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Abstract

Naturalness and expressiveness are crucial for
audiobook speech synthesis, but now are lim-
ited by the averaged global-scale speaking style
representation. In this paper, we propose an un-
supervised multi-scale context-sensitive text-to-
speech model for audiobooks. A multi-scale hi-
erarchical context encoder is specially designed
to predict both global-scale context style em-
bedding and local-scale context style embed-
ding from a wider context of input text in a
hierarchical structure. Likewise, a multi-scale
reference encoder is introduced to extract refer-
ence style embeddings at both global and local
scales from the reference speech, which are
used to guide the prediction of speaking styles.
On top of these, a bi-reference attention mech-
anism is used to align both local-scale refer-
ence style embedding sequence and local-scale
context style embedding sequence with corre-
sponding phoneme embedding sequence. Both
objective and subjective experiment results on a
real-world multi-speaker Mandarin novel audio
dataset demonstrate the excellent performance
of our proposed method over all baselines in
terms of naturalness and expressiveness of the
synthesized speech1.

∗ Work conducted when the first author was intern at
Tencent Music Entertainment Group.

† Corresponding author.
1Synthesized speech samples are available at:

https://thuhcsi.github.io/COLING2022-MSHCE-TTS

1 Introduction

Recently, some text-to-speech (TTS) models, such
as Tacotron (Wang et al., 2017), Tacotron 2 (Shen
et al., 2018), Deep voice (Ping et al., 2017), Trans-
formerTTS (Li et al., 2019) have been proposed to
generate speech autoregressively from text input,
and can achieve performance very close to human
quality. In order to increase inference speed and
generate more robust speech, non-autoregressive
TTS models such as FastSpeech (Ren et al., 2019)
and FastSpeech 2 (Ren et al., 2020) are emerged
with robust and fast parallel generation.

However, limited expressiveness of synthesized
audio persists as one of the major gaps between
synthesized speech and real human speech, which
draws growing attention to expressive speech syn-
thesis studies. Synthesizing long-form expressive
datasets (such as audiobooks) is still a challeng-
ing task, since wide-ranging voice characteristics
are collapsed into an averaged prosodic style. To
address this issue, style transfer TTS has been a
popular strategy in recent years (Skerry-Ryan et al.,
2018). The global style token (GST) model (Wang
et al., 2018) adopts multi-head attention mecha-
nism and several learnable style tokens to extract
the global style from reference audio in an unsuper-
vised way. Further more, a hierarchical GST archi-
tecture is proposed to learn hierarchical embedding
information implicitly, which contains several GST
layers with residual connection (An et al., 2019).

https://thuhcsi.github.io/COLING2022-MSHCE-TTS/
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To not only learn to represent a wide range
of speaking styles, but also synthesize expressive
speech without the need of auxiliary inputs at infer-
ence time, some methods attempt to predict speak-
ing style directly from text, which is more practical
and flexible. The text-predicted global style to-
ken (TP-GST) extends the GST by predicting style
embedding or style token weights from text only
(Stanton et al., 2018). Considering that style and
semantic information of sentences are closely re-
lated and Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018)
shows its effectiveness in language representation,
pre-trained BERT embedding is adopted as an ad-
ditional contextual information input to Tacotron 2
model to improve the pronunciation and expressive-
ness of the generated speech (Hayashi et al., 2019)
(Fang et al., 2019). In addition, different ways of
incorporating linguistic features and BERT-based
features are investigated and compared in various
application domains (news, chat and audiobooks).
Results show that character embedding is the most
effective one (Xiao et al., 2020). Some works also
attempt to predict fine-grained speaking styles from
text, such as word level (Zhang and Ling, 2021)
and phoneme level (Lei et al., 2021).

All aforementioned methods only take the sin-
gle sentence to be synthesized into consideration.
Some studies demonstrate that considering a wider
range of contextual information contributes to ex-
pressive speech synthesis (Tan et al., 2021) (Li
et al., 2022). Recently, a hierarchical context
encoder that considers adjacent contexts within
a fixed-size sliding window is used to predict
sentence-level style representation directly from
text (Lei et al., 2022a). Although the overall perfor-
mance is improved, it is still an averaged result that
lacks some local fine-grained expressiveness infor-
mation and rhythmic fluctuations such as pauses
and emphasis.

The expressiveness of human speech can be per-
ceived as a compound of multi-scale acoustic fac-
tors. One is the global-scale speech style, which
includes but not limited to timbre and emotion of
the speaker. Styles at this level are supposed to
be consistent throughout the entire utterance. The
other is the local-scale speech style, which consists
of speed, energy, pitch, pause and other acoustic
features (Li et al., 2021). Therefore, it is insuffi-
cient to model speech style from a single aspect.
Some latest studies are observed to devote efforts to
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Figure 1: The overall architecture of the proposed model

performing multi-scale modeling on some specific
tasks, in particular emotional speech synthesis (Lei
et al., 2021) (Lei et al., 2022b). This further demon-
strates the importance and necessity of multi-scale
modeling.

With all listed imperfections taken into consid-
eration, this paper proposes an unsupervised multi-
scale expressive speech synthesis model for au-
diobooks with hierarchical context information as
input. A multi-scale hierarchical context encoder is
designed to predict both global-scale context style
embedding (GCSE) and local-scale context style
embedding (LCSE) from the context in a hierarchi-
cal structure. Meanwhile, a multi-scale reference
encoder is introduced to extract both global-scale
reference style embedding (GRSE) and local-scale
reference style embedding (LRSE) from the ref-
erence speech, which are used to guide the pre-
diction of speaking styles. On top of these, a bi-
reference attention mechanism is adopted to align
both the quasi-phoneme-level LRSE sequence and
the character-level LCSE sequence with the cor-
responding phoneme embedding (PE) sequence.
Both objective and subjective experiments on a
real-world multi-speaker Mandarin novel audio
dataset demonstrate the excellent performance of
our proposed model over all baseline approaches
in terms of naturalness and expressiveness of the
synthesized speech. Ablation studies are further
conducted to investigate the influences of several
main modules in our proposed model.
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2 Method

The architecture of our proposed model is illus-
trated in Figure 1. It consists of three major parts: a
multi-scale reference encoder, a multi-scale hierar-
chical context encoder and a sequence-to-sequence
expressive TTS system based on Fastspeech 2 (Ren
et al., 2020) with extended variance adaptor. The
multi-scale reference encoder is used to extract
reference style embeddings at both global and lo-
cal scales (i.e. GRSE and LRSE) from reference
speech. While the multi-scale hierarchical context
encoder is used to predict the context style embed-
dings at global and local styles (i.e. GCSE and
LCSE) from hierarchical context. The extended
variance adaptor is used to align and fuse the style
embeddings at different scales with the phoneme
embeddings.
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Figure 2: Extended Variance Adaptor

2.1 Multi-scale expressive TTS system

We adopt FastSpeech 2 as the basic acoustic
model, of which the phoneme encoder and mel-
spectrogram decoder keep the original structure
as described in (Ren et al., 2020). On the basis,
speaker embedding (SE) is added to the phoneme
encoder output to support different timbres. After
that, the phoneme embedding (PE) together with
GRSE, LRSE, GCSE, LCSE are fed into the ex-
tended variance adaptor with several changes as
illustrated in Figure 2.

Attention Attention
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Aligned LRSE Aligned LCSE
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PE

Figure 3: Bi-Reference Attention

2.1.1 Extended variance adaptor
Firstly, the global-scale style inputs of GRSE and
GCSE are repeated to the same length as PE. At the
same time, the local-scale style inputs of LRSE and
LCSE are aligned to phoneme-level sequences by a
bi-reference attention mechanism. After that, either
the repeated GRSE and aligned LRSE or the re-
peated GCSE and aligned LCSE are added to PE at
different stages, and then the result is passed to the
variance predictors containing duration predictor,
pitch predictor and energy predictor. Unlike Fast-
Speech 2, the length regulator is moved after the
variance predictors, in order to predict variations at
phoneme level rather than frame level, which has
been proved to be able to further improve speech
quality (Łańcucki, 2021).

2.1.2 Bi-reference attention mechanism
For expressive speech synthesis, fine-grained style
embedding sequence is usually reformed into se-
quence with the same length as phoneme embed-
ding sequence. Inspired by (Lee and Kim, 2019),
we propose a bi-reference attention mechanism
to align both the quasi-phoneme-scale LRSE se-
quence and character-scale LCSE sequence with
the phoneme-level PE sequence. As shown in Fig-
ure 3, the bi-reference attention consists of two
scaled dot-product attentions (Vaswani et al., 2017)
with the same query input and two groups of differ-
ent key and value inputs. Here, the phoneme-level
PE sequence is fed as the query of the bi-reference
attention. Meanwhile, the quasi-phoneme-scale
LRSE sequence and the character-scale LCSE se-
quence are fed as two groups of key and value in-
puts respectively. Finally, the bi-reference attention
outputs the aligned LRSE sequence and aligned
LCSE sequence with the same length as the PE
sequence. This operation not only could align se-
quences of different lengths to the phoneme level,
but also reduces the difficulty of local style guid-
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ance from the multi-scale reference encoder to the
multi-scale hierarchical context encoder.

2.2 Multi-scale reference encoder
Inspired by the success of multi-scale emotion
transfer task (Li et al., 2021), we introduce a multi-
scale reference encoder to extract both the global-
scale and local-scale style embeddings from the
reference speech. As shown in Figure 4, the multi-
scale reference encoder is made up by a stack of
6 convolution layers and 2 scale-specific extractor
layers.

For the convolution layers, 1-D convolution
along temporal dimension is adopted to help the bi-
reference attention to learn the alignment between
the output LRSE sequence and the PE sequence.
Each of the convolution layers is composed by 3×1
filters, ReLU activation and batch normalization
(Ioffe and Szegedy, 2015). In particular, in order to
regulate the temporal granularity of the convolution
output closer to human vocal perception, the filter
strides of 6 convolution layers are set as [2, 1, 2, 1,
2, 2]. This downsampling operation ensures that
after the convolution stack, temporal granularity
of the intermediate frame-level feature sequence is
properly reformed to a quasi-phoneme-scale.

For the global style extractor layer, it is made
up of consecutive Gated Recurrent Unit (GRU)
layer and global style token (GST) layer (Wang
et al., 2018). The GST layer adopts a multi-head
attention mechanism and several learnable style
tokens to extract the global styles in an unsuper-
vised way. For the local style extractor layer, it
consists of GRU layer and full-connected layer
with tanh activation. Both scale-specific extractor
layers take the above quasi-phoneme-scale feature
sequence as input. However, inside the global style
extractor layer, only the final state of GRU is fed
to the GST layer. The GRSE output by the global
style extractor is forced to be a latent sentence-
level style embedding vector. On the other hand,
the LRSE output by the local style extractor is a
quasi-phoneme-scale style embedding sequence.

2.3 Multi-scale hierarchical context encoder
To improve expressiveness and naturalness of syn-
thesized speech, we introduce a dedicated multi-
scale hierarchical context encoder to predict both
global-scale style embedding and local-scale style
embedding from the hierarchical context within a
fixed size sliding window. As shown in Figure 5,
the multi-scale hierarchical context encoder con-
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Figure 4: Multi-scale Reference Encoder

sists of three components: context embedding layer,
global style predictor and local style predictor.

2.3.1 Context embedding layer
Let l be the number of sentences considered in
the past or future context within the sliding win-
dow. U0 is defined as the current sentence to be
synthesized. U−l, U1−l, ..., U−1 and U1, U2, ...,
Ul are the past and future sentences respectively.
All these 2l + 1 sentences are firstly embedded
with a well-pretrained character-level BERT model
(Devlin et al., 2018) that is composed of a stack
of Transformer blocks and pretrained with a huge
amount of Chinese text data. Thereafter, role em-
bedding is added to the output of BERT embedding
layer to consider the interactions between differ-
ent roles. Then Bidirectional GRU (BiGRU) is
further used to obtain the character-level context-
sensitive embedding Si for each input sentence Ui

(−l ≤ i ≤ l), which can be discribed as:

Si = CEmb(Ui), (1)

where CEmb(·) is the operation of context embed-
ding layer.

2.3.2 Global style predictor
The global style predictor contains two levels of at-
tention networks, intra-sentence and inter-sentence
respectively.

The intra-sentence attention network is used to
abtain a sentence-level representation based on
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each character and inter-character relations within
a sentence. As not all characters contribute equally
to the global meaning of the sentence, a scaled dot-
product attention is adopted to calculate the weights
of each character and aggregate them into a global
sentence-level vector Gi for each character-level
embedding Si of a sentence, where Si is fed as the
key and value. The query Q1 is a 256-dim vector,
which is randomly initialized and learnable during
the training. It can be seen as a high level repre-
sentation of a fixed query "to what extent does the
character influence the global speaking style". This
can be formulated as:

Ki = SiWk, (2)

Vi = SiWv, (3)

Gi = A(Q1,Ki, Vi) = softmax(
Q1K

>
i√

dQ1

)Vi,

(4)
where Wk and Wv are linear projection matrices of
attention keys and values. dQ1 means the dimen-
sion of the query Q1.

For the inter-sentence attention network, 2l + 1
sentence-level vectors G−l, ..., G0, ..., Gl obtained
by the intra-sentence network are firstly concate-
nated along temporal dimension to form a long new
sequence G with the length of 2l + 1, which is fur-
ther fed to BiGRU to model the correlations among
sentences. After that, another scaled dot-product
attention is used to predict a global-scale speaking
style based on sentence-level embedding G and
inter-sentence relations within the hierarchical con-
text. Here, G is the key and value, while query
Q2 is a randomly initialized and learnable 256-dim
vector similar to Q1. Finally, the inter-sentence
attention network outputs the GCSE of the current
sentence U0.

2.3.3 Local style predictor
The local style predictor is used to obtain the local-
scale style embedding of current sentence from the
hierarchical context embeddings.

Firstly, a scaled dot-product attention is used to
align each character-level embedding Si of a sen-
tence in the hierarchical context with the character-
level embedding S0 of the current sentence, where
Si is fed as the key and value,S0 is fed as the query.
Here, S0 can be seen as a fixed local-scale query
"to what extent does each character influence the lo-
cal speaking style of the current sentence" for each
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Figure 5: Multi-scale Hierarchical Context Encoder

sentence in the context. This can be formulated as:

Ki = SiWk, (5)

Vi = SiWv, (6)

Li = A(S0,Ki, Vi) = softmax(
S0K

>
i√

dS0

)Vi,

(7)
where Wk and Wv are linear projection matrices of
attention keys and values. dS0 means the dimension
of the query S0.

Since all the 2l + 1 attention outputs
L−l, ..., L0, ..., Ll have the same length as S0, a
concatenation operation along feature dimension is
further implemented, followed by full-connected
layer with tanh activation:

L = Concatf (L−l, ..., Ll), (8)

In this way, the LCSE of current sentence is ob-
tained.

2.4 Training strategy and inference procedure

During training, to encourage the multi-scale hier-
archical context encoder learn style representation
better, the proposed model is trained with knowl-
edge distillation strategy in three stages.

i) In the first stage, the acoustic model and the
multi-scale reference encoder are jointly trained
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with paired <utterance, speech> data to get a well-
trained multi-scale reference encoder in an unsu-
pervised way. In order to better extract style fea-
tures at different scales, this training stage is di-
vided into two steps. Firstly, only the global style
extractor is inserted into the model to obtain the
well-represented global-scale features. After that,
the local style extractor is further involved, which
can extract more fine-grained local style representa-
tions. The multi-scale style embeddings extracted
from all speeches in the training set can be regarded
as ground-truth speaking style representations.

ii) In the second stage, knowledge distillation
strategy is used to transfer the knowledge from the
multi-scale reference encoder to the multi-scale hi-
erarchical context encoder. That is, we use ground-
truth style embeddings GRSE and aligned LRSE as
targets to guide the prediction of speaking style rep-
resentations GCSE and aligned LCSE from context,
for training the multi-scale hierarchical context en-
coder.

iii) In the third stage, the acoustic model and the
multi-scale hierarchical context encoder are jointly
trained with a lower learning rate to further improve
the expressiveness of the synthesized speech.

During inference, the multi-scale reference en-
coder is abandoned. Only GCSE and LCSE pre-
dicted from the multi-scale hierarchical context
encoder are fed to variance adaptor together with
PE. Finally, by accepting input text and hierarchi-
cal context, the model can synthesize speech with
more expressive styles.

3 Experiment

3.1 Dataset and model details
An internal multi-speaker novel audio corpus on
Mandarin is employed in our experiment. It con-
tains more than 40 roles and around 15 hours
speech spoken by 5 Mandarin native speakers with
quite different timbres. The speaking styles vary
among roles and utterances, and the speed, pitch
and energy fluctuate greatly in an utterance. The
dataset has a total of 11,000 audio clips, of which
200 clips are used for validation and 100 clips for
test, and the rest for training.

For feature extraction, we transform the raw
waveforms into 80-dim mel-spectrograms with
sampling rate 16kHz, frame size 1200 and hop size
240. An open-source pre-trained Chinese character-
level BERT model2 with frozen parameters is used

2https://huggingface.co/bert-base-chinese

in our experiments. The context of current sen-
tence is made up of its two past sentences, two
future ones, and itself.

We take 200k steps to train the acoustic model
and multi-scale reference encoder, where 100k
steps are for global style extractor and the remain-
ing 100k steps for local style extractor. Then we
take 20k steps to train the multi-scale hierarchical
context encoder and 20k steps to adapt the acoustic
model and the multi-scale hierarchical context en-
coder. All the trainings are conducted with a batch
size of 16 on a NVIDIA A100 GPU. The Adam
optimizer is adopted with β1 = 0.9, β2 = 0.98.
The warm-up strategy is used before 4000 steps.
In addition, a well-trained HiFi-GAN (Kong et al.,
2020) is used as the vocoder to generate waveform.

3.2 Compared methods

Three FastSpeech 2 based models are implemented
for comparison, and the details are described as
follows:

FastSpeech 2: Original FastSpeech 2 (Ren et al.,
2020) with minor changes on the variance predictor
to be consistent to the proposed model as described
in section 2.1.1.

BERT-FS 2: Inspired by (Xiao et al., 2020),
we set an end-to-end TTS model by combining
BERT with FastSpeech 2, which contains a plain
context encoder and only considers the current sen-
tence. The same character embeddings obtained
from BERT are directly passed to a GRU layer
whose final state is used as a style embedding.

HCE-FS 2: It uses a reference encoder to extract
the global style representation, and uses a hierar-
chical context encoder to predict the global style
embedding, which is fed to the variance adaptor of
FastSpeech 2 (Lei et al., 2022a).

Model S-MOS P-MOS
Ground Truth 4.705 ± 0.067 4.737 ± 0.073
FastSpeech 2 3.426 ± 0.091 3.432 ± 0.099
BERT-FS 2 3.503 ± 0.096 3.526 ± 0.086
HCE-FS 2 3.589 ± 0.089 3.613 ± 0.073
Proposed 4.031 ± 0.068 4.142 ± 0.071

Table 1: The sentence-MOS (S-MOS) and paragraph-
MOS (P-MOS) of different models with 95% confidence
intervals for subjective evaluation.

https://huggingface.co/bert-base-chinese
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Model F0 RMSE Energy RMSE Duration MSE MCD
FastSpeech 2 70.847 13.228 0.1316 7.198
BERT-FS 2 67.912 13.031 0.1263 7.134
HCE-FS 2 64.975 12.449 0.1254 6.975
Proposed 62.471 11.683 0.1224 6.843

Table 2: Objective evaluations for different models.

3.3 Subjective evaluation

We conduct the mean opinion score (MOS) tests
to evaluate the naturalness and expressiveness of
the generated speeches. As the task in this paper
is paragraph-level audiobook speech synthesis, we
conduct two kinds of MOS tests, sentence-MOS (S-
MOS) and paragraph-MOS (P-MOS) respectively.
The former mainly focuses on the naturalness and
expressiveness of the synthesized speech consid-
ering only the current single sentence. The latter
focuses on the coherence of speech styles of the cur-
rent sentence in a paragraph considering the context
of past and future sentences, where the speeches of
the past and future sentences are the resynthesized
version of ground truth speech recordings. 10 sin-
gle sentences and 10 short paragraphs are randomly
selected in the test set. 25 native Chinese speakers
are asked to listen to the generated speeches and
rate on a scale from 1 to 5 with 1 point interval.

As shown in Table 1, our proposed approach
achieves the best S-MOS of 4.031 and P-MOS of
4.142. The results demonstrate the effectiveness of
our proposed methods over all the baselines espe-
cially on the paragraph level. There is a big gap
between FastSpeech 2 and Ground Truth, indicat-
ing that it is difficult to model the multiple speech
variations without enough input information.

The ABX preference tests are also conducted on
our proposed model and each of the three baselines
respectively. Similarly, we also conduct two kinds
of ABX preference tests, sentence-ABX (S-ABX)
and paragraph-ABX (P-ABX) respectively. The
same 25 subjects are asked to choose a preferred
speech in terms of naturalness and expressiveness
between a pair of methods.

As shown in Figure 6, the preference rate of our
proposed model exceeds FastSpeech 2 by 53.2%,
BERT-FS 2 by 48.4% and HCE-FS 2 by 45.8%
on the S-ABX preference test. Moreover, the gaps
between our proposed model and baseline models
are more reflected on the preference rate of P-ABX,
which are 70.5%, 66.0% and 60.0% respectively.

Both MOS and ABX preference tests demon-
strate that our proposed method significantly out-
performs the baselines in terms of naturalness and
expressiveness especially for the paragraph-level
speech synthesis tasks.

67.4% 14.2%

65.8% 17.4%

64.2% 18.4%

0% 20% 40% 60% 80% 100%

18.4%

16.8%

17.4%
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75.1% 9.1%

71.6% 11.6%

0% 20% 40% 60% 80% 100%

14.7%
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Proposed FastSpeech 2 BERT-FS 2 HCE-FS 2 NP

(a)  Result of the S-ABX preference test

(b)  Result of the P-ABX preference test

Figure 6: Results of the sentence-ABX (S-ABX) and
paragraph-ABX (P-ABX) preference tests. NP means
no preference.

3.4 Objective evaluation

As the common for the objective evaluation of syn-
thesized speech, we employ the root mean square
error (RMSE) of pitch and energy, the mean square
error (MSE) of duration and mel cepstral distortion
(MCD) as the objective evaluation metrics. Specifi-
cally, the dynamic time warping (DTW) is firstly
used to construct the alignment paths between the
ground-truth mel-spectrogram and the predicted
one. After that, the F0 sequence and energy se-
quence are aligned towards ground-truth following
the DTW path. We also utilize DTW to compute
the minimum MCD by aligning the two sequences.
Here, MCD is utilized to calculate the difference
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between the mel-spectrograms of the synthesized
speech and the ground truth. For duration, we com-
pute the MSE between the predicted duration and
ground-truth duration.

As shown in Table 2, our proposed model
achieves 62.471 for F0 RMSE, 11.683 for Energy
RMSE, 0.1224 for Duration MSE and 6.843 for
MCD, which outperforms all the baselines on all
metrics. This excellent results indicate that our
proposed model can predict more accurate style
features, such as duration, pitch and energy, than
baselines.

3.5 Ablation study
To further investigate the influence of several main
modules in our proposed model, we have tried four
other settings based on the proposed method:

i) Proposed - Global-scale Style: The global
style extractor in multi-scale reference encoder and
the global style predictor in multi-scale hierarchi-
cal context encoder are removed, and only LRSE,
LCSE together with PE are fed to variance adaptor.

ii) Proposed - Local-scale Style: The local style
extractor in multi-scale reference encoder and the
local style predictor in multi-scale hierarchical con-
text encoder are removed, and only GRSE, GCSE
together with PE are fed to variance adaptor.

iii) Proposed - Knowledge Distillation: The
knowledge distillation strategy is abandoned, by
removing the multi-scale reference encoder. The
predicted GCSE and LCSE from multi-scale hier-
archical context encoder together with PE are fed
to variance adaptor directly throughout the training
process.

iv) Proposed - Role Embedding The role em-
bedding of context embedding layer in the multi-
scale hierarchical context encoder is removed.

Comparison mean opinion score (CMOS) is em-
ployed to compare the synthesized speeches in
terms of naturalness and expressiveness. The re-
sults are shown in Table 3.

Model CMOS
Proposed 0

- Global-scale Style -0.174
- Local-scale Style -0.211
- Knowledge Distillation -0.189
- Role Embedding -0.153

Table 3: CMOS comparision for ablation study.

Compared with the proposed method, the perfor-

mance of the four settings removing different main
modules is degraded to various degrees respectively.
This indicates that all these components have sub-
stantial impact on our proposed model. When the
global-scale style is removed, the overall style of
a sentence lacks expressiveness and there will be
a obvious deviation from the ground truth. The
proposed model without local-scale style leads to
significant performance degradation in some rhyth-
mic aspects, especially pauses and stress. When
the knowledge distillation strategy is abandoned,
the model needs to predict both the global-scale
and local-scale style from context directly without
any guidance from the reference encoder. The per-
formance degradation demonstrates the necessity
of the multi-scale reference encoder and indicates
that learning the speaking style representation from
context in an explicit way is more suitable for this
style prediction task. The proposed model with-
out the role embedding also causes some perfor-
mance degradation, which further indicates that
considering the interactions between different roles
is crucial for the style prediction of novel speech
synthesis.

Proposed Proposed

Ground Truth Ground Truth

Proposed -  Gocal-scale Style Proposed -  Local-scale Style

Test case 1 Test case 2

Figure 7: Mel-spectrograms and pitch contours of the
speeches for the two test cases.

3.6 Case study
To further explore the impact of multi-scale speak-
ing style on the expressiveness and naturalness of
synthesized speech, a case study is conducted to
synthesize two example utterances in test set with
the operation of removing the global-scale style
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and local-scale style respectively. The speech syn-
thesized by our proposed model and the ground
truth are also provided for reference. The mel-
spectrograms and pitch contours of speeches are
shown in Figure 7.

When the global-scale style is removed, the pitch
fluctuations become larger than others, and the
overall style and speed of synthesized speech vary
greatly compared with the ground truth. When
the local-scale style is removed, some local style
characteristics of the synthesized speech are lost,
resulting in a relatively averaged style throughout
the whole sentence. Compared with the two single-
scale results, the speeches synthesized by our pro-
posed multi-scale model are more similar to the
ground-truth speech in terms of the overall and
fine-grained style properties, such as the trend of
intonation and stress patterns. The results demon-
strate that modelling the speaking style from hier-
archical context information in a multi-scale way
is essential and effective to improve the naturalness
and expressiveness of the synthesized speech.

4 Conclusion

In this paper, we propose an unsupervised multi-
scale context-sensitive text-to-speech model for au-
diobooks. A multi-scale hierarchical context en-
coder is designed to predict both the global-scale
context style embedding and local-scale context
style embedding from hierarchical context with
the guidance of a multi-scale reference encoder.
Both objective and subjective experiment results on
a real-world multi-speaker Mandarin novel audio
dataset demonstrate the excellent performance of
our proposed multi-scale context-sensitive model
over all baseline approaches in terms of naturalness
and expressiveness of the synthesized speech.
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