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Abstract
Linguists distinguish between novel and con-
ventional metaphor, a distinction which the
metaphor detection task in NLP does not take
into account. Instead, metaphoricity is formu-
lated as a property of a token in a sentence,
regardless of metaphor type. In this paper,
we investigate the limitations of treating con-
ventional metaphors in this way, and advocate
for an alternative which we name metaphori-
cal polysemy detection (MPD). In MPD, only
conventional metaphoricity is treated, and it
is formulated as a property of word senses
in a lexicon. We develop the first MPD
model, which learns to identify conventional
metaphors in the English WordNet. To train
it, we present a novel training procedure that
combines metaphor detection with word sense
disambiguation (WSD). For evaluation, we
manually annotate metaphor in two subsets of
WordNet. Our model significantly outperforms
a strong baseline based on a state-of-the-art
metaphor detection model, attaining an ROC-
AUC score of .78 (compared to .65) on one
of the sets. Additionally, when paired with a
WSD model, our approach outperforms a state-
of-the-art metaphor detection model at identi-
fying conventional metaphors in text (.659 F1
compared to .626).

1 Introduction

Linguists differentiate between two types of
metaphor: novel and conventional. While novel
metaphors are creative expressions made in a partic-
ular situation by one particular individual, conven-
tional metaphors are those which have been widely
adopted by a language community. Consider:

(1) The attack began at dawn.

(2) The government has come under attack.

(3) The government torpedoed the housing bill.

Example (1) is a literal usage of attack which refers
to a military offensive. Example (2) is a conven-
tional metaphor referring to intense verbal criticism.

"The new task is a   bridge   between existing ones"

Metaphorical
MPD

WSD

SMD
  bridge    noun3  something
resembling a bridge in form or
function, e.g. "his letters provided
a bridge across the centuries"

Figure 1: Metaphorical polysemy detection is the miss-
ing link between standard metaphor detection and word
sense disambiguation

Example (3) is a novel metaphor, which reuses the
well-established imagery from (2), but extends it
with the word torpedoed.

Detecting novel metaphors and conventional
metaphors are fundamentally different tasks. Novel
metaphors are creative usages of words, which vi-
olate statistical patterns of language (e.g. Wilks,
1975, 1978), and which extend the meaning of
a word into unexpected areas of semantic space.
Conventional metaphors, on the other hand, can
be considered lexicalised: examples (1) and (2)
come from the gloss of two senses of attack in
WordNet (Miller, 1995), where the novel sense
of torpedoed in example (3) is not yet captured.
Despite these inherent differences, in NLP the stan-
dard metaphor detection task, abbreviated as SMD
here, makes no distinction between novel and con-
ventional metaphor.

Although recent works have produced resources
which distinguish between novel and conventional
metaphors (Parde and Nielsen, 2018; Do Dinh et al.,
2018), both metaphor types are annotated as prop-
erties of tokens, suitable for SMD. In this work, we
demonstrate the shortcomings of this formulation,
and argue that conventional metaphoricity is best
treated not as a property of word occurrences in a
sentence, but of word senses in a lexicon. With this
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Sense Definition Metaphor?

adopt1
take into one’s family (e.g. They adopted two children
from Nicaragua)

✗

adopt2
choose and follow; as of theories, ideas, policies, strategies
or plans

✓

adopt3
take on a certain form, attribute, or aspect (e.g. he adopted
an air of superiority)

✓

adopt4
take up the cause, ideology, practice, method, of someone and
use it as one’s own (e.g. They adopted the Jewish faith)

✓

Table 1: Verbal senses of adopted in WordNet

in mind, we investigate the problem of assigning
metaphoricity ratings to word senses, a problem
we name metaphorical polysemy detection (MPD).
We build the first model of MPD, which identifies
metaphorical senses in WordNet (Miller, 1995).

No training data is available for this task. We
design a novel training regime which utilises exist-
ing resources, which works by decomposing SMD
into two steps: word sense disambiguation (WSD)
and MPD (see Figure 1). More specifically, we
pair our MPD model with a state-of-the-art WSD
model, and train them in conjunction on SMD data,
treating word sense as a latent variable.

To investigate the performance of our model, we
establish an evaluation framework for MPD. To
collect test data, we perform an annotation study,
and label two subsets of WordNet for metaphoricity
(κ = 0.78). Metaphor detection is typically evalu-
ated using F1-score, which measures how well a
model can judge metaphoricity in absolute terms.
For MPD, we additionally introduce a new quantity
for evaluation, which we call relative metaphoricity.
It measures whether a model is able to correctly
identify whether one sense is more metaphorical
than another, even if it is unable to correctly de-
termine where they sit around a threshold. It is
calculated using ROC-AUC.

On one of our test sets, consisting of words from
a large resource of conventional metaphors (the
Master Metaphor List; Lakoff et al., 1991), our
MPD model attains .78 ROC-AUC and .60 F1, sig-
nificantly higher than a strong baseline which uses
a state-of-the-art SMD model (MelBERT; Choi
et al., 2021), which scores .65 and .54 respectively.
Additionally, for SMD on conventional metaphors,
when our model is paired with a WSD model it
attains .659 F1, significantly better than the state-
of-the-art SMD model (.626).

2 Metaphor in the Lexicon

A fundamental feature of language is polysemy,
the phenomenon of a wordform exhibiting mul-
tiple meanings which are systematically related.
When meanings are related by metaphorical simi-
larity, the phenomenon is called metaphorical pol-
ysemy. An example is the word attack, which
describes either a physical confrontation, or—
metaphorically—heated criticism (e.g. “she at-
tacked my arguments”). Instances of metaphorical
polysemy are called conventional metaphors.

In this section, we describe how conventional
metaphors materialise in lexica (§2.1). With this in
mind, we illustrate the shortcomings of the existing
metaphor detection task (§2.2), and propose an
alternative formulation which is more suitable for
conventional metaphors (§2.3).

2.1 Metaphoricity of Word Senses

In a lexicon, metaphoricity can be formulated as
a property of word senses. Consider the example
definitions of the word adopted in WordNet (Miller,
1995), which are shown in Table 1 (some senses
are excluded for brevity). Sense adopt1 is literal,
but the other senses are conventional metaphors.

The conventionality of a metaphor lends itself to
treatment as a continuous property. For instance,
a metaphor used by an entire language commu-
nity would be highly conventionalised, while a
metaphor used by speakers in a particular geo-
graphic region would be moderately convention-
alised. Novel metaphors sit at the extreme other
end of the spectrum: they are creative expressions
with ad-hoc meanings.1 By definition, lexica de-

1Novel metaphors can be further subdivided into
metaphors which are novel lexicalisations of conventional
imagery, as with example (3) above, and metaphors which
create new imagery.
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signed to encode widespread language use will
only encode the most conventional of metaphors as
word senses.

In order to formulate metaphoricity as a property
of word senses, a lexicon needs to encode the lit-
eral and metaphorical meanings of a wordform as
separate senses. The criteria that need to be met for
two meanings to be considered distinct is highly
contentious, with some lexicographers arguing that
senses should be represented as spectra rather than
discrete units (see Cruse, 1986, Ch. 3). In prac-
tice, however, lexica describe senses as discrete
objects. Moreover, in most lexica the granularity of
these senses is high enough to separate metaphor-
ical senses from literal ones, which thus matches
our criteria. That being said, no existing lexicon
systematically labels senses for metaphoricity (the
decision of whether to label metaphorical senses as
such is left to the lexicographer’s discretion).

If word senses in a lexicon like WordNet were
labeled for metaphoricity, this would be useful in a
number of areas of study. When a language com-
munity need to reference a newly-arisen meaning,
instead of creating a new wordform, often an exist-
ing word is extended metaphorically (e.g. a com-
puter mouse). This process of metaphorical exten-
sion is a cornerstone of lexical-semantic language
change (Koch, 2016), and knowing which word
senses were metaphorical would open up new pos-
sibilities to study this phenomenon. The metaphors
which do enter the lexicon participate in sophis-
ticated patterns, preserving the structure of their
literal domains: just as one can attack an oppo-
nent in a debate, so too can claims be defended,
different rhetorical strategies adopted, and so on.
These patterns are known as conceptual metaphors
(Lakoff and Johnson, 1980), and knowing which
word senses in a lexicon were metaphorical would
create new opportunities to analyse their substruc-
tures (this has been previously recognised by Lön-
neker, 2003).

2.2 Issues with Standard Metaphor Detection

In the standard metaphor detection (SMD) task,
metaphoricity is formulated as a property of a to-
ken in a sentence. The dataset which is almost uni-
versally used for this is the VUAMC (Steen et al.,
2010). It contains tokenised English sentences, in
which words are annotated with binary metaphoric-
ity labels. It was the subject of two recent metaphor
detection shared tasks (Leong et al., 2018, 2020).

The VUAMC was annotated following an
adapted version of the Metaphor Annotation Pro-
cedure (MIP; Crisp et al., 2007). To annotate each
token, MIP involves a three-stage process:

1. Establish the contextual meaning of the word,
based on the other words in the sentence.

2. Determine whether the word has a more basic
meaning which occurs in different contexts
(where “basic” meanings are defined as those
more concrete, related to bodily action, less
vague, and/or historically older).

3. If the word does have a more basic meaning in
different contexts, decide whether the mean-
ing in this context can be understood in com-
parison with the more basic meaning.

If the wordform does have a more basic meaning
which the contextual meaning relates to, the token
is labeled as a metaphor.

To perform well in SMD, a model must emulate
this procedure. There are two drawbacks to this
task formulation:

Learning WSD Implicitly For conventional
metaphors, stage 1 of MIP is very similar to word
sense disambiguation (WSD). In WSD, the goal
is to identify the sense evoked by a wordform in
a sentence. This is a hard task in its own right,
and, in order to perform well, models of SMD are
expected to learn to do this implicitly.

We can check whether an SMD model has learnt
to do this by analysing its predictions for word-
forms which appear in multiple distinct contexts
which all evoke the same sense. Tokens which
evoke the same sense should always receive the
same metaphoricity prediction (either they should
all be metaphorical, or all literal). This is be-
cause, for conventional metaphors, metaphoricity
is a property of a word sense (§2.1). After the
sense of a token is established, stages 2 and 3 of
MIP should always yield the same prediction; if a
model makes inconsistent predictions for different
invocations of the same sense, that suggests that it
is incorrectly establishing the contextual meaning
of the token.

To investigate whether a state-of-the-art model
is able to adequately perform stage 1 of MIP, we
perform an error analysis of MelBERT (Choi et al.,
2021). More specifically, we compute MelBERT’s
metaphoricity predictions for every token in an En-
glish sense-tagged corpus (SemCor; Miller et al.,
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Sentence Excerpt Prediction

...the South Carolina nullifiers adopted the principle of state interposition... Metaphorical

...the methods he adopted to accomplish... Metaphorical

...the denomination’s 16 basic beliefs adopted in 1966... Metaphorical

...the Government’s new feed grain program was adopted; the program... Literal

...the Albany Plan of Union, which, had it been adopted, might... Literal

...the use of target-hunting noses on the projectiles has been adopted, and... Literal

Table 2: MelBERT makes inconsistent predictions for occurrences of adopted with sense adopt2 in SemCor

1994), then extract all the predictions of the same
word sense, which should always elicit a consistent
prediction. Table 2 shows MelBERT’s predictions
for different instances of the word adopted which
all evoke the same metaphorical sense, adopt2.2

MelBERT misclassifies the bottom three exam-
ples as literal. In general, for word senses which
occur multiple times in the data, MelBERT gave
contradictory classifications 31.8% of the time. It
becomes more likely that a system will make an
inconsistent classification when there are more oc-
currences of a word sense in the data: for word
senses which occurred 15 or more times, the mis-
classification rate was 49.3%.

This error analysis suggests that MelBERT is not
performing stage 1 of MIP adequately. The errors
in Table 2 result not from a failure to reason about
metaphoricity, but from MelBERT incorrectly es-
tablishing the contextual meaning of adopted in the
first place. We argue that this is beyond the remit
of metaphor detection, since it is a hard challenge
in its own right, covered by other NLP tasks.

Word’s Senses Undefined After stage 1 of MIP
has been performed, stages 2 and 3 require informa-
tion about how the contextual meaning of a word-
form relates to the other senses it may take. More
specifically, models need to determine the most
basic sense of the wordform, and relate that sense
to the contextual meaning. However, the VUAMC
does not provide information about other meanings
a wordform could assume. Because of this, model
architects typically assume that static word embed-
dings will represent the basic sense of a wordform
(e.g. Choi et al., 2021; Mao et al., 2018; Zayed
et al., 2018; Wu et al., 2018). We argue that this
assumption is problematic, because static word em-
beddings do not distinguish between word senses,
and are sensitive to occurrence frequency. If one

2Data here comes from our re-implementation of Mel-
BERT trained on the ‘all’ subset, described in §4.3.

sense is much more frequent than others, static
word embeddings will primarily encode that sense—
but the basic sense of a wordform is often not the
most frequent.

Fortunately, we know that the most basic sense
of a wordform will be one of its senses in a lexicon.
If we model metaphoricity as a property of word
senses, we create scope for researchers to explicitly
investigate the relations between different senses,
which we argue is the core challenge posed by
metaphor.

2.3 A New Task Formulation for
Conventional Metaphor

Let w ∈ W be all the wordforms in a language.
To represent metaphoricity, let M be the set {0, 1}
with members m, such that 1 represents metaphori-
cal and 0 represents literal.

A token t ∈ T is an occurrence of a wordform
in a sentence. Using ◦ to denote concatenation, we
define a token as a wordform w surrounded by a
prefix and suffix string (p and s) in a sentence:

T = {⟨p, w, s⟩ | p ◦ w ◦ s ∈ W∗} (1)

In SMD, the goal is to determine whether a token is
metaphorical, i.e. to construct a model of p(m | t).

A word sense is a particular meaning of a word,
which are typically represented in lexica as defini-
tions. Let D be the complete set of definitions in a
lexicon (in WordNet these correspond to synsets),
with elements d. A lexicon maps a wordform w
to a subset of the definitions Dw ⊆ D.3 Some lex-
ica (WordNet included) associate multiple synony-
mous wordforms with the same definition; because
of this, we define a word sense s ∈ S as a tuple
consisting of a wordform and a definition:

S = {⟨w, d⟩ | w ∈ W, d ∈ Dw} (2)

3Formally, if P(x) denotes the powerset of x, then a lexi-
con is a map W → P(D).
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Because conventional metaphors are lexicalised,
we propose that the task of detecting conventional
metaphors should be formulated as modelling the
metaphoricity of word senses, i.e. constructing
models of p(m | s). We call this metaphorical
polysemy detection (MPD). This formulation of
conventional metaphoricity alleviates the problems
with SMD outlined in §2.2.

3 Learning Conventional Metaphor

In this section, we describe the first MPD model
(§3.1). To train it, it is embedded into an SMD
pipeline (§3.2).

3.1 An Architecture for MPD

To model MPD (see §2.3), we implement p(m | s)
as a multi-layer perceptron (MLP). In eq. (2),
we defined a word sense s as a tuple consist-
ing of a wordform w and a definition d. Our
MPD model’s MLP is input with a pair of em-
beddings, for w and d. Suppose we have a k-
dimensional embeddings space for words w ∈ W ,
and a k-dimensional embedding space for defini-
tions d ∈ D. Let us define two functions to map in-
puts into these spaces, TypeEmb : W → Rk and
SynsetEmb : D → Rk.4 We concatenate these
embeddings, then pass them through an MLP and
a sigmoid to get a probability distribution. Letting
MLP

⟨u,v⟩
ψ : Ru → Rv be an MLP parameterised by

ψ with an input size u and output size v, we have

h = TypeEmb(w) ◦ SynsetEmb(d)

pθ(m | s) = σ
(
MLP

⟨2k,1⟩
θ

(
h
))

(3)

3.2 Teasing MPD out of SMD using WSD

Training this model would be trivial if we had
⟨m, s⟩ tuples, but no training data of this form cur-
rently exists. In WSD, the task is to produce models
of p(s | t) for a corpus ⟨s, t⟩ ∈ CWSD. In SMD,
on the other hand, the task is to produce models
of p(m | t), using a corpus ⟨m, t⟩ ∈ CSMD. No
corpus contains both m and s annotations in par-
allel. In this section, we describe a training pro-
cedure that works by pairing an MPD model with
a WSD model, and training them in conjunction
on SMD, thus making it possible to use existing
resources of CWSD and CSMD to train MPD. We do
not believe that this procedure is an optimal way

4For SynsetEmb we use ARES embeddings (Scarlini
et al., 2020), and for TypeEmb we use BERT embeddings of
wordforms (following Choi et al., 2021); see App. D.

to learn MPD, as errors in the WSD component
will degrade MPD performance. However, given
that these are the only resources currently available,
we design a method to use them for MPD, and in
doing so empirically test whether they can result in
a sufficiently good MPD model.

By marginalising out word sense, we can de-
compose SMD into two parts, introducing sense s
as a latent variable. The first part disambiguates
senses (WSD), and the second predicts metaphoric-
ity based on the sense (MPD):

p⟨θ,ϕ⟩(m | t)︸ ︷︷ ︸
SMD

=
∑
s∈S

pθ(m | s)︸ ︷︷ ︸
MPD

pϕ(s | t)︸ ︷︷ ︸
WSD

(4)

where θ and ϕ are disjoint sets of parameters
(colours correspond with Figure 1). Introducing
WSD into SMD like this makes explicit what SMD
models typically attempt to learn implicitly (see
§2.2). The WSD component outputs a probabil-
ity distribution over the senses s ∈ S, and the
MPD component outputs the probability that each
s is metaphorical.5 This formulation assumes that
metaphoricity is conditionally independent of to-
ken given sense; we assume that the context of a
word’s usage tells us its sense, and that that alone
is enough to predict metaphoricity.

Taken as a whole, the combined model in eq. (4)
can be trained end-to-end by minimising its cross-
entropy on an SMD dataset,

LSMD(θ,ϕ) = −
∑
⟨m,t⟩
∈CSMD

log p⟨θ,ϕ⟩(m | t)
|CSMD|

(5)

However, this approach to training would leave the
model to infer s implicitly. Instead, we can comple-
ment this objective with another, which trains the
WSD model in isolation on another dataset (CWSD),
also using cross-entropy,

LWSD(ϕ) = −
∑
⟨s,t⟩

∈CWSD

log pϕ(s | t)
|CWSD|

(6)

These two objectives can be combined into a multi-
task objective, using α as a hyperparameter which
regulates the ratio between them, yielding the final
global loss function

L(θ,ϕ) = α · LSMD(θ,ϕ) + (7)

(1− α) · LWSD(ϕ)

5For a particular token t = ⟨p, w, s⟩ and sense
s = ⟨w′, d⟩, the probability p(s | t) will only be non-
zero if w = w′; in practice, this can be used to reduce the
computation.
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Any supervised WSD architecture can be used in
conjunction with our MPD model.

4 Evaluation

In this section, we describe the evaluation data we
collected for MPD (§4.1), and introduce relative
metaphoricity, an aspect of metaphor which it is
only possible to evaluate with MPD (§4.2). We
then describe our experimental setup (§4.3) and
results (§4.4).

4.1 Evaluation Data for MPD

Our approach to training (§3.2) alleviates the need
for labeled MPD training data. However, we still
need evaluation data. For this we collect annotation.
In this section, we describe the main evaluation set
we collected. This evaluation set consists of data
from the Master Metaphor List, which is the largest
list of conventional metaphors (collated by Lakoff
et al., 1991).

Data for Annotation We sample 250 commonly
cited metaphor examples from the MML, filter-
ing out wordforms which have more than 10 or
fewer than 3 senses. We annotate the remaining 98
wordforms for metaphoricity (a total of 554 word
senses).

Annotation Procedure We adapt MIP stages 2
and 3 for the annotation task (our guidelines are pre-
sented in App. A). For MPD, we require a lexicon
which consistently separates literal and metaphori-
cal senses (see §2.1). We use the annotation phase
to also check whether WordNet complies with this.
Along with options for “metaphorical” and “literal”,
annotators also have the option to label senses as
“mixed”, meaning that the sense combined literal
and metaphorical definitions. Our data is annotated
by two judges, who are native speakers of English.

Analysis At least one of the annotators labeled a
sense as “mixed” 5.4% of the time. We conclude
from this that although WordNet mixes some literal
and metaphorical senses, for the most part the gran-
ularity of the sense inventory was high enough to
separate them. Of those which neither thought was
mixed, inter-annotator agreement was measured at
κ = 0.78 (N=539, n=2, k=2): where the senses
were clearly distinct, annotation was consistent. Of
the senses that the judges agreed upon, 52% were
metaphorical and 48% were literal.

4.2 Relative Metaphoricity

Metaphor detection performance is typically re-
ported using F1-score, which factors in the pre-
cision and recall of a classifier. This evaluates a
model’s ability to judge whether the metaphoricity
level of an input passes a threshold to be considered
metaphorical, in an absolute sense.

With absolute metaphoricity judgments, there
are lots of edge cases, which do not cleanly fit into
a metaphorical–literal binary. For example, while
a physical attack (e.g. an outlaw with a knife) is
widely accepted as being literal, and an attack with
words (e.g. in the perpetrator’s court hearing) is
widely accepted as being metaphorical, the case
is less clear-cut for a sporting attack (e.g. when
they are playing football with other inmates): here
we have a physical act which can result in injury,
but that takes place within the confines of a game,
and certainly does not involve weapons.6 It is dif-
ficult to decide whether an edge case like this is
metaphorical or not, if those are the only options.
Most people would likely agree, however, that a
sporting attack is more metaphorical than an attack
with a knife, and less metaphorical than an attack
within a debate.

We are not the first to note these flaws in absolute
metaphoricity judgements; they have previously
been used to motivate proposals for the treatment
of metaphor on graded or continuous scales (e.g.
Dunn, 2014; Mohler et al., 2016). Even though
MPD is a binary classification task, it addition-
ally gives us the opportunity to evaluate whether a
model can judge which of a word’s senses are more
metaphorical than others, even if it gets the exact
threshold wrong. We call this a measure of relative
metaphoricity.

Beneath the surface, models assign a probability
of metaphoricity, rather than an absolute judgement.
With MPD, we can compute a model’s predictions
for all the senses of a word, and investigate whether
it puts these probabilities in the right order, even if
it gets absolute predictions “wrong” in an absolute
sense. A metric for this is described in §4.3.

4.3 Experimental Setup

In this section, we describe the models and data
we experimented with. Additional details can be
found in the appendices.

6Ad extremum, this line of reasoning might lead us to ask
whether a sporting attack in rugby (or even boxing) would be
more literal than it would be in non-contact sports.
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MPD Models We compare our MPD model
(Ours) to several baselines. To establish a lower-
bound of performance for MPD, we compute two
baselines which make predictions randomly or
by choosing the most common class (Random
and Majority). In addition to these, we compute
a strong baseline: using a state-of-the-art SMD
model (MelBERT; Choi et al., 2021), we compute
the metaphoricity probability of all occurrences of
s in WSD data, and take the average (MelBERT
Average). More formally, let t ∈ Cs

WSD be every to-
ken in the WSD data which elicits a specific word
sense s. We compute the average metaphoricity
probability of that word sense by taking the mean
of MelBERT’s metaphoricity prediction for all to-
kens that evoke that sense:

p(m | s) = mean
t∈Cs

WSD

p(m | t)︸ ︷︷ ︸
MelBERT

(8)

If |Cs
WSD| = 0 (i.e. there are no occurrences of s

in the WSD data) then we default to the random
baseline (and take the probability as random).

WSD Models We experiment with two WSD
models: a baseline (BERT WSD Baseline) and
a state-of-the-art approach (EWISER; Bevilacqua
and Navigli, 2020). Additional description is left
to App. B.

SMD Models We train the combined model
(WSD+MPD) from eq. (4), using our MPD model
and both WSD models (we select the highest per-
forming variant). We compare the overall SMD
performance of this combined model to two other
approaches, a baseline (BERT SMD Baseline) and
a high-performing model (MelBERT). Additional
description is left to App. C.

MPD Data To evaluate MPD performance, we
use the evaluation set described in §4.1 (MML).
We also collected a second set using the same pro-
cedure, designed to evaluate model generalisation
ability to words which are out-of-vocabulary of the
training data (OOV). We randomly sampled 100
wordform from the WordNet vocabulary which are
not included in the vocabularies of CSMD or CWSD,
and asked one of the annotators from §4.1 to follow
the same procedure as before. The final evaluation
sets for MML and OOV consist of 535 and 492
word senses respectively, after senses which the
annotator labeled as “mixed” were removed. As
an additional third set, we use the data of Moham-
mad et al. (2016), who annotated verbs in WordNet

for metaphoricity (Verbs). Their data consists of
1,679 word sense annotations, covering 440 verbal
wordforms.

WSD Data For CWSD, we use SemCor (Miller
et al., 1994). In SemCor each token is annotated
with the WordNet sense it evokes. We remove all
datapoints with trivial solutions (for which there is
only a single sense to choose from, i.e. |Dw| = 1).

SMD Data For CSMD, we use the VUAMC (see
§2.2). We remove all part-of-speech types and
words not in WordNet (meaning we remove all
prepositions, which are almost always labeled as
metaphorical in VUAMC, and so are easy to pre-
dict). Additionally, because our focus is on conven-
tional metaphors, when investigating SMD perfor-
mance, we also experiment using a subset of this
data in which novel metaphors are filtered out (we
refer to this subset as Conventional, as opposed to
All). We achieve this using the annotation layer of
Do Dinh et al. (2018).7

Metrics To evaluate MPD for absolute
metaphoricity, we compute the F1-score. For
relative metaphoricity, we compute (for each
wordform individually) the area under a receiver
operating characteristic curve (ROC-AUC, see
Fawcett, 2004 for discussion). An ROC curve
is a plot of the true positive rate against the
false positive rate, as a threshold shifts from 0
to 1. This tells us whether the metaphoricity
probabilities assigned to the senses of a wordform
are in correct high–low ordering, even if they are
not properly calibrated around the .5 threshold.
ROC-AUC values range from 1 (perfectly correct)
to 0 (perfectly incorrect), where .5 indicates no
correlation. To get a value for a whole evaluation
set, we take the mean of the ROC-AUC scores of
all wordforms in the set. To evaluate SMD, we
compute the F1-score, and for WSD, where the
goal is multi-class classification, we compute the
micro-averaged F1-score.

Significance Testing We use a two-tailed Monte
Carlo permutation test with r = 1,000 permuta-
tions. We experiment with two significance levels,
α = 0.05 and 0.01, and differentiate between these
by indicating the significance level using ∗ and ∗∗

respectively.

7In this data, metaphor novelty is scored with continuous
values in the [−1, 1] interval; as a threshold, we use 0.2.
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Relative (ROC-AUC) Absolute (F1)
MPD Model MML OOV Verbs MML OOV Verbs

Ours
(with EWISER WSD) .78∗∗ .64∗ .70 .54 .37 .43
(with BERT WSD Baseline) .72 .60 .71∗∗ .60∗ .41∗ .47∗∗

MelBERT Average .65 .50 .54 .54 .33 .37
Random .54 .51 .51 .49 .33 .35
Majority .50 .50 .50 .00 .00 .00

Table 3: Metaphorical polysemy detection results

F1
SMD Model Conventional All

Ours (WSD+MPD) .659∗∗ .631

MelBERT .626 .638
BERT SMD Baseline .619 .625

Table 4: Standard metaphor detection results

4.4 Results

Metaphorical Polysemy Detection MPD results
are presented in Table 3. We compare two ver-
sions of our MPD model, trained in combination
with different WSD implementations. In all ex-
perimental settings (each column), a variant of
our model performs significantly better than the
highest-performing baseline. Our model’s results
are highest for the MML set (.78 ROC-AUC and
.60 F1), perhaps because the examples here exhib-
ited the clearest cases of metaphoricity. In general,
the EWISER WSD variant’s results are higher for
relative metaphoricity, whilst the baseline WSD
variant’s results are higher for absolute metaphoric-
ity. The reason for this is unclear. Results are low-
est for the OOV set, which shows that the model
has difficulties generalising beyond training data.
Generalising to never-before-seen senses is a well-
known issue in WSD: Bevilacqua and Navigli them-
selves note that their model, EWISER, relies too
much on corpus supervision. This problem will
affect MPD models if they are trained with our
methodology (§3.2); to improve on MPD, it will be
necessary to collect dedicated training data. Never-
theless, our results show that it is possible to learn
MPD using existing resources.

Standard Metaphor Detection SMD results are
presented in Table 4, for both variants of CSMD (one
with only conventional metaphors, one with any).
When trained and evaluated on only conventional
metaphors, our combined MPD+WSD model sig-

WSD Model Objective F1

EWISER
WSD .768
WSD & SMD .766

BERT WSD Baseline
WSD .740
WSD & SMD .741

Table 5: Word sense disambiguation results

nificantly outperforms the state-of-the-art, scoring
.659 F1 (compared to MelBERT’s .626). When
all metaphors are included, MelBERT’s results are
higher that our model (.638 compared to .631), but
in this case the difference is insignificant (at both
significance levels). That our model’s performance
is diminished in this setting is unsurprising, since
this data will contain novel metaphors which are
not encoded as senses in WordNet. We expect
that with improvements to WSD generalisation, it
should be possible to improve the SMD perfor-
mance of a combined MPD+WSD model, for both
variants. As mentioned above, generalising to un-
seen senses is a common issue in WSD. Only 9.4%
of words in the SMD (All) test set have all their
senses covered in the WSD training data, which is
likely to have a substantial effect on the combined
model’s performance.

Word Sense Disambiguation Table 5 compares
the performance of WSD models which are paired
with MPD models and trained jointly on SMD, as
opposed to trained on WSD alone. Although the
auxiliary SMD objective leads marginal numerical
differences (−0.02 and +0.01 for EWISER and the
baseline WSD model respectively), in both cases
these differences are not significantly distinguish-
able (at either significance level), suggesting that
utilising SMD data to train WSD models is not use-
ful. This is likely because of the relatively small
overlap between the vocabularies of the datasets.
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5 Conclusion and Future Work

In this paper, we argued that the standard metaphor
detection (SMD) task in NLP is ill-suited to conven-
tional metaphor, because it conflates metaphor de-
tection with word sense disambiguation (WSD). As
an alternative, we proposed metaphorical polysemy
detection (MPD). We constructed the first MPD
model, which identifies conventional metaphors in
WordNet. To train it, we employed a novel training
technique which exploits resources designed for
SMD and WSD. To evaluate MPD, we collected
two sets of evaluation data, and proposed a new per-
formance measure based on relative judgements of
metaphoricity. Our model performed significantly
better than a state-of-the-art SMD model in all
MPD evaluation settings (e.g. attaining .78 ROC-
AUC and .60 F1 on a subset based on the master
metaphor list). Additionally, we found that pairing
our model with a WSD model led to state-of-the-
art results for token-based conventional metaphor
detection (.659 compared to .626). We make our
code and MPD evaluation data publicly available.8

Making serious improvements in MPD will re-
quire the collection of dedicated training data.
Training MPD using SMD data necessitated the
inclusion of a WSD model, which will negatively
affect MPD performance when it makes mistakes.
Additionally, our model did not utilise information
about the set of definitions a wordform is associated
with (Dw), and instead made the naïve assumption
that this information will be encoded in a static
embedding of w. Set- and graph-based architec-
tures which exploited this information would be a
natural thing to explore. With more data and bet-
ter models, it may be possible to synthesise a full
set of WordNet metaphoricity annotation, and even
to extend this synthetic annotation to multilingual
WordNet versions. This would be a valuable re-
source, which would open the door to study other
questions surrounding metaphorical polysemy.
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A Annotation Guidelines

We are studying conventional metaphors. A con-
ventional metaphor is a metaphorical usage of a
word that is common enough to appear in dictio-
naries. Consider the two definitions below for the
English verb “flood”.

1. cover with liquid, usually water (e.g. “the
swollen river flooded the village”)

2. supply with an excess of (e.g. “flood the mar-
ket with tennis shoes”)

The first is a literal meaning, while the second
is a conventional metaphor (in the example sen-
tence, the market is not literally being flooded).
Words often have more than two meanings, and
can have multiple literal meanings and/or multiple
metaphorical meanings.

Your task is to identify which definitions are con-
ventional metaphors. To annotate a word:

1. Read all of the definitions the word is asso-
ciated with. Using the definitions (and the
synonyms and example sentences), try and get
a feel for the meaning of each definition and
how they are different.

2. Then, for each of the word’s definitions:

(a) Determine if another of the word’s defi-
nitions is more “basic” than the current
one. Basic definitions tend to be

• more concrete (they describe things
which are easier to see, hear, feel,
smell, and/or taste);

• related to the body or the physical
world;

• more precise (less vague);
• historically older

Basic meanings are not necessarily the
first definitions of a word in the list, and
are not necessarily the most frequent
meanings of a word.

(b) If the word has a more basic definition
than the current one, decide whether the
current definition can be understood as
an extension of a more basic one.

If a definition can be understood as an extension
of a more basic one belonging to the word, label it
as “metaphorical”. Otherwise, label it as “literal”.
There is one exception:

Sometimes, the definitions can be ambiguous,
and combine metaphorical and literal meanings.
Sometimes the definition is explicitly ambiguous
(it might say that it is meant “metaphorically or
literally”, or that it can apply to something “con-
crete or abstract”), and other times it is just vague.
If the definition is vague, then you should attempt
to resolve the ambiguity by looking at the exam-
ple sentences. For example, if all the examples
are clearly metaphorical, say that this definition is
metaphorical. If it cannot be disambiguated, you
should select “mixed”.

B Additional WSD Models

WSD Baseline Suppose we have another k-
dimensional embedding space for tokens, retrieved
by TokenEmb : T 7→ Rk.9 As a baseline WSD
model, we predict a distribution over S from
TokenEmb(t):

h = TokenEmb(t) (9)

pϕ(s | t) = softmax
(
MLP

⟨k,|S|⟩
ϕ

(
h
))

In practice, we renormalise the output distribution
so only senses with d ∈ Dw have nonzero probabil-
ities.

EWISER For a high-performing WSD model,
we experiment with a reimplementation of
EWISER (Bevilacqua and Navigli, 2020). Where
O is a matrix where the ith column corre-
sponds to a b-dimensional embedding of di ∈ D,
SynsetEmb(di), and A is an adjacency matrix of
size |D| × |D|, where 1 indicates that two synsets
are connected, and 0 indicates they are discon-
nected, EWISER is defined as

h = MLP
⟨k,k⟩
ϕ

(
TokenEmb(t)

)
(10)

z = hTO

pϕ(m | t) = σ
(
zAT + z

)
In the original paper, a linear layer rather than an
MLP is used, and many different experimental set-
tings are explored; we only experiment with the
setting in which S is initialised with only hyper-
nyms set to 1, and O and S are kept frozen. For

9For TokenEmb we use BERT embeddings; see App. D.
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the definition representations and token representa-
tions, we use the same ones as the other models (see
App. D), and use the standard activation functions
we use throughout, rather than the Swish activa-
tion function (Ramachandran et al., 2017) which
Bevilacqua and Navigli use. In practice, we renor-
malise the output distribution so only senses with
d ∈ Dw have nonzero probabilities.

C Additional SMD Models

SMD Baseline We compute a simple SMD base-
line, which takes a contextualised embedding and
passes it through an MLP to make predictions

h = TokenEmb(t) (11)

pψ(m | t) = σ
(
MLP

⟨k,1⟩
ψ

(
h
))

where ψ are sets of parameters.

MelBERT For a high-performing SMD
model, we experiment with a reimplementa-
tion of MelBERT (Choi et al., 2021). Let
SentEmb : T 7→ Rk return a k-dimensional sen-
tence embedding (for BERT, this can correspond
to the BOS token). We define MelBERT as

htok = TokenEmb(t) (12)

hSPV = MLP
⟨2k,k⟩
ψ1

(
htok ◦ SentEmb(t)

)
hMIP = MLP

⟨2k,k⟩
ψ2

(
htok ◦ TypeEmb(w)

)
hboth = hMIP ◦ hSPV

p⟨ψ1,ψ2,ψ3⟩(m | t) = σ
(
linear

⟨2k,1⟩
ψ3

(
hboth

))
where ψ1, ψ1, ψ3 are sets of parameters. We also
use BERT rather than RoBERTa (Liu et al., 2019),
for parity with other models.

D Implementation and Training Details

Embedding Spaces For TokenEmb(t), we use
the output of BERT base (Devlin et al., 2019). Fol-
lowing Bevilacqua and Navigli, we average the
last four layers, and for wordforms which corre-
spond to multiple BERT tokens, we use the first.
For SynsetEmb(d), we average all of the word
sense ARES embeddings (Scarlini et al., 2020) as-
sociated with d (this approach is also following
Bevilacqua and Navigli), and pass them through
SVD (default parameters from scikit-learn,
Pedregosa et al., 2011) to make them the same
dimentionality as BERT. For TypeEmb(w), we
follow Choi et al. (2021) and compute the BERT

embedding where the input isw on its own. In prac-
tice, then, the dimentionality of all our embedding
spaces are k = 768.

Data Splits Having performed the filtration de-
scribed in §4.3, and additionally removing any data-
point which does not align with the BERT tokenisa-
tion scheme, we finally compute our own datasplits,
shown in Table 6.

Dataset # Train # Dev # Test

VUAMC (All) 75,395 8,818 9,594
VUAMC (Conv.) 71,920 8,539 9,169
SemCor 141,025 17,701 17,481

Table 6: SMD and WSD datasplits

Because of our data filtering process, numbers
shown for EWISER and MelBERT in our paper
cannot be compared with the originals.

Implementation We implement our models in
PyTorch (Paszke et al., 2019). Our MLP is im-
plemented so each middle layer is the same size,
which is controlled by a hyperparameter. Each
layer consists of Dropout (Srivastava et al., 2014)
then a linear layer, then a ReLU activation func-
tion (ReLU is excluded from the output of the final
linear layer). As an optimiser, we use AdamW
(Loshchilov and Hutter, 2017). We train in batches
of 128 datapoints at a time (from both SMD and
WSD datasets simultaneously).

Training and Loss In practise, after training the
objective in eq. (7), we freeze the WSD model, set
α to 1, then continue training to finetune the MPD
component. This means that if initially α = 0,
the WSD and MPD subcomponents are trained
sequentially. If initially α = 1, meanwhile, the
distribution over s is inferred implicitly, without
learning WSD. More specifically, every 50 itera-
tions we compute the loss on the development set,
and if this loss does not decrease for 5 consecutive
checks then our early stopping criteria is met. The
first time this criteria is met we freeze the WSD
component, divide the learning rate by a divisor (a
hyperparameter), set α = 1, recover the best model
on the development set so far, and resume training
(in effect fine-tuning the MPD component); the sec-
ond time it is met we recover the best model and
stop training completely.
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# Experiment Model α x nϕ nθ hϕ hθ γ γd

1
SMD
(All)

Ours (w/ WSD Baseline) 0.8 0.1 1 3 500 300 5× 10−4 1
2 MelBERT 0.2 3† 1‡ 500† 300‡ 1× 10−4 10
3 BERT SMD Baseline 0.2 2∗ 300∗ 5× 10−4 1

4
SMD

(Conv.)

Ours (w/ EWISER) 0.8 0.2 3 4 500 300 1× 10−4 1
5 MelBERT 0.1 3† 3‡ 300† 500‡ 1× 10−4 10
6 BERT SMD Baseline 0.2 3∗ 500∗ 1× 10−4 1

7 WSD
(WSD & SMD)

EWISER 0.2 0.1 3 4 300 500 1× 10−4 10
8 Baseline 0.2 0.1 3 3 300 500 1× 10−4 10

9 WSD
(WSD only)

EWISER 0.1 4 500 1× 10−4 10
10 Baseline 0.1 1 300 5× 10−4 1

11
MPD

Ours (w/ EWISER) 0.4 0.2 3 4 500 300 1× 10−4 1
12 Ours (w/ WSD Baseline) 0.2 0.1 1 3 500 300 5× 10−4 1
13 MelBERT Average Uses model 2 (above)

Table 7: Final hyperparameters of the models presented in §4

E Hyperparameter Tuning

Hyperparameter Search For each value of α ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, we perform a random
search over the following hyperparameters:

• The number of layers of MLPθ and MLPϕ,
denoted nθ and nϕ, sampled from {1, 2, 3, 4}.

• The dimensionality of the hidden state of
MLPθ and MLPϕ, denoted hθ and hϕ, sam-
pled from {100, 300, 500}.

• The Dropout (Srivastava et al., 2014), denoted
x, sampled from {0.1, 0.2, 0.3, 0.4}.

• The learning rate, denoted γ, sampled from
{0.005, 0.001, 0.0005, 0.0001}.

• The learning rate divisor, denoted γd, sampled
from {1, 10}.

For each model, and each value of α, we train 20
samples from this hyperparameter space.

Model Selection For SMD, we choose models
with the best F1 on the VUAMC development set.
For WSD, we do the same but on the SemCor set.
For MPD, we choose the models with the best mean
SMD and WSD performance (again on the devel-
opment sets).

Final Hyperparameters The final hyperparame-
ters are shown in Table 7 (∗ are hyperparameters of
ψ not ϕ; † are hyperparameters of ψ1 not ϕ; ‡ are
hyperparameters of ψ2 not θ).


