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Abstract

Multi-intent natural language understanding
(NLU) has recently gained attention. It de-
tects multiple intents in an utterance, which
is better suited to real-world scenarios. How-
ever, the state-of-the-art joint NLU models
mainly detect multiple intents on threshold-
based strategy, resulting in one main issue:
the model is extremely sensitive to the thresh-
old settings. In this paper, we propose a
transformer-based Threshold-Free Multi-intent
NLU model (TFMN) with multi-task learning
(MTL). Specifically, we first leverage multi-
ple layers of a transformer-based encoder to
generate multi-grain representations. Then we
exploit the information of the number of multi-
ple intents in each utterance without additional
manual annotations and propose an auxiliary
detection task: Intent Number detection (IND).
Furthermore, we propose a threshold-free in-
tent multi-intent classifier that utilizes the out-
put of IND task and detects the multiple intents
without depending on the threshold. Exten-
sive experiments demonstrate that our proposed
model achieves superior results on two public
multi-intent datasets.

1 Introduction

Natural language understanding (NLU) consists of
two sub-tasks, including intent detection (ID) and
slot filling (SF) which allow the dialogue system to
create a semantic frame that summarizes the user’s
requests. Early works often approach these two
tasks separately (McCallum et al., 2000; Sarikaya
et al., 2011; Yao et al., 2014; Vu, 2016). Consid-
ering intent detection and slot filling are highly
related, recent works tend to model these two tasks
jointly, where the correlation between the intent
and slots are utilized (Goo et al., 2018; E et al.,
2019; Qin et al., 2019; Zhou et al., 2021).

The works above only consider the scenario
where each utterance has one intent. However,
in real-life situations, users may express multi-
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Figure 1: A threshold-based multi-intent detection ex-
ample in MixSNIPS with given utterance and intent
labels. Threshold, which is the dash line, is set to 0.5.

ple intents in an utterance, thus making it dif-
ficult to apply single intent NLU models. Re-
cently, several works have studied Multi-intent
NLU problem. Gangadharaiah et al.(2019) inves-
tigated an attention-based neural network. Qin et
al.(2020) proposed an Adaptive Graph Interactive
Framework (AGIF). Qin et al.(2021) explored a
non-autoregressive approach to speed up the infer-
ence time. Chen et al.(2022a) proposed a Self-
distillation Joint NLU model. However, these
works all predict multiple intents with threshold,
where the common practice is estimating label-
instance probabilities and picking the intent la-
bels whose probabilities are higher than the thresh-
old value. We named them threshold-based mod-
els. The main issue of threshold-based models
is that they are not robust to the threshold set-
tings. As shown in Figure 1, the correct intents
for the utterance are ’GetWeather’ and ’Search-
ScreeningEvent’. Although the model can detect
that ’GetWeather’ and ’SearchScreeningEvent’ are
the two most probable intents, the threshold-based
model only considers ’GetWeather’ as the intent
due to the threshold which is usually set as 0.5.

In this paper, we propose a transformer-based
Threshold-free Multi-NLU model (TFMN) and de-
tect multiple intents without relying on the thresh-
old. Specifically, we leverage the upper layers of a
transformer-based encoder to generate multi-grain
representations. Next, we fully exploit the annota-
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Figure 2: The architecture of transformer-based TFMN model.

tions from original multiple intents data and pro-
pose an Intent Number Detection (IND) task. The
motivation is to allow the model to detect the intent
numbers in a given utterance. Then we propose
a threshold-free intent classifier that utilizes the
output of IND task to detect the multiple intents.

We validate TFMN on two public datasets (Qin
et al., 2020): MixATIS and MixSNIPS, and show
that our method outperforms competitive baselines.
The contributions of our work are summarized
as follows: (1)We propose a novel threshold-free
Multi-NLU model based on transformers.(2) We
propose IND task, a feasible task to improve the
multi-intent NLU without additional manual an-
notation, and a threshold-free multi-intent classi-
fier that detects multiple intents without relying on
threshold. (3) We present extensive experiments
demonstrating the effectiveness of our approach.

2 Problem Formulation

Given an input sequence X = (x1, ..., xn), multi-
intent detection is defined as a multi-label classifi-
cation task that outputs OI = (oI1, ..., o

I
m), where

m is the number of predicted intent labels. Slot fill-
ing task can be regarded as a sequence labeling task
that outputs a slot sequence OS = (oS1 , ..., o

S
n).

3 Approach

In this section, we first introduce the architecture
of TFMN model, then detail the proposed IND task
and threshold-free intent classifier.

3.1 Threshold-free Multi-intent NLU Model

The architecture of our model is illustrated in Fig-
ure 2. TFMN includes a transformer-based encoder
with L layers and three task-specific classifiers.

Multiple Intent Detection Following (Qin et al.,
2019), we perform a token-level multiple intent
detection which can be formalized as a sequence
labeling problem (You et al., 2020, 2021b; Chen
et al., 2021a, 2022b) that maps the input utter-
ance X = (x1, ..., xn) to sequence of intent label
OI = (oI1, ..., o

I
n). According to (Jawahar et al.,

2019; Rogers et al., 2020; Chen et al., 2021b),
transformer-based encoder tends to capture syn-
tactic information in the middle and semantic infor-
mation at the top layers. Therefore, we take the top
j layers of the encoder to form multi-grain intent
features. First, we map each hidden layer into a
different feature space via a fully connected layer,
then we combine hidden layers by adding them
together:

hI =
∑L

n=L−j
wI
nhn (1)

where wI
n are trainable parameters and hn are dif-

ferent hidden layers. We then generate intent logits
with the intent feature hI :

lI = wih
I (2)

where wi are trainable parameters. The intent logits
will be used to provide token-level intent informa-
tion for slot filling and detect the final multiple
intent labels which we will detail in Section 3.3.

Slot Filling Similar to intent detection, We lever-
age the top j layers of a transformer-based encoder
for slot filling. The slot features hS are generated
by combining hidden layers and concatenating with
token-level intent information:

hStemp =
∑L

n=L−j
wS
nhn (3)

hS = hstemp ⊕ lI (4)
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then slot classifier computes the slot prediction:

pSt = softmax(waLeakyReLU(wbh
S
t )) (5)

where wa and wb are trainable parameters.

3.2 Intent Number Detection
To achieve threshold-free multi-intent detection,
we propose an Intent Number Detection task which
trains with the intent detection and slot filling in a
multi-task fashion. In IND task, we fully utilize the
original intent label annotations by calculating the
numbers of intents in each utterance and forming
the intent number labels Y IND. Then we train the
model to detect how many intents are there in the
input utterance with Y IND. Specifically, we take
the output of [CLS] token from the last hidden layer
hcls as representation for IND task to classify:

pIND = softmax(windhcls) (6)

OIND = argmax(pIND) (7)

We use cross-entropy to optimize IND task:

LIND = −
∑

k
yIND
k logpIND

k (8)

3.3 Threshold-free Intent Classifier
Once having the intent logits lI and being able to
predict the intent number with the proposed IND
task, we send lI into a sigmoid activation function:

pIt = sigmoid(lIt ) (9)

where pIt is the intent probability distribution of
t-th token in the utterance. Since the final out-
put should be the utterance-level intent detection,
we sum pIt up for utterance-level intent probabil-
ity distribution P I , and choose the top OIND,
which is the predicted intent number of the utter-
ance, most probable intent label as the final result
OI = (oI1, ..., o

I
OIND).

3.4 Multi-Task Training
Our model optimizes the parameters jointly. Mul-
tiple intent detection is trained with binary cross-
entropy and slot filling is trained with cross-entropy.
The total loss of TFMN is the weighted sum of
three losses:

Ltotal = α · LID + β · LSF + λ · LIND (10)

with three hyper-parameters α, β, and λ to balance.

4 Experiments

4.1 Datasets
We conduct experiments on two public multi-
intent NLU datasets1. They are MixATIS (Qin
et al., 2020) collected from ATIS dataset (Hemphill
et al., 1990) with 13162/759/828 utterances for
train/validate/test and MixSNIPS (Qin et al.,
2020) collected from SNIPS dataset (Coucke
et al., 2018) with 39776/2198/2199 utterances for
train/validate/test. Both of the datasets have the ra-
tio of sentences with 1~3 intents as [0.3, 0.5, 0.2].

4.2 Experimental Settings
For TFMN, we use the English uncased Bert-Base
model (Devlin et al., 2019) which consists of 12
hidden layers, 12 heads, and the hidden size is
768. For fine-tuning, we freeze the bottom half
of Bert to save computational memory and empiri-
cally choose the top 4 layers to generate represen-
tations. The batch size is 128 and the epoch is 80.
Adam is used for optimization with learning rate of
2e-5. The hyper-parameters of loss are empirically
set as α: β: λ= 0.6: 1: 1 for MixATIS and α: β:
λ= 0.7: 0.9: 1 for MixSNIPS. We evaluate the per-
formance of slot filling with F1 score (You et al.,
2021a; Chen et al., 2021c), intent detection with ac-
curacy, and the NLU semantic frame parsing with
overall accuracy.

4.3 Baselines
We compare our model with both single-intent and
multi-intent baselines. For single-intent baselines
to handle multi-intent utterances, multiple intent
labels are connected with "#" and treated as a sin-
gle label, named as concat version. For multi-
intent baselines, they are all threshold-based mod-
els, named as thresh version. We also obtain our
own pre-trained language model (PLM) baseline
for comparison, called Bert-baseline. Following
(Chen et al., 2019), we obtain the hidden state of
the first special token ([CLS]) for detecting multi-
intent based on threshold and use hidden states of
utterance tokens for slot filling.

4.4 Results
The main results are illustrated in Table 1. We ob-
serve that TFMN model outperforms previous state-
of-the-art baselines significantly. On slot filling,
our model outperforms GL-GIN 1.5% on MixS-
NIPS. For multiple intent detection, we achieve

1https://github.com/LooperXX/AGIF

https://github.com/LooperXX/AGIF
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Model
MixATIS MixSNIPS

Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

SF-ID (concat) (2019) 87.4 66.2 34.9 90.6 95.0 59.9
Stack-Propagation (thresh = 0.5) (2019) 87.8 72.1 40.1 94.2 96.0 72.9
Joint Multiple ID-SF (thresh = 0.5) (2019) 84.6 73.4 36.1 90.6 95.1 62.9
AGIF (thresh = 0.5)(2020) 86.7 74.4 40.8 94.2 95.1 74.2
GL-GIN (thresh = 0.5)(2021) 88.3 76.3 43.5 94.9 95.6 75.4
SDJN (thresh = 0.5)(2022a) 88.2 77.1 44.6 94.4 96.5 75.7

SDJN+BERT (thresh = 0.5)(2022a) 87.5 78.0 46.3 95.4 96.7 79.3
Bert-baseline (thresh = 0.3) 83.1 74.8 42.6 95.5 95.7 80.2
Bert-baseline (thresh = 0.5) 86.3 74.5 44.8 95.5 95.6 80.1
Bert-baseline (thresh = 0.8) 85.6 75.8 43.5 95.2 96.7 80.6

TFMN (Bert-base) 88.0 79.8 50.2 96.4 97.7 84.7

Table 1: Slot filling and multiple intent detection results on two multi-intent datasets.

Model
MixATIS

Slot Intent Overall
(F1) (Acc) (Acc)

TFMN 88.0 79.8 50.2
-w/o T -free Cls 87.1 77.3 47.0
-w/o T -free Cls & IND task 86.3 76.8 46.7

Table 2: Ablation study. T -free Cls indicates
threshold-free intent classifier.

2.7% and 1.2% improvement compared with SDJN
on MixATIS and MixSNIPS respectively. On over-
all accuracy, our model shows strong performance
which surpasses SDJN 5.6% on MixATIS and 9%
on MixSNIPS. When comparing PLM baselines,
we can first observe that different threshold settings
affect the results of Bert-baseline distinctively. Sec-
ond, TFMN model outperforms PLM baselines
in all three metrics on both datasets. The results
suggest that our approach brings significant im-
provements to multi-intent NLU. We believe this is
due to the proposed IND task which fully exploits
original intent annotations and threshold-free intent
classifier that allows our model to detect multiple
intents without a threshold and lead to performance
gains.

4.5 Ablation Study

We compare TFMN with two simplified versions,
-w/o T -free Cls and -w/o T -free Cls & IND
task in Table 2 to analyze the effectiveness of
threshold-free intent classifier and IND task. We
can see that as the threshold-free intent classifier is
removed, the performances drop 0.9%, 2.5%, and
3.2% on slot F1, intent accuracy, and overall accu-
racy respectively. We attribute this to the fact that
the threshold-free approach can better detect the
intent number in an utterance compare to threshold

Model
MixATIS

Int-1 Int-2 Int-3 Avg.

AGIF 96.5 83.7 76.7 85.6
GL-GIN 96.5 94.6 87.5 92.8
SDJN+BERT 97.2 92.0 84.0 91.2
Bert-baseline (thresh = 0.5) 94.4 87.8 83.5 88.6

TFMN 98.6 99.7 99.3 99.2

Table 3: A comparison of intent number prediction
between threshold-based and threshold-free approaches.
The evaluation metric is accuracy. Int-# means the
utterance with the number of “#” intent. Avg. is the
average accuracy.

strategy. We further remove the INP task and the
performance again drops 0.8%, 0.5%, and 0.3%
on slot F1, intent accuracy, and overall accuracy
respectively. This indicates the effectiveness of
introducing the INP task to multi-intent NLU.

4.6 Threshold-based vs Threshold-free

To compare threshold-based and threshold-free ap-
proaches, we evaluate how well a model can detect
the number of intents in an utterance. The results
are demonstrated in Table 3. We obtained that the
threshold-free model, TFMN, significantly outper-
forms the threshold-based baselines. Our model
achieves 2.1%, 5.1%, 11.8%, and 6.4% improve-
ments on one to three intent utterances and average
accuracy over GL-GIN. We find it interesting that
threshold-based models predict intent number well
when there is one intent in the utterance and be-
come worse as the intent number increase while
TFMN shows more consistency.

5 Conclusion

In this paper, we propose TFMN model which de-
tects intent numbers in an utterance by a novel IND
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task that does not require additional manual anno-
tations. Then we propose a threshold-free intent
classifier to detect multiple intents without rely-
ing on the threshold. Extensive experiments show
that TFMN achieves performance gains over strong
baselines.
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