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Abstract

Supervised methods have achieved remarkable
results in disfluency detection. However, in
real-world scenarios, human-annotated data is
difficult to obtain. Recent works try to han-
dle disfluency detection with unsupervised self-
training, which can exploit existing large-scale
unlabeled data efficiently. However, their self-
training-based methods suffer from the prob-
lems of selection bias and error accumulation.
To tackle these problems, we propose an adap-
tive unsupervised self-training method for dis-
fluency detection. Specifically, we re-weight
the importance of each training example ac-
cording to its grammatical feature and predic-
tion confidence. Experiments on the Switch-
board dataset show that our method improves
2.3 points over the current SOTA unsupervised
method. Moreover, our method is competitive
with the current SOTA supervised method.

1 Introduction

Disfluency is a characteristic of spontaneous
speech which is different from written texts. Detect-
ing and removing the non-fluent word sequences in
spoken language transcripts can improve the tran-
scripts’ quality and provide clean inputs for the
downstream NLP tasks, such as parsing, machine
translation, and summarization (Tree, 1995; Wang
et al., 2020b). As shown in Figure 1, a standard
annotation of the disfluency structure indicates the
RM (reparandum, words that the speaker intends to
discard), IM (interregnum, filled pauses, discourse
cue words, etc.), RP (repair, the associated repair)
(Shriberg, 1994).

Most previous works (Zayats et al., 2016; Wu
et al., 2015; Lou and Johnson, 2017; Jamshid Lou
et al., 2018; Zayats and Ostendorf, 2019) on disflu-
ency detection heavily relies on human-annotated
corpora, which is difficult and expensive to ob-
tain in practice. Some researchers try to alleviate
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I  want  a  cup  of   tea  um  I  mean  coffee  

I  want  a  cup  of   tea um  I  mean coffee  

RM IM RP

Disfluency Detection

Figure 1: A sentence with disfluencies annotated.
RM=Reparandum, IM=Interregnum, RP=Repair. The
preceding RM is corrected by the following RP.

this issue with, for instance, self-supervised learn-
ing (Wang et al., 2020a) and semi-supervised learn-
ing techniques (Wang et al., 2018), but they still
need a certain amount of human-annotated corpora
to perform high performance. Wang et al. (2020b)
completely removes the need for human-annotated
data. They first perform disfluency detection with
the self-training method in an unsupervised manner,
which shows promising performance. They lever-
age the pseudo data constructed by rules to train a
weak disfluency detection model as a teacher. Then,
the student model is fine-tuned in an unsupervised
manner, only using the pseudo-labels generated by
the teacher. Finally, the student model achieves
promising performance.

Traditional self-training methods utilize the
probability estimations to select high-confidence
pseudo-labels for re-training, which encounters two
problems. (1) Selection Bias. The strategy that
selects samples with the high confidence pseudo-
labeled samples tends to neglect the hard and po-
tentially informative samples. It results in the self-
training procedure converging to a suboptimal so-
lution. (2) Error Accumulation. The strategy that
selects pseudo-labels with probability estimations,
limited by the ability of the model, will inevitably
introduce a large number of noisy labels and the
noise will be accumulated with the increase of it-
eration times. The above problems become the
bottleneck for self-training, which prevents model
performance from growing as the number of iter-
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ations increases. To alleviate the error accumu-
lation problem, Wang et al. (2020b) introduces
a grammar checker into the selection process to
enhance the ability to select high-quality pseudo-
labels, which can be seen as introducing external
knowledge. Concretely, Wang et al. (2020b) em-
ployed a grammar checker to discard samples that
may be noise based on their grammatical correct-
ness. However, their method has no ability to recall
potential informative samples, which leaves the se-
lection bias problem unmitigated. In addition, due
to the limited performance of the grammar checker,
the error accumulation problem still exists to a cer-
tain extent.

In this paper, we propose an adaptive self-
training method that utilizes a re-weighting strategy
to address both the problem of selection bias and
error accumulation. Concretely, we assign specific
weight to every pseudo-labeled sample based on
its quality. We measure the quality of each sam-
ple by its grammatical feature and label confidence
(see §2 for details). Compared with the method
that selects samples with high confidence, our re-
weighted method has two main advantages: First,
instead of only selecting the pseudo-labeled sam-
ples with high confidence, our method makes all
samples participate in the training process, which
can alleviate the problem of selection bias to some
extent. Second, our method can reduce the negative
effect of noise data by lowering the weights of low-
quality pseudo-labels and emphasizing high-quality
pseudo-labels during the self-training process.

Besides, to help improve the performance of
self-training, we also propose a more powerful con-
trastive grammar checker. The grammar checker
proposed by Wang et al. (2020b) takes a single sen-
tence as input and then judges whether the sentence
is grammatical or not. In our practice, we found
that the way of judging grammatical correctness
by a single sentence alone faces great difficulties
when using the ASR results as input, e.g. there
are incomplete sentences with missing beginnings
or endings in the ASR results, which may lead to
the single-sentence grammar checker to misjudge.
Therefore, it is hard to train a high-performance
single-sentence grammar checker model. To solve
this problem, we employ a contrastive mechanism
to make it easier to judge whether the sentence
is grammatical or not. We take both the sentence
before and after removing disfluency elements as
the input of our grammar checker. Therefore, our

grammar checker can compare the two sentences to
help judge whether the sentence is grammatical or
not, which makes our grammar checker powerful.

We evaluate the proposed method on the com-
monly used English Switchboard dataset, and our
method improves 2.3 points over the previous best
result in unsupervised settings. Moreover, our
method achieves competitive performance com-
pared to the state-of-the-art supervised method
which utilizes 60k labeled sentences. In addi-
tion, the experimental result on three other datasets
shows that our method can consistently achieve
competitive performance compared to the super-
vised systems.

The contributions of our work can be summa-
rized as follows:

• To enhance the performance of unsupervised
disfluency detection, we propose an adaptive
self-training method utilizing a re-weighting
strategy that can alleviate the problems of se-
lection bias and error accumulation in the pre-
vious self-training-based method for disflu-
ency detection.

• We propose a more powerful contrastive gram-
mar checker which can better evaluate the
quality of the pseudo-labeled data for disflu-
ency detection.

• Experimental results on four datasets demon-
strate our proposed method surpasses the per-
formance of the existing SOTA method in un-
supervised settings.

We will release our code and model1.

2 Method

2.1 Procedure Overview

Figure 2 shows an overview of our adaptive un-
supervised self-training framework for disfluency
detection. Algorithm 1 is presented to help under-
stand our method. Our method only takes unla-
beled sentences as inputs, including news data and
ASR outputs. We first use self-supervised learn-
ing to train the contrastive grammar checker on the
large-scale constructed pseudo data (see §2.3 for
details), which is used to judge whether a sentence
is grammatical or not. Then, we use self-supervised
learning to train a weak disfluency detection model
with large-scale constructed pseudo data (see §2.2
for details), which is used as the teacher model.

1https://github.com/wyxstriker/ReweightingDisfluency

https://github.com/wyxstriker/ReweightingDisfluency
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Figure 2: Illustration of our proposed method. Step 5 to Step 8 are looped until the student model performance no
longer grows.

Next, we use the teacher model to assign pseudo-
labels on unlabeled ASR outputs. We assign spe-
cific weight to each pseudo-labeled sentence from
two different perspectives: 1) grammatical correct-
ness, we emphasize the sentences that are more
grammatical after removing the words with disflu-
ency labels, and 2) pseudo-label confidence, we
emphasize the high-confidence pseudo-labeled sen-
tences. To calculate the final weight of each sen-
tence (see §7 for details), we add grammatical
correctness score and pseudo-label confidence to-
gether. We then train a student model on all pseudo-
labeled sentences, which are assigned with differ-
ent weights calculated in the way mentioned above.
Then, the teacher model is replaced with the stu-
dent model. The process will be looped until the
performance of the student model stops growing.

2.2 Teacher Model
We formulate the disfluency detection task as a
token-level classification task. The training goal is
to detect the disfluency words by associating labels
with them. For each token xi in a sentence, the
model assigns a label yi which is “fluent” or “dis-
fluent”. To obtain the teacher model, we directly
fine-tune the ELECTRA model (the discrimina-
tor) (Clark et al., 2020) by minimizing the cross-
entropy loss:

lossteacher =
1

N

N∑
i=1

CE(yi, ft(xi, θt)), (1)

where (xi, yi)
N
i=1 denotes the input sentences and

labels, CE denotes the cross-entropy loss function,
ft denotes our teacher model parameterized by θt.

Our teacher model trained on the pseudo data
constructed by the self-supervised method. We fol-
low Wang et al. (2020b) to construct the pseudo
data. The unlabeled data to construct pseudo data
comes from fluent news data. To simulate the sen-
tence containing disfluencies, two types of random
perturbations are introduced into the fluent sen-
tences. One is repetition, we randomly select sev-
eral continuous words in the fluent sentence to be
repeated. The other is inserting, we randomly pick
words from external vocabulary to insert into fluent
sentences.

2.3 Grammar Checker Model
Traditional self-training methods utilize the proba-
bility estimations to select high-confidence pseudo-
labels for re-training. These methods suffer from
the problems of selection bias and error accumula-
tion. To enhance the ability to select high-quality
pseudo-labels in self-training, Wang et al. (2020b)
proposes a grammar checker, which can be seen as
external knowledge. However, we found that the
grammar checker proposed in Wang et al. (2020b)
may misjudge when dealing with the ASR outputs
since there are incomplete sentences with missing
beginnings or endings in the ASR output. To ad-
dress this problem, we allow the grammar checker
to compare the sentence before and after remov-
ing the disfluency elements, which can help judge
whether a sentence is grammatical or not. Con-
cretely, given an unlabeled sentence S, the disflu-
ency detection model can assign a pseudo label for
each word. By deleting the tokens with the “dis-
fluent” label, we obtain the processed sentence S̄.
We concatenate S and S̄ to be the input of our con-
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Algorithm 1 : The learning algorithm of our unsu-
pervised model for disfluency detection

Require: Pseudo data for disfluency detection (xi, yi)
N
i=1,

pseudo data for grammar checker model (x̂i, ŷi)
M
i=1, and

unlabeled ASR outputs {x̃1, x̃2, ..., x̃K}.
1: Learn grammar checker model θg using (x̂i, ŷi)

M
i=1 via

Eq. 2
2: Learn teacher model θt using (xi, yi)

N
i=1 via Eq. 1

3: Randomly sample data {x̃1, x̃2, ..., x̃L} from unlabeled
ASR outputs {x̃1, x̃2, ..., x̃K} Use teacher model to gen-
erate pseudo labels ỹi and token-level weight slcij for sam-
pled data via Eq. 5

4: Use grammar checker model to generate grammatical
correctness score sgci .

5: Learn a student model θs on sampled data (x̃i, ỹi)
N
i=K

with weight slcij and sgci via Eq. 7
6: Iterative training until the performance stops growing:

Use the student as a teacher and go back to step 3

trastive grammar checker. Our contrastive grammar
checker can judge whether S̄ is grammatical or not
from two perspectives: 1) makes judgment from S̄
itself, and 2) makes judgment by comparing S and
S̄.

We directly fine-tune the ELECTRA model (the
discriminator) (Clark et al., 2020) on our pseudo
data which minimizes the cross-entropy loss on:

losschecker =
1

M

M∑
i=1

CE(ŷi, fg(x̂i, θg)), (2)

where (x̂i, ŷi)
M
i=1 denotes input sentences and la-

bels, CE denotes the cross-entropy loss function, fg
denotes our grammar checker model parameterized
by θg.

Our contrastive grammar checker is trained with
pseudo data constructed by the self-supervised
learning method. Inspired by Wang et al. (2020b),
we use three types of perturbations to simulate
grammatical wrong sentences. The first two types
of perturbations are repetition and inserting as de-
scribed previously. The third type of perturbation is
deletion. We randomly delete several words from
the fluent sentence.

2.4 Re-weighting Mechanism

In this paper, we use two types of re-weighting
mechanisms including grammatical correctness re-
weighting and label confidence re-weighting. Fig 3
shows our re-weighting mechanism.

2.4.1 Grammatical Correctness Re-weighting
Once a sentence is labeled correctly by the disflu-
ency detection model, the rest after removing the

words with disfluency labels is fluent and grammat-
ical (Wang et al., 2020b). Based on this fact, we
employ a re-weight strategy to emphasize the sen-
tences that are more grammatical after removing
the words with disfluency labels.

With the grammatical correctness re-weighting
mechanism, the training objects of the student
model are formulated as follows:

lossgc =
1

L

L∑
i=1

sgci × CE(ỹi, fs(x̃i, θs)), (3)

where (x̃i, ỹi)Li=1 are sentences with pseudo-labels,
sgci denotes grammatical correctness score which
is the logits output of the grammar checker model.

2.4.2 Label Confidence Re-weighting
We employ the label confidence obtained from our
teacher model to re-weight the tokens in each sen-
tence. Observing that pseudo-labels with higher
confidence are more likely to be correctly labeled,
we reinforce the role of high-confidence labels in
the training process. With the label confidence
re-weighting mechanism, the training object is for-
mulated as follows:

losslc =
1

LN

L∑
i=1

N∑
j=1

slcij × CE(ỹij , fs(x̃ij , θs)),

(4)
where (x̃i, ỹi)Li=1 are sentences with pseudo-labels,
CE is the cross-entropy loss function, N is the
length of the token sequence, slcij denotes the
teacher model’s processed logit output of the token
x̃ij .

In the early stages of the iterative self-training
process, the performance of the student model is
relatively weak. Therefore the confidence output
of the student model is not reliable enough. We
introduce the temperature mechanism to weaken
the effect of confidence when it is unreliable in the
early self-training stages.

The calculation of the slcij with the temperature
mechanism can be formulated as follows:

slcij = N
exp(

gij
T )∑N

k=1 exp(
gik
T )

, (5)

where slcij denotes the weight of jth token of sample
x̃i, T is the temperature, gij is the teacher model’s
confidence in tokenj of x̃i, and N is the length of
the token sequence.
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Figure 3: Illustration of proposed re-weighting mechanism. At the sentence-level, sentences with higher grammatical
scores are given higher weights after removing words with the label “disfluent”. At the token-level, labels with
higher confidence are given higher weights.

The temperature T can be formulated as follows:

T = −γ ∗ log(
nsample

2 ∗ ntotal
), (6)

where nsample is the amount of data used in this
iteration of self-training, ntotal is the amount of
all unlabeled data. γ is a hyper-parameter used to
adjust the rate of temperature drop.

2.5 Student Teacher Iterative Training
In Section 2.4, we introduce two different re-
weighting mechanisms. Finally, we combine two
re-weighting mechanisms, as figure 3 shows, to
train the student model, the training objects is for-
mulated as follows:

lossstudent =
1

LN

L∑
i=1

N∑
j=1

(sgci + slcij)× C̃E,

(7)
where (x̃i, ỹi)

L
i=1 represents pseudo-labeled sen-

tences, C̃E represents CE(ỹij , fs(x̃ij , θs)), and N
is the length of the token sequence, sgci and slcij are
calculated according to the Section 2.4.

We fine-tuned student models with pseudo-
labeled data on the teacher model trained by pseudo
data. The student will be a new teacher in the next
iteration.

3 Experiment

3.1 Settings
Dataset English Switchboard (Godfrey et al.,
1992) is a large multispeaker corpus of conversa-

tional speech and text, which is the largest stan-
dard corpus for disfluency detection. Following
the experiment settings in (Wang et al., 2020b), we
process the Switchboard corpus and split it into
the train (60k sentences), dev (4k sentences), and
test set (4k sentences). Notice that the train set is
not used in our method. The news data are from
WMT2017 monolingual language model training
data (News Discussions. Version 2).2 We conduct
our main experiment on the English Switchboard.

To demonstrate the robustness of our method,
we also test our model on three out-of-domain
datasets (Zayats et al., 2014; Zayats and Ostendorf,
2018), including CallHome, SCOTUS, and FCIC.
Notice that the train set of the three out-of-domain
datasets is not used.

• CallHome: phone conversations between fam-
ily members and close friends. It consists of a
training set of 46k words and a test set of 30k
words.

• SCOTUS: transcribed Supreme Court oral ar-
guments between justices and advocates. It
consists of a test set of 43k words and has no
training set.

• FCIC: two transcribed hearings from Finan-
cial Crisis Inquiry Commission. It consists of
a test set of 54k words and has no training set.

Metric Following Wang et al. (2020b), we use
token-based precision (P), recall (R), and F1 as the

2http://www.statmt.org/wmt17/translation-task.html

http://www.statmt.org/wmt17/translation-task.html
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Method F1
Supervised methods
UBT (Wu et al., 2015) 85.1
Bi-LSTM (Zayats et al., 2016) 85.9
NCM (Lou and Johnson, 2017) 86.8
Transition-based (Wang et al., 2017) 87.5
Self-supervised (Wang et al., 2020a) 90.2
Self-training (Jamshid and Mark, 2020) 90.6
EGBC (Bach and Huang, 2019) 91.8
PG (Yang et al., 2020) 92.3
BERT fine-tuning 90.5
ELECTRA fine-tuning 91.2
Teacher fine-tuning 92.0
Unsupervised methods
Unsupervised teacher 72.3
SSST (Wang et al., 2020b) 88.0
Our Method 90.3

Table 1: Comparison with previous state-of-the-art
methods on the Switchboard test set. For robustness, we
run our proposed supervised baselines and our proposed
method 5 times and report the average metric.

evaluation metrics.

3.2 Training Details

For all experiments, we use the English ELECTRA-
base discriminator model as an encoder, which has
110M hidden units, 12 heads, and 12 hidden layers.
For the self-supervised teacher model, the max se-
quence length of teacher model input is set to 128.
We fine-tune the teacher model using the AdamW
optimizer for 30 epochs with a batch size of 256
and a learning rate of 1e-4. Since the grammar
checker model’s input consists of a pair of sen-
tences, we set its max sequence length to be 256.
We fine-tune the grammar checker model using
AdamW optimizer for 30 epochs with a batch size
of 256 and a learning rate of 1e-4.

When training the student model in the self-
training procedure, we use the AdamW optimizer
for 15 epochs with a batch size of 128 and a learn-
ing rate of 2e-5.

3.3 Performance on English Switchboard

Table 1 shows the comparison of the performance
among different models on the Switchboard test set.
In addition to the previous methods, we have also
built the following baseline models for comparison.

• BERT fine-tuning: We directly fine-tune the
BERT-Base model on the Switchboard train
set.

• ELECTRA fine-tuning: We directly fine-tune

Method CallHome SCOTUS FCIC
Supervised methods
ELECTRA fine-tuning 62.2 81.6 63.1
Teacher fine-tuning 63.4 81.9 63.8
Pattern-match 65.2 79.9 66.1
Unsupervised methods
Unsupervised teacher 48.0 69.2 47.6
SSST 60.2 80.3 63.3
Our unsupervised 61.6 80.7 63.6

Table 2: F1 scores on cross-domain disfluency detec-
tion. For robustness, we run our proposed supervised
baselines and our proposed method 5 times and report
the average metric and standard deviation metric.

ELECTRA-Base (the discriminator) model on
the Switchboard train set.

• Unsupervised teacher: This model is the first
teacher model trained by pseudo data.

• Teacher fine-tuning: We fine-tune the teacher
model which is trained by pseudo data on the
Switchboard train set.

Our unsupervised model achieves 2.3 points
improvements over the past state-of-the-art unsu-
pervised method (Wang et al., 2020b) which is
also based on self-training. Moreover, our unsu-
pervised model achieves competitive performance
compared to the current SOTA supervised (Yang
et al., 2020) method, which trains BERT with 20M
sentences of pseudo data and 173k sentences of
human-annotated data.

3.4 Performance on Cross-domain Data
In this section, we experiment on three out-of-
domain disfluency datasets to prove the robustness
of our proposed approach.

We build four baseline systems for comparison,
including Unsupervised teacher, ELECTRA fine-
tuning, Teacher fine-tuning, SSST (Wang et al.,
2020b), and Pattern-match (Zayats and Ostendorf,
2018). Unsupervised teacher, ELECTRA fine-
tuning, and Teacher fine-tuning are the same as
described in Section 3.3. Pattern-match (Zayats
and Ostendorf, 2018) used a pattern match neural
network architecture trained on the Switchboard
train set. It achieves state-of-the-art performance
in cross-domain scenarios.

Following the experiment setting in (Wang et al.,
2020b), we test each model’s performance on the
three out-of-domain test sets without any retraining
on the out-of-domain train set.

Table 2 shows the comparison of the perfor-
mance among different models on the three out-
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Method P R F1
ST+SGC 90.2 89.1 89.6
ST+SGC+Re-weight 90.5 91.7 91.1
ST+CGC 89.5 91.0 90.3
ST+CGC+Re-weight 90.3 92.9 91.6

Table 3: Ablation results of our method on Switchboard
dev set. “ST” denotes self-training. “SGC” denotes
the single sentence grammar checker. “CGC” denotes
the contrastive grammar checker. “Re-weight” denotes
grammatical correctness re-weighting and label confi-
dence re-weighting mechanism.

of-domain test sets. It shows that our unsupervised
methods can achieve good performance in the three
cross-domain datasets without any retraining.

4 Ablation Studies

In this section, we analyze the effect of several
components of our method.

4.1 Effect of re-weighting mechanism
To explore the role of the re-weighting mechanism,
we conduct a comparative experiment for the re-
weighting mechanism. We take the approach pro-
posed by Wang et al. (2020b) as our baseline, which
is a self-training-based method with a single sen-
tence grammar checker (referred to as “ST+SGC”).
We separately add the re-weighting mechanism to
the baseline system (referred to as “ST+SGC+Re-
weight”). Table 3 shows that the method with a
re-weighting mechanism outperforms the baseline
by 1.5 points, demonstrating the benefit of the re-
weighting mechanism.

Our re-weighting mechanism consists of gram-
matical correctness re-weighting and the label con-
fidence re-weighting. To explore the role of each
part of the re-weighting mechanism, we conduct a
comparative experiment. Table 4 shows that both
the grammatical correctness re-weighting and the
label confidence re-weighting bring improvement.

4.2 Effect of improved grammar checker
In our approach, we propose a contrastive grammar
checker. To validate the effectiveness of our gram-
mar checker, we conduct a comparative experiment.
“ST+SGC” denotes a self-training approach with
a single sentence grammar checker which is pro-
posed by Wang et al. (2020b). “ST+CGC” denotes
a self-training approach with a contrastive gram-
mar checker which is proposed by us. The only
difference between them is that they use different
grammar checkers. Table 3 shows that the method

Method P R F1
ST+CGC 89.5 91.0 90.3
ST+CGC+GCR 91.2 91.0 91.1
ST+CGC+LCR 90.2 92.1 91.1
ST+CGC+GCR+LCR 90.3 92.9 91.6

Table 4: Ablation results of our method on Switchboard
dev set. “ST” denotes self-training. “CGC” denotes con-
trastive grammar checker. “GCR“ denotes grammatical
correctness re-weighting mechanism.“LCR“ denotes la-
bel confidence re-weighting mechanism.

T hyperparameter P R F1
w/o Temperature 90.7 92.0 91.4
w/ Temperature γ=2 91.5 90.9 91.2
w/ Temperature γ=1 91.1 91.7 91.4
w/ Temperature γ=0.5 90.3 92.9 91.6

Table 5: Performance of our method on Switchboard
dev set with different temperature.

with our grammar checker outperforms the method
with the previous grammar checker by 0.7 points.

To compare the performance of two grammar
checkers directly, we test them on the grammar
check task dev dataset, which is constructed from
the Switchboard dev dataset. Concretely, we
take the sentences from the Switchboard with-
out disfluency components as positive examples,
while the sentences with disfluency components
as negative examples. As shown in Figure 4, the
“CGC”proposed by us archieves a higher AUC than
the “SGC” proposed by Wang et al. (2020b). It
is worth noting that we don’t let the “CGC” see
the sentence after removing disfluency components.
We repeat the raw sentence twice as the input of
“CGC”.

These demonstrate that our contrastive grammar
checker can better evaluate the quality of pseudo-
labeled data for disfluency detection.

4.3 Effect of temperature mechanism
performance

We proposed a temperature mechanism to weaken
the confidence re-weighting mechanism effect in
the early self-training stage when the confidence
is not reliable enough. To reveal the temperature
mechanism effect on model performance, we con-
duct comparative experiments using different γ
which control the rate of temperature drop. The
higher γ we set, the smaller the confidence re-
weighting effect in the early self-training stage.
The experiment results in table 5 show that reduc-
ing the confidence re-weighting effect in the early
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Figure 4: The ROC curve of grammar checkers. “SGC”
denotes single sentence grammar checker. “CGC” de-
notes contrastive grammar checker.

self-training stage appropriately can improve the
model performance. With these results, we chose
the temperature value as 0.5.

5 Related Work

5.1 Disfluency Detection

Most of the previous work on disfluency detection
focus on supervised learning methods. There are
three main categories of methods to solve the dis-
fluency detection problem including sequence tag-
ging, noisy-channel, and parsing-based approaches.
Sequence tagging methods use various models as
classifiers to classify each word in the sentence to
be fluent or disfluent, including conditional random
fields (Georgila, 2009; Ostendorf and Hahn, 2013;
Zayats et al., 2014), Max-Margin Markov Net-
works (M3N) (Qian and Liu, 2013), Semi-Markov
CRF (Ferguson et al., 2015), recurrent neural net-
works (Hough and Schlangen, 2015; Zayats et al.,
2016; Wang et al., 2016) and transformer-based
model (Wang et al., 2020a). Noisy-channel (Char-
niak and Johnson, 2001) methods use the similarity
between reparandum and repair to detect disfluency.
Parsing-based approaches (Rasooli and Tetreault,
2013; Wu et al., 2015) deal with disfluency detec-
tion by parsing the sentence.

Some previous work focuses on tackling the
training data bottleneck, including self-supervised
methods (Wang et al., 2020a), self-training meth-
ods (Jamshid and Mark, 2020) and active learning
methods (Wang et al., 2021). Some researchers pro-

pose a method using unsupervised self-training to
perform unsupervised disfluency detection which
does need not any human-annotated data (Wang
et al., 2020b).

Rocholl et al. (2021) uses the distillation method
to make the disfluency detection model to be small,
fast and on-device while maintaining competitive
performance.

5.2 Self-training

The self-training method first leverages human-
annotated data to train a teacher model. Then the
teacher model is used to assign pseudo-label to
unlabeled data. Finally, the labeled data and the
pseudo-labeled data are merged to train the student
model jointly Scudder (2006). Self-training has
shown promising performance for a variety of tasks
including leveraging noisy data (Veit et al., 2017),
semantic segmentation (Babakhin et al., 2019) and
text classification (Li et al., 2019). Xie et al. (2020)
presents Noisy Student Training, which adds noise
to the self-training process and changes the size
of the student model during self-training iteration.
Inspired by Xie et al. (2020), Wang et al. (2020b)
combines self-supervised and self-training to build
an unsupervised disfluency detection system for
disfluency detection.

5.3 Re-weighting mechanism

Re-weighting approaches (Ren et al., 2018; Shu
et al., 2019; Mei et al., 2020; Yaqing Wang et al.,
2020) are proposed to give different loss weights
on each sample to emphasize the important sam-
ples and discount the noisy samples. Re-weighting
approaches often train a teacher model on a small
human-annotated validation set and then use the
teacher model to re-weight training samples. In our
method, we do not need a teacher model trained by
human-annotated data. We re-weight each training
sample by the model trained by the self-supervised
method.

6 Conclusion

In this work, we propose an adaptive unsupervised
method to deal with the task of disfluency detec-
tion in an unsupervised manner. We introduce a
re-weighting mechanism into the self-training to
alleviate the problems of selection bias and error
accumulation. Our experiments show that our re-
weighting mechanism can alleviate the problems
of selection bias and error accumulation efficiently,
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and improve the performance of self-training for
disfluency detection.
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