case of fiction texts, in contrast
to the opposite pattern in non-fiction texts.

https://github.com/armankazmi/Linguistic-features-of-text
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Genre (#docs) #Words #Sentences #Para
BROWN
Fiction (207) 63011 4133 764
Non-Fiction (117) 89744 4024 746
BABY BNC
Fiction (25) 140760 9601 1783
Non-Fiction (30) 34947 1327 243

Table 1: Counts of words, sentences, and paragraphs in
Brown and Baby BNC corpora

Our main contribution is that we extend the work
of Qureshi et al. (2019) on document-level genre
classification to the problem of genre-identification
for shorter text by incorporating theoretically
and cognitively motivated features. Our best-
performing model containing linguistically mo-
tivated features substantially outperformed their
best-performing model for this novel task. The fea-
tures deployed by Vicente et al. (2021) (another
recent work on fiction vs non-fiction classifica-
tion cited earlier) are very elaborate but are not
directly connected to cognitive theories. Earlier
works like Worsham and Kalita (2018) and Mend-
hakar (2022) analyzed various linguistic character-
istics of fictional and non-fictional text but focused
more on sub-genre classification within fiction and
non-fiction genres.

The rest of the paper is organized as follows. In
Section 2 we present details of the data sets used in
this study. Section 3 provides the motivation and
descriptions of the linguistic features used in this
work. Section 4 describes the machine learning
algorithms we deployed and the results of genre
classification experiments using those algorithms.
Section 5 discusses the implications of our findings.
Finally, in section 6, we summarize all the results
and provide pointers for future research.

2 Data and Methods

Our dataset consists of paragraphs from Brown cor-
pus (Francis and Kučera, 1989) and Baby British
National Corpus (Consortium, 2007, BNC). These
corpora contain text from fiction and non-fiction
genres, thus serve an important resource for our
research. We set up a binary classification task
to predict shorter texts into fiction and non-fiction
genres. Therefore, every long document in these
corpora was split into separate paragraphs based
on the default paragraph annotation provided. Af-
ter that, each paragraph was tagged to the class
based on the class label of their parent document.
To mitigate the data imbalance between the two

classes since different paragraphs may have vary-
ing lengths in terms of the number of sentences,
we chose only those paragraphs that had 5 or 6
sentences, and the rest were discarded. Table 1
provides more details of both the aforementioned
datasets.

As a pre-processing step, we automatically
tagged and parsed the paragraphs in our dataset
using state-of-the-art taggers and parsers. We used
Stanza (Qi et al., 2020) for parts-of-speech tagging
and Stanford CoreNLP toolkit for dependency and
constituency parsing (Manning et al., 2014). The
punctuation marks in the paragraphs were stripped
off prior to their parsing. We then extracted a wide
variety of linguistic features from the tagged and
parsed text, thus creating a vector representation
of each paragraph. The set of features used for the
classification task and the underlying motivation
behind using them is described in the subsequent
section. We used a traditional machine learning
model (logistic regression) as well as two deep
learning models (CNN and BERT) for our classifi-
cation task as described in Section 4.

To further our understanding of our classifica-
tion models, we tested the model’s applicability
in British English, where we use British National
Corpus (Consortium, 2007). This way, we perform
transfer learning where the model is learned on one
corpus, and its applicability is tested on another
corpus. This also provides a more robust way of
analyzing our model’s predictions. Baby BNC cor-
pus consists of four categories: fiction, newspaper,
spoken, and academic. Following Qureshi et al.
(2019), we considered academic documents in non-
fiction category and fiction documents in fiction
category, and rest others were excluded from our
primary analyses. As they mention, the news genre
lacks a clear demarcation2 in either category.

3 Linguistic features

For genre classification of shorter texts, we de-
ployed the following four distinct categories of
features in our work: 1. Raw text 2. Lexical 3.
POS ratios 4. Syntactic features. These features
and their motivation are described below.

3.1 Raw Text Features
Raw text features (Buongiovanni et al., 2019) are
the most basic features. Following the cited work,

2We additionally investigate the news category of this cor-
pus and report results in Appendix E to motivate future re-
search direction.
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Feature category Feature sets Testing F1 score F1 score
(#features after RFECV) Accuracy % (fiction: 1) (non-fiction: 0)

Baseline adv/adj, adj/pro 76.33± 1.700 0.784± 0.013 0.737± 0.024
Raw Features avg_sen_len, std_sen_len 73.36± 1.64 0.740± 0.019 0.726± 0.016

Lexical Features Character diversity (CD; 4) 81.54± 1.637 0.817± 0.017 0.813± 0.017
Lexical density (lex_den) 63.89± 1.772 0.643± 0.017 0.634± 0.019

POS Features POS ratios (4) 81.36± 1.143 0.823± 0.014 0.802± 0.01

Syntactic features

syn_comp (6) 72.98± 2.47 0.737± 0.025 0.721± 0.024
Argument/Adjunct 78.15± 1.335 0.781± 0.015 0.782± 0.015

dep_rel (19) 87.64± 1.672 0.88± 0.017 0.871± 0.017
dep_big (36) 89.65± 0.553 0.899± 0.006 0.893± 0.006

Combined features
CD + POS (7) 87.01± 1.208 0.875± 0.012 0.864± 0.013

CD + POS + syn_comp (8) 86.55± 0.984 0.869± 0.011 0.861± 0.01
Best features (28) 91.89± 0.883 0.921± 0.009 0.916± 0.008

Table 2: Classification accuracy using different feature set on Brown corpus paragraphs (random baseline: 49.32±
1.61%)

we incorporated the following measures (computed
over each paragraph) as features: 1. Average sen-
tence length (avg_sen_len) 2. Standard deviation
of sentence lengths (std_sen_len)

3.2 Lexical Features

Descriptions of the two lexical features used in our
approach are given below.

• Character diversity (CD) can be measured
in various ways by establishing statistical re-
lationships between types and tokens in the
text. Generally, words are considered to be
the tokens of a text, but in our case, we con-
sider characters (excluding space) in the text
as tokens3. Diversity establishes the statistical
relationship between the type and tokens of
the text and has been deployed in various ap-
plications, such as measuring the proficiency
of a second language learner (Engber, 1995;
Karakoç and Köse, 2017), studying the speech
of people with mild aphasia (Cunningham
and Haley, 2020), and analyzing the writing
style of authors.

The most common approach for measuring
the diversity of characters or words is to use
the ratio of unique tokens divided by the to-
tal number of tokens in a text sample, com-
monly known as TTR (type-token ratio). One
of the shortcomings of TTR-based measures
is that they depend on the sample length.

3Originally, we considered words as tokens and included
it in the lexical feature category. However, our preliminary
analysis suggested that character-level tokens performed much
better than word-level tokens in our classification task, so we
did not include words as tokens in the current work.

Therefore, we have used seven other mea-
sures of diversity, i.e., Maas Index (Maas TTR)
(Mass, 1972), Mean segmental type-token ra-
tio (MsTTR), Moving Average type-token ra-
tio (MATTR) (Covington and McFall, 2010),
Measure of Textual Lexical Diversity (MTLD)
(McCarthy and Jarvis, 2007), moving average
of MTLD (MTLD MA), VocD (Durán et al.,
2004) and YulesK (Greg and Yule, 1944). The
exact mathematical formula for each measure
above is provided in Appendix A.

• Lexical Density (lex_den) features are calcu-
lated by taking the ratio of content words
(words that are tagged as noun, verb, adjective
adverb) to function words (all part of speech
tagged words except those of content words).4

Lexical density quantifies “how informative a
text is”. Prior work has argued that a text with
a high number of content words carries more
information than one with a higher number of
function words (Johansson, 2008).

3.3 POS Ratio Features

A total of eight parts of speech ratios (adverb/noun,
adverb/pronoun, adjective/verb, noun/verb,
verb/pronoun, adverb/adjective, adjective/pronoun,
noun/pronoun) were extracted from tagged datasets
based on their efficacy in document-level genre
classification (i.e., fiction vs non-fiction) reported
in prior work (Qureshi et al., 2019).

4Following later works, we deviate from Ure’s 1971 orig-
inal definition of lexical density as the ratio of number to
content to all words.
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3.4 Syntactic Features
The following measures were used in our analysis.

• Frequency of dependency relations
(dep_rel): For each parsed paragraph,
we extracted the frequency of depen-
dency relations (as defined in the Univer-
sal Dependencies framework: https:
//universaldependencies.org/

• Argument-Adjunct Ratio: Ratio of arguments
to adjuncts in each paragraph. In syntactic
theory, an adjunct is an optional component
of a sentence, clause, or phrase, while argu-
ments are the obligatory parts of a sentence. In
psycholinguistics, the argument-adjunct dis-
tinction has been empirically demonstrated to
impact parsing i.e., the process of constructing
syntactic representations progressively dur-
ing sentence comprehension (Tutunjian and
Boland, 2008).

• Syntactic complexity (syn_comp): In our work,
we deployed 3 different indices (capture the
complexity of a sentence) proposed in prior
work. Sampson (1997) defined a depth mea-
sure quantifying the degree of left-branching
of a constituency parse tree (depth). Sampson
verified the claim that English writers tend to
avoid grammatical structures where the num-
ber of left branches between any word and
the root node of a sentence exceeds a specific
fixed limit (see Figure 3 in Appendix B for
an illustration). Another way to measure the
syntactic complexity of a sentence is to calcu-
late the average dependency distance (add) in
a sentence based on a dependency parse tree
(Oya, 2011). The third measure deployed in
our study is the index of Syntactic Complexity
(isc), which is based on counts of linguistic
tokens that reflect the degree of embeddings
or grammatical properties of the text, such
as subordinating conjunctions, Wh-Pronouns,
Verb forms and Noun phrases (Szmrecsanyi,
2004). For each of the above measures, we cal-
culated the average complexity and the stan-
dard deviation on each paragraph.

• Dependency bigrams (dep_big): For each de-
pendency parse tree corresponding to the sen-
tences in our dataset, we extracted bigrams
consisting of the POS tags of each syntactic
head and dependent pair in the sentence. The

linear order of each head-dependent pair was
encoded via the keywords i.e., before or after
(see Figure 4 in Appendix C for an illustra-
tion). The main objective of this feature was
to model word order variation in the text.

4 Experiments and Results

This section presents the results of our experiments
for classifying shorter texts into fiction and non-
fiction genre. The following subsections describe
our classification results using a traditional ma-
chine learning model (logistic regression) and two
deep learning models (CNN and BERT).

4.1 Logistic Regression Model
We used LOGISTIC REGRESSION (McCullagh and
Nelder, 2019) as one of our classification mod-
els for the classification task. We evaluate model
performance using classification accuracy and F1
score. We selected the optimal features by applying
recursive feature elimination with cross-validation
(RFECV) on the 4 feature sets described in the
previous section. RFECV discards features from a
model by fitting the model several times, removing
the weakest-performing feature at each step. After
obtaining the optimal features, we trained a logis-
tic regression model with 10-fold cross-validation
and L1 regularization using scikit-learn toolkit (Pe-
dregosa et al., 2018) on the following two datasets:

1. Brown corpus with a 70% − 30% train-test
split (Training paragraphs: 1057, Testing para-
graphs: 453).

2. Training on Brown corpus and testing on Baby
BNC corpus (Training paragraphs: 1510, Test-
ing paragraphs: 10 different sets of 493 para-
graphs).

For the first case above, we reported the mean
testing accuracy with standard deviation for 10 dif-
ferent combinations of paragraphs in the Brown
corpus. And for the second case, we trained the
model on the feature vectors of 1510 paragraphs
from the Brown corpus and tested it on the Baby
BNC corpus. However, as presented in Table 1, the
number of fiction paragraphs (1,783) in the Baby
BNC corpus exceeds the number of paragraphs in
the non-fiction category (243). Therefore, we ran-
domly sampled 250 fiction paragraphs 10 times
and combined each set with the 243 non-fiction
paragraphs. This approach allowed us to report the

https://universaldependencies.org/
https://universaldependencies.org/
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Feature
set

Testing
accuracy

F1 score
(fiction)

F1 score
(non-fiction)

Best features (28) 94.016± 1.03 0.939± 0.0112 0.941± 0.009

Baseline (adv/adj, adj/pro) 83.448± 1.12 0.843± 0.0123 0.824± 0.0098

Table 3: Classification accuracy on Baby BNC corpus trained on Brown corpus (random baseline: 50.71%)

Model Data set Testing
Accuracy (%)

F1 score
(fiction)

F1 score
(non-fiction)

CNN
Brown Corpus 93.66± 0.808 0.939± 0.008 0.933± 0.008

Baby BNC Corpus 96.94± 0.410 0.968± 0.004 0.969± 0.003

BERT
(base-uncased)

Brown Corpus 97.3± 0.64 0.973± 0.006 0.972± 0.006
Baby BNC Corpus 98.13± 0.486 0.981± 0.005 0.981± 0.005

Table 4: Classification accuracy of 1D CNN and BERT-base-uncased model on Brown and Baby BNC Corpus

mean testing accuracy with standard deviation on
10 different combinations of fiction and non-fiction
paragraphs in Baby BNC corpus. The accuracy of
the feature sets was compared with the baseline
model containing only two features: adverb to ad-
jective ratio (adv/adj) and adjective to pronoun
ratio (adj/pro). These two features were found to
be optimal for classifying document-level texts into
fiction and non-fiction genre (Qureshi et al., 2019).

4.1.1 Brown Corpus
The results of our experiments on the Brown cor-
pus are displayed in Table 2. Individually, the
baseline model containing two POS ratio features
(adv/adj and adj/pro) gave a classification accu-
racy of 76.33%. The character diversity (CD) fea-
tures provided an accuracy gain of 5.21% over
the baseline model. However, when CD features
are combined with POS-ratio features (CD+POS),
the accuracy gain increases to 10.68% over base-
line. The syntactic complexity features (syn_comp)
performed the worst (72.98%) compared to the
baseline. The accuracy significantly improved
(86.55%) when syntactic complexity features were
combined with CD features and POS-ratio features
(CD+POS+syn_comp). The dependency relation
distribution features (dep_rel) category returned an
accuracy gain of 11.31%. The dependency bigram
feature (dep_big) in the syntactic feature category
(89.65%) outperformed all other individual feature
categories, thus suggesting the significance of our
proposed word-order features in this work.

The best performing model contained 28 features
after selecting the optimal features from each cate-
gory after RFECV and gave an overwhelming gain
of 15.56% in classification accuracy over the base-
line model. Overall, our best-performing model

gave a classification accuracy of 91.89%, and F1
scores for each class were similar. Table 5 in Ap-
pendix D lists all the optimal features and their re-
gression coefficients that led to the best prediction
performance. Interestingly, the feature selection
algorithm eliminated both the syntactic complex-
ity (syn_comp) features and argument/adjunct ratio
features in the syntactic feature category. It is con-
ceivable that dependency bigram features (dep_big)
would be modeling those generalizations.

We also interpret the coefficients of each pre-
dictor in the best-performing regression model to
understand their importance for fiction writing. The
CD features have positive regression coefficients
suggesting that fiction paragraphs tend to be more
diverse in terms of characters than non-fiction gen-
res. The negative regression coefficient for the lexi-
cal density feature (content/function ratio) indicates
that fiction paragraphs tend to have lower lexical
density than non-fiction paragraphs. In the case of
dep_big features, 11 features were retained in the
optimal feature set. Their coefficients suggest that
the fiction paragraphs tend to have more verbs after
proper nouns (PROPN) and more verbs preced-
ing adverbs, pronouns and Adpositions (ADP). In
contrast, non-fiction paragraphs tend to have more
proper nouns (PROPN) before Numbers (NUM).

4.1.2 Baby BNC Corpus
The results of our experiments on the Baby BNC
corpus are displayed in Table 3. The classifier
yielded a prediction accuracy of 94.01% on the
Baby BNC corpus using 28 optimal features ob-
tained previously when the model was trained on
the entire Brown corpus. The accuracy score ob-
tained in this case is better than that of the Brown
corpus data set, demonstrating that our pre-trained
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(a) Dependency bigram features (b) Lexical density features

Figure 1: Genre-wise distribution of features in the Brown corpus

model can be used for a new but related task, i.e.,
transfer learning. It also suggests that our model
is not biased w.r.t. language variety: American
English vs. British English.

4.2 Deep Learning Experiments

Recent work has shown the efficacy of neural
network-based language models, viz., RNN and
LSTMs, for text classification (Bengio et al., 2000;
Mikolov et al., 2010; Hochreiter and Schmid-
huber, 1997) over traditional n-gram language
models (Shannon, 1948, 1951; Chen and Good-
man, 1999; Kneser and Ney, 1995; Markov, 1913).
While the later models (traditional LMs) struggle
with data sparsity and long-range dependencies,
the former models (neural net LMs) grapple with
substantial memory requirements and a long train-
ing time as they work sequentially to capture long-
range dependencies (Worsham and Kalita, 2018).
The former models also suffer from interpreting the
various features learned during their training. In
this section, we describe the deep learning experi-
ments performed using CNN (LeCun et al., 1998)
and BERT (Devlin et al., 2018) models.

4.3 CNN

We deployed a CNN-based architecture for genre
classification, which is inspired by the recent work
in the NLP literature (Pham et al., 2016; Prakhya
et al., 2017; Dauphin et al., 2017). Recent studies
have made use of the CNN-based architecture for
tackling some of the challenging NLP problems, in-
cluding text classification (Kim, 2014; Pham et al.,
2016; Dauphin et al., 2017) and learning the ab-
stract linguistic properties of the text, such as in-
flection, morphological richness, linguistic struc-

ture, and word sequence patterns (Prakhya et al.,
2017; Rahman et al., 2021). Pham et al. (2016)
showed that CNNs are effective in learning lan-
guage representations up to the sequence of 16
words before the target and can potentially de-
tect high-level abstract features in language data.
For the task of genre classification, Worsham and
Kalita (2018) compared the efficacy of various deep
learning models, including CNN-Kim (Kim, 2014),
LSTM (Hochreiter and Schmidhuber, 1997), Hi-
erarchical Attention Network (Yang et al., 2016,
HAN) and reported that CNN gave the most reli-
able performance amidst LSTM and HAN-based
deep learning models.5

Our CNN experiments involved creating the
word embedding vectors using pre-trained GloVe
Embeddings. We deployed a 1D CNN model over
the embedding vectors to capture the style and pat-
terns in the paragraphs (see Appendix F for more
details on training procedures). Table 4 (top block)
shows the results of the CNN-based models on
Brown and Baby BNC corpora. This model obtains
an accuracy score of 93.66% on Brown corpus and
96.94% on Baby BNC corpus.

4.4 BERT
We deployed the BERT-base-uncased model (De-
vlin et al., 2018) for our genre classification task
on shorter texts. The bidirectional encoder repre-
sentations from transformers (BERT) is an NLP
model designed to capture bidirectional represen-

5Interestingly, Worsham and Kalita (2018) showed that the
XGBoost classifier (Chen and Guestrin, 2016) outperformed
every other model deployed for their genre classification task.
XGBoost model is based on a tree-based classification algo-
rithm with bag-of-words (BOW) input representation and is
known to take the least time and utilize fewer resources.
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Figure 2: Genre-wise distribution of parts-of-speech (POS)
tags in Brown corpus

tation from the unlabeled raw text. Then they are
fine-tuned on labeled textual data to carry out vari-
ous NLP tasks (Vaswani et al., 2017). Appendix G
provides more details on the BERT training proce-
dures for our classification task. Table 4 (bottom
block) shows the results of the BERT model on
Brown and Baby BNC corpora. This model ob-
tains an accuracy score of 97.0% on Brown corpus
and 98.13% on Baby BNC corpus.

5 Discussion

Overall, our classification results show that deep
learning models achieve better accuracy than the
traditional machine learning model for the task of
genre identification in shorter text. However, one
of the main objectives of this work is to identify the
properties of the text that help distinguish between
fiction and non-fiction genres. This objective is ac-
complished using the traditional logistic regression
model as the regression coefficients enable inter-
pretation of the features used in the model. Though
the deep learning models confer better accuracy on
our task, it is difficult to interpret them. The CNN
and BERT models used in our work were trained
on thousands of parameters. Word embedding vec-
tors capture the properties of the words in the texts,
but the complex structure of the internal represen-
tations of these models make it difficult to discern
the exact generalizations learned by the models in
question.

In order to understand the impact of various fea-
tures in distinguishing between fiction and non-
fiction genres, we interpret the regression coeffi-
cients of our logistic regression model (depicted
in Table 2), by examining the model containing 28
best features (Table 5 of Appendix D). The positive
regression coefficient associated with the character

diversity feature indicates that fictional text tends
to be more diverse in terms of characters than non-
fiction text. However, fiction paragraphs have a
lower lexical density (negative coefficient of con-
tent/function ratio) compared to non-fiction ones.
This last finding has implications for theories of
language production and comprehension, as sug-
gested by a close reading of prior work on sen-
tence processing. Schmauder et al. (2000) showed
that during silent reading, both content and func-
tion words are processed similarly during the early
stages of lexical processing and differently in the
latter stages, where words are integrated with other
elements of the text (including discourse represen-
tations). However, in spontaneous speech, Bell
et al. (2009) showed that backward and forward bi-
gram probabilities displayed asymmetric behavior
in predicting content and function words, leading
to the conclusion that these word types are accessed
differently in production.

Dependency relations also provide important
cues that help distinguish between fiction and non-
fiction genres. Fiction is characterized by a greater
number of syntactic subjects, oblique noun mod-
ifiers, ’s possessives, and discourse markers com-
pared to non-fiction. In contrast, non-fiction texts
are characterized by a greater frequency of nu-
meral modifiers, passive voice sentences, relative
clauses, and multi-word expressions. Further, sub-
tle word order differences between the two gen-
res act as effective predictors of paragraph-level
genres. In fictional paragraphs, verbs tend to pre-
cede adverbs and pronouns while proper nouns
are likely to occur before verbs. In non-fiction
paragraphs, proper nouns (PROPN) and verbs tend
to precede numbers (NUM) and pronouns precede
verbs. See Figure 1(a) for a visual illustration of the
above patterns in the Brown corpus genres. Simi-
larly, Figure 1(b) depicts the genre-wise percentage
of content and function words computed over all
the words in the Brown corpus. It suggests that
the content and function word percentages in the
non-fiction genre are greater than in the fiction
genre. Further, Figure 2 represents the percentage
of genre-specific parts of speech tags (computed
over the total number of Brown corpus parts of
speech tags), where the percentage of nouns in
fiction is greater than that in non-fiction while ad-
verbs and verbs have similar distributions across
both genres.

In the rest of this section, we illustrate the impor-
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tance of our features using linguistic examples (the
verb is shown in bold, and the adverb is in italics).
Given below are the first two sentences taken from
the Brown corpus fiction paragraphs (fileid: cn13,
paragraph number: 22):

• The snake slid slowly and with great care from
the new ridge the plow had made , into the
furrow and did not go any further.

• He was multi-colored and graceful and he lay
in the furrow and moved his arched and ta-
pered head only so slightly.

These sentences depict the case where verbs pre-
cede adverbs in fictional text. These examples also
indicate how the later adverb plays a crucial role
in providing extra information about the verb, thus
augmenting the imaginative quotient of the text.
We prove two further examples below from non-
fiction texts taken from Brown Corpus (fileid: ce16,
paragraph number: 17), which shows the genre-
specific tendency of adverbs preceding verbs:

• I laid three layers of glass cloth on the inside
of the stem, also installing a bow eye at this
time.

• Again, these blocks were set in resin-saturated
glass cloth and nailed .

Finally, we also checked the performance of all
the models (traditional as well as deep learning
models) on newswire text from the Baby BNC
Corpus (605 paragraphs from the 97 News cate-
gory documents) individually as well as combined
with our Baby BNC dataset (described in Section 2
used in previous experiments). Table 6 in the Ap-
pendix section E shows the performance of dif-
ferent models on the Baby BNC corpus when the
news texts are included in the non-fiction category.
Table 7 of Appendix E shows the percentage of
news texts classified as non-fiction using differ-
ent models. Our traditional model has 68% ac-
curacy while classifying news texts into the non-
fiction genre. Even the top-performing BERT-base-
uncased model gives a classification accuracy of
83%. The performance drop of these models sig-
nifies that news texts contain writing styles that re-
quire more detailed linguistic analyses as features
found effective for other sub-genres (such as aca-
demic texts) fail to achieve a comparable accuracy
in this case.

6 Conclusions and Future Work

In this work, we classified paragraph-level text
into fiction and non-fiction genres using a tradi-
tional machine learning model (logistic regression)
and two different deep learning models. For short-
text genre identification, we show that the tradi-
tional model containing hand-crafted features (raw
text, POS ratios, lexical and syntactic features)
significantly outperformed a baseline model con-
taining POS-ratio features, (originally proposed
by Qureshi et al. (2019) for the task of document-
level genre classification). We also obtained the
insight that subtle differences in word order ex-
ist between the two genres, i.e., in fiction texts
Verbs precede Adverbs (inter-alia) compared to
non-fiction texts. Finally, we showed that deep
learning models (viz., CNN and BERT) perform
significantly better than our traditional model. We
obtained state-of-the-art results for the task of short-
text genre identification using a pre-trained BERT
model fine-tuned on the Brown Corpus.

In future work, we intend to investigate the effi-
cacy of the hand-crafted features on a larger data
set and also plan to create a gold standard corpus
of human-annotated fiction and non-fiction para-
graphs for fine-grained evaluation. Future research
needs to investigate whether syntactic complexity
and arguments/adjuncts patterns (not having any
impact using our current machine learning setup)
are effective predictors of genre shorter texts us-
ing other learning algorithms. Further, our finding
that journalistic prose (as in news) is not purely
non-fiction in nature and might contain fictional
elements, needs more systematic investigation. An-
other line of future inquiry is to combine traditional
models (encoding linguistic features) with state-of-
the-art deep learning models. Finally, it would be
interesting to investigate if causality expressed in
the natural language text plays an essential role in
classifying text into fiction and non-fiction genres.
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W.N. Francis and H. Kučera. 1989. Manual of Informa-
tion to Accompany a Standard Corpus of Present-day
Edited American English: For Use with Digital Com-
puters. Brown University, Department of Linguistics.

Walter Wilson Greg and G. Udny Yule. 1944. The statis-
tical study of literary vocabulary. Modern Language
Review, 39:291.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and
Vladimir Vapnik. 2002. Gene selection for cancer
classification using support vector machines. Ma-
chine Learning, 46:389–422.

John R Hayes. 2000. Understanding cognition and af-
fect in writing. Perspectives on writing: Research,
theory, and practice, pages 6–44.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Victoria Johansson. 2008. Lexical diversity and lexi-
cal density in speech and writing: A developmental
perspective. Working papers/Lund University, De-
partment of Linguistics and Phonetics, 53:61–79.

Dilek Karakoç and Gül Durmuşoğlu Köse. 2017. The
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Appendix

A Mathematical formulae for lexical diversity

• Maas Index: This measure minimizes the length dependence of TTR by linearizing. Conceptually,
this method is based on the notion that a logarithmic curve can reasonably fit the TTR curve (Mass,
1972; McCarthy and Jarvis, 2007).

a2 =
(logTokens− logTypes)

log2Tokens
(1)

• MSTTR: The mean segmental type-token ratio is a metric that divides a text into equal segments
based on the amount of words in each segment (normally 50 or 100 words per segment). The TTR
is determined for each segment, and the MSTTR is generated by taking the arithmetic mean of the
TTR for each segment.

• MATTR: The moving average type-token ratio is a measure that involves moving a fixed-size
window through the text and calculating the type-token ratio for each window position. To begin,
a window length—for example, 50 words—is chosen, and the type-token ratio for words 1–50 is
calculated. The type-token ratio is then computed for words 2–51, 3–52, and so on until the text
length is reached. The estimated TTRs are averaged for the final score (Covington and McFall,
2010).

• MTLD: The measure of textual lexical diversity is defined as the average number of words in a row
for which a specified type-token ratio is maintained (here 0.720). When the value falls below a cut-off
score (here 0.720), a count (called the factor count) increases by one, and the TTR assessments are
reset. It picks up where the value was dropped and repeats the operation until the text is finished. The
entire number of words in the text is then divided by the total number of factors in the text. After that,
the entire text in the language sample is reversed, and a new MTLD score is calculated. The forward
and the reversed MTLD scores are averaged to provide the final MTLD estimate (McCarthy and
Jarvis, 2007). One more measure of MTLD was also calculated: Moving Average MTLD (procedure
same as that of MATTR).

• Voc-D: The vocabulary diversity is a result of a series of random text samplings. It measures the rate
at which TTR drops in the sample. To calculate Voc-D, 35 tokens are randomly selected from the
text without being replaced, and the TTR is calculated. The average TTR for 35 tokens is estimated
and this method is repeated 100 times. Similarly, the average TTR for 36-50 tokens is determined.
The means of each of these samples are then used to generate an empirical TTR curve. Using the
least-squares approach, a theoretical curve is created that maximizes its fit to the empirical TTR
curve. The TTR calculated using Voc-D, ‘D’ is as follows (Durán et al., 2004).

TTR =
D

N
[(1 + 2

N

D
)
1
2 − 1] (2)

• Yule’s K: This measures the repetition and lower values of Yule’s K represent higher diversities
(Greg and Yule, 1944). The value K for a text sample is calculated as follows.

K = 104
{
∑N

r=1 Vrr
2} −N

N2
(3)

where Vr is the number of types that occur r times in a text of length N.
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Figure 3: Constituency parse tree indicating Sampson’s depth for each word alongside in bracket

B Syntactic depth-based feature calculation

For the example sentence, "The children ate the cake with a spoon", we describe the method to compute
Sampson’s (1997) measure of syntactic complexity. Figure 3 illustrates the constituency parse tree of the
example sentence. Now, we define the LINEAGE of a word as the class of nodes, including the leaf node
(terminal node) associated with that word, the root node of its tree, and all the intermediate nodes on the
unique path between leaf and root nodes. Now, according to Sampson depth of a terminal node is defined
as the total number of those non-terminal nodes in the word’s lineage with at least one younger sister.6

The depth of the word ’cake’ in the example sentence according to the above definition is 1. Similarly, the
depth of each terminal node or the word in the sentence in sequence from left to right is 1,1,0,1,1,0,0,0,
which sums to 4. The depth-based measure is the average over the leaf nodes; hence, the value is 0.5 in
this example.

C Dependency bigram feature calculation

For the example sentence, "The children ate the cake with a spoon", we describe the method to
compute the dependency bigram feature modelling word order patterns. We extracted bigram features
from dependency trees (exemplified in Figure 4). We took all the pos tags of head and dependent pairs
from the tree, and specified the position of syntactic heads w.r.t to their dependents in a linear string by
means a keyword: before or after. Therefore, the dependency bigram features for the example sentence
are: (NOUN, DET, after), (VERB, NOUN, after), (VERB, NOUN, before), (VERB, NOUN, before), (NOUN,
DET, after), (NOUN, SCONJ, after), (NOUN, DET, after)

Figure 4: Dependency parse tree to compute the word order based feature.

6Node e is a YOUNGER SISTER of a node d if d and e are immediately dominated by the same mother node and e is further
right than d.
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D Supplementary Information: Brown corpus results

Feature category Feature set Feature Name Regression Coefficient
Raw features - std_sen_len 0.11

Lexical features
Character diversity (CD)

TTR 2.31
Maas TTR 1.70

VocD 0.38
Lexical density (lex_den) content/function -5.83

POS Features POS ratios
adverb/pronoun -0.19

noun/verb -0.68

Syntactic features

Dependency relation counts
(dep_rel)

discourse 1.17
nsubj 0.43

obl:npmod 0.20
nmod:poss 0.19
nummod -0.12

mark -0.18
aux:pass -0.20

flat -0.33
acl:relcl -0.49

fixed -0.70

Dependency bigrams
(dep_big)

(’VERB’, ’PROPN’, ’after’) 0.59
(’VERB’, ’ADV’, ’before’) 0.44

(’VERB’, ’PRON’, ’before’) 0.31
(’VERB’, ’ADP’, ’before’) 0.31

(’PROPN’, ’PROPN’, ’after’) -0.30
(’VERB’, ’SCONJ’, ’after’) -0.31
(’VERB’, ’NUM’, ’before’) -0.45

(’PRON’, ’NOUN’, ’before’) -0.57
(’PRON’, ’VERB’, ’before’) -0.74

(’ADJ’, ’SCONJ’, ’after’) -0.79
(’PROPN’, ’NUM’, ’before’) -1.46

Table 5: Regression coefficients of the features from our best model containing 28 optimal features
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E Supplementary Information: Complete Baby BNC corpus (incl newswire text) results

Model Testing Accuracy
(%)

F1 Score
(fiction)

F1 score
(non-fiction)

traditional model (28 best features) 83.77 +/- 0.291 0.848 +/- 0.003 0.825 +/- 0.003
GloVe Embedding CNN 87.034 +/- 0.467 0.876 +/- 0.005 0.863 +/- 0.004
BERT-base-uncased 92.52 +/- 0.258 0.927 +/- 0.003 0.922 +/- 0.002
Qureshi et al. (2 best ratio features) 72.95 % +/- 0.4 0.765 +/- 0.004 0.681 +/- 0.003

Table 6: Testing accuracy on Baby BNC corpus including the news texts (Non-Fiction: 848 paragraphs; Fiction:
850 paragraphs; most frequent baseline is 50.05%)

Models Percentage of samples
classified as Non-Fiction

Traditional model (28 best features) 68.42
GloVe Embedding CNN 82.97

BERT-base-uncased 83.3
Qureshi et al. baseline (2 best ratio features) 49.1

Table 7: Percentage of news texts in Baby BNC corpus classified as non-fiction; total samples: 605 news paragraphs

F CNN Training Regime

The pre-trained model of glove embeddings were trained on a text dataset consisting of Wikipedia articles
and Gigaword-5 data (collection of newswire texts). The pre-trained vectors were trained on a total of 6B
tokens and 400K vocabulary with different embedding dimensions. The model outputs an embedding
vector of dimension 100 for each word of the tokenized text. However, depending on the length of
tokenized text, the output vectors could be of different lengths. Thus could potentially create an imbalance
problem while feeding the vectors into a deep learning model as the input text may not be of fixed length.
To overcome this issue, we fixed the length of the input to be the longest sequence length available in the
training data. As a result, we obtained an input of constant size for training and testing. The embedding
dimension received from each paragraph input is 292× 100, where 292 is the fixed maximum length of
the tokenized paragraph text in the training data, and 100 is the dimension of each word embedding vector.
We pass this embedding layer into a 1D CNN model with 100 filters each of size 3 (also known as kernel
size). The activation function used with the CNN layer is ‘ReLu’. The output of this layer goes to a global
max pooling layer that returns the max value of the input vector received. The output of the global pooling
goes to a dense layer of size 10 with the ‘ReLu’ activation function. Finally, predictions are made using a
dense layer of size 1 and a sigmoid activation function, which transforms its output to class probability.

G BERT Training Regime

The BERT-base model (Vaswani et al., 2017) contains an encoder with 12 transformer blocks, 12 self-
attention heads, and a hidden size of 768. BERT generates a representation of the sequence from an input
sequence raning up to 512 tokens. The sequence consists of one or two segments, with the [CLS] token
serving as the sequence’s first token and containing the special classification embedding. [SEP] serves as
the sequence’s second token and is used to separate segments. For text classification, BERT takes the
final hidden state of the token [CLS], where the entire sequence information is encoded in this particular
token. In the last step, a simple softmax classifier is added to the top of BERT to predict the probability of
target labels. We use the BERT-base-uncased model (Devlin et al., 2018) having a hidden size of 768, 12
transformer blocks 12 self-attention heads. The maximum length of the BERT model input was fixed to
512. We then fine-tuned the BERT model with a batch size of 10, a learning rate of 2e-5, and a weight
decay of 0.01. The hidden dropout probability was 0.1. We set the maximum number of epochs to 3 and
saved the best model for evaluation.
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