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Abstract
In recent years, multimodal sentiment analy-
sis (MSA) has attracted more and more inter-
est, which aims to predict the sentiment po-
larity expressed in a video. Existing methods
typically 1) treat three modal features (textual,
acoustic, visual) equally, without distinguish-
ing the importance of different modalities; and
2) split the video into frames, leading to miss-
ing the global acoustic information. In this
paper, we propose a global Acoustic feature en-
hanced Modal-Order-Aware network (AMOA)
to address these problems. Firstly, a modal-
order-aware network is designed to obtain the
multimodal fusion feature. This network inte-
grates the three modalities in a certain order,
which makes the modality at the core position
matter more. Then, we introduce the global
acoustic feature of the whole video into our
model. Since the global acoustic feature and
multimodal fusion feature originally reside in
their own spaces, contrastive learning is further
employed to align them before concatenation.
Experiments on two public datasets show that
our model outperforms the state-of-the-art mod-
els. In addition, we also generalize our model
to the sentiment with more complex seman-
tics, such as sarcasm detection. Our model
also achieves state-of-the-art performance on a
widely used sarcasm dataset.

1 Introduction

Multimodal sentiment analysis (MSA) has attracted
more and more attention in recent years. In many
cases, we need to combine the textual, acoustic,
and visual features to predict sentiment polarity.
For example, the tone of a person’s voice and the
changing expression can both have an impact on
sentiment polarity prediction.

∗ Corresponding author.

In most previous works, each modality will go
through the same process at the fusion, or in other
words, the three modalities are treated equally
(Hasan et al., 2021; Chauhan et al., 2020). How-
ever, for sentiment analysis, the textual modality
is usually the core modality based on life experi-
ence and previous works (Tsai et al., 2019; Han
et al., 2021a; Hasan et al., 2021), because the text
contains the most basic semantic information. The
acoustic feature also plays an important role: a
speech with a rising tone is more likely to express
positive sentiment. Finally, facial expressions also
have impacts on sentiment, such as the rising range
of the corners of the mouth and the size of the
pupils. However, the information about sentiment
in expression is not as rich as that in tone. In addi-
tion, visual information does not always correspond
to text like acoustic information. In many situa-
tions, the change in the speaker’s facial expression
is quite subtle. Even more, the speaker is absent
in some videos. These visual noises may bring
confusion to the model. Therefore, we consider
the order of modalities, i.e. textual-acoustic-visual
(t-a-v) while integrating them.

For MSA, a video is usually divided into many
frames, and each frame corresponds to a very short
time period in the video. The local acoustic features
extracted from every single frame interact with
each other in the fusion process. However, this
method loses the global acoustic information and
cannot fully reflect the tone feature of the whole
audio.

To address these challenges, we propose a global
acoustic feature enhanced modal-order-aware net-
work. Firstly, the Modal-Order-Aware network
(MOA) is designed to integrate the three modalities
in a certain order, where there are two stages con-
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necting the core and the outer modalities. We put
textual modality at the core, and then the acoustic
modality is integrated in stage 1, and finally, the vi-
sual modality is integrated in stage 2. At each stage,
we design Cross-Modal Transformer (CMT) based
on the Transformer encoder (Vaswani et al., 2017)
to integrate new modal features. Through CMT,
the modality added before can also provide infor-
mation for the later processes. Consequently, the
textual feature learning is continuously enhanced
through two stages, while the noise impact brought
by the visual modality added in stage 2 is reduced.
Then, to preserve the global acoustic information,
we use openSMILE (Eyben et al., 2010) to extract
the Global Acoustic Feature (GAF) of the video
to enhance modal feature learning. Furthermore,
GAF and the multimodal fusion feature originally
reside in their own spaces, which brings challenges
to the fusion or concatenation. Inspired by MOCO
(He et al., 2020), we employ contrastive learning to
align the two features before concatenating them.
Because visual modality may bring more noise and
the processing of the entire video needs more com-
putational power, we don’t employ global visual
features in our model. The main contributions of
our paper are as follows:

• We propose AMOA - a novel multimodal sen-
timent analysis model that can integrate the
three modalities in a certain order. In the
modal-order-aware network, CMT is designed
to fuse the features of different modalities.

• We are the first to introduce the global acous-
tic feature into MSA, which aims to preserve
the global acoustic information and enhance
the learning of the overall video feature. Fur-
thermore, contrastive learning is utilized to
align them before concatenation.

• We conduct experiments on sentiment (CMU-
MOSI and CMU-MOSEI) and sarcasm (MUS-
tARD) datasets, and the results show the state-
of-the-art performance of our model.

2 Related Work

Multimodal fusion has always been the most crit-
ical step in MSA. Early works directly concate-
nate unimodal features or use outer product (Zadeh
et al., 2018). With the development of the neu-
ral networks (Russakovsky et al., 2015; Hochreiter
and Schmidhuber, 1997) and attention mechanism

(Bahdanau et al., 2015; Vaswani et al., 2017), more
and more complex networks have been applied to
MSA to integrate modalities.

(Tang et al., 2021) uses a translation-based
model to supplement the missing modalities. (Liu
et al., 2021) is based on quantum probability mod-
eling and uses multi-task learning to predict senti-
ment polarity and detect sarcasm at the same time.
(Rahman et al., 2020) proposes an attachment to
pre-trained language models so that they can adapt
to the task of multimodal sentiment analysis. (Han
et al., 2021a) performs fusion (relevance increment)
and separation (difference increment) on pairwise
modality representations. (Han et al., 2021b) pro-
poses a novel framework to maximize the mutual
information in unimodal input pairs and between
the multimodal fusion result and unimodal input.
(Colombo et al., 2021) proposes new objectives
to measure the dependency between modalities.
These models treat all three modalities equally and
mostly design very complex modules to achieve
better results, while our model integrates three
modalities in a certain order to distinguish their
contributions, simple but effective.

Contrastive learning (CL) is a widespread self-
supervised learning method in recent years. MOCO
(He et al., 2020) and SimCLR (Chen et al., 2020)
have achieved good results with CL in computer
vision. After that, CL is applied to text-image multi-
modal tasks, such as image-text retrieval and visual
question answering (Li et al., 2021).

3 Model

In this section, we will describe in detail how our
proposed model works. The overall architecture
of our model (AMOA) is shown in Figure 1. Our
model consists of three modules: the modal-order-
aware network (MOA), global acoustic feature
(GAF) extraction & contrastive learning module,
and classification module. In MOA, the unimodal
features are first encoded and then integrated in
a certain order, thus generating the multimodal
fusion feature (Section 3.1). However, the multi-
modal fusion feature obtained in MOA is composed
of single frame features and insufficient to reflect
the overall change of tone, which is important for
expressing sentiment. Therefore, we further extract
GAF to complement the complete acoustic features.
To align the multimodal fusion feature and GAF,
we introduce contrastive learning and add the con-
trastive loss and classification loss together to guide
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Figure 1: The overall architecture of our model. T, A, and V represent textual modality, acoustic modality (frame
level), and visual modality (frame level) respectively. A (global) indicates acoustic modality which is not segmented.
⊕ represents the concatenation operation. The dashed parts make up two-way CMT.

model training. (Section 3.2) Finally, a multilayer
perceptron layer is utilized for classification (Sec-
tion 3.3).

3.1 Modal-Order-Aware Network
3.1.1 Unimodal Feature Extraction and

Encoder
Textual: In this paper, pre-trained BERT-base-
uncased (Devlin et al., 2019) is used as our text
encoder, which has 12 layers and the hidden
size is 768. The text encoder takes text Xt =
{x1, x2, . . . , xnt} in the video as input, and then
output the last hidden layer representation: Et ∈
R

nt×dt , where nt is the number of tokens and dt
is the hidden size (768) of BERT-base-uncased.
Acoustic: We use openSMILE to extract frame-
level features of audio with 10 ms frame shift and
25 ms frame size. openSMILE provides a series of
default feature sets, such as the INTERSPEECH
2010 Paralinguistic Challenge Feature Set (IS10)
(Schuller et al., 2010), which contains different
low-level features and their corresponding high-
level features. For each frame, we extract IS10
as the feature vector: Xa = {x1, x2, . . . , xna},
Xa ∈ Rna×da and na is the number of frames and
da is the dimension of the acoustic feature. Then,
we use P2FA (Yuan et al., 2008) to align the acous-
tic features to each word. Specifically, we obtain
X
′
a = {x′1,x

′
2, . . . ,x

′
nt
} by extracting the timing

of all the words and averaging the acoustic feature
vectors during this time. Because Transformer has
the advantage of capturing long-distance dependen-
cies, we directly use the Transformer encoder with

random initialization to encode the feature and fi-
nally get the acoustic representation Ea ∈ Rnt×da .

Visual: The visual information in the video mainly
comes from expressions, head shaking, and so on.
We use OpenFace 2 (Baltrusaitis et al., 2018) to
extract facial features at the frame level. These
features are based on the Facial Action Coding Sys-
tem (Ekman and Rosenberg, 1997). Like acoustic
modality, we then use the Transformer encoder to
obtain visual representation Ev ∈ Rnt×dv , where
dv is the hidden size of visual feature. The encoders
of acoustic and visual modalities are independent
of each other and they don’t share any parameters.

3.1.2 Modal Order

Currently, most works treat the three modalities
equally. They either feed the three modalities into
a module for fusion and interaction at the same
time, or integrate them in pairs. In this way not
only the text information can not play a full role,
but also the noise in the visual modality has the
same impact. Therefore, we integrate three modal-
ities in a certain order. First, the textual feature
is extracted and encoded, i.e. Et; then, in stage
1, the acoustic features are fused to generate Et-a;
finally, in stage 2, the visual features are integrated
to generate Et-a-v. The final experiment will prove
the optimality of the t-a-v order. At each stage,
we employ CMT to integrate the previous and lat-
ter modalities, which will be described in detail in
Section 3.1.3.
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3.1.3 Cross-Modal Transformer
Based on the Transformer encoder, CMT is utilized
to integrate new modalities, as shown in Figure 2.
In stage 1, CMT inputs the textual and acoustic
modal features and outputs the textual-acoustic fu-
sion feature. Then in stage 2, the textual-acoustic
feature and visual feature are fed to CMT and we
obtain the textual-acoustic-visual fusion feature.
Transformer is mainly composed of attention mech-
anism, and so is CMT. The input of the attention
mechanism is aK-V pair and a queryQ. TheK-V
pair can be regarded as basic information, while
Q is additional information. We get the interac-
tive information between Q and V by calculating
the score between Q and K. Multi-head attention
is composed of several parallel attention modules.
They are individually responsible for calculating
part of the results which will be concatenated into
the final result. Different from the Transformer
encoder, CMT utilizes multi-head attention instead
of multi-head self-attention to integrate two fea-
tures. Besides, CMT is also a multi-layer mod-
ule. The original Transformer encoder cannot input
two modalities and stack multiple layers together.
Each layer of CMT has two inputs called base and
addition. base of each layer stays the same, while
addition is constantly updated.

Multi-head 
Attention

base addition

K V Q

Add & Norm

Feed
Forward

output

Layer 1

base addition

Layer 2

……

Add & Norm

Figure 2: Cross-Modal Transformer.

Take the CMT in stage 1 as an example, in
the first layer, base is the textual feature Et and
addition is the acoustic feature Ea. Then we input
base (K, V ) and addition (Q) into the multi-head
attention (MHA) followed by a residual connection
and layer normalization:

Z =MHA(addition, base, base), (1)

Z
′
= Norm(Z+ addition). (2)

Then we employ a feedforward neural network fol-
lowed by a residual connection and layer normal-

ization:

Z
′′
= FeedForward(Z

′
), (3)

E
(1)
t-a = Norm(Z

′
+Dropout(Z

′′
)). (4)

where Norm is layer normalization. The above is
the calculation process of the first layer, which can
be expressed as:

E
(1)
t-a = CMT(1)(Et, Ea). (5)

In the second and later layers, base is always the
textual feature, and addition is the output of the
previous layer:

E
(i)
t-a = CMT(i)(Et, E

(i−1)
t-a ), i = 2, 3, . . . , N,

(6)
where E(i)

t-a is the output of the ith layer of CMT and
we take the output of the last layer as the textual-
acoustic fusion feature Et-a.

Similar to the above procedure, we take Et-a

as base and the visual feature Ev as addition in
CMT (addition of each layer is also updated con-
tinuously) in stage 2. Then we obtain the textual-
acoustic-visual fusion feature:

Et-a-v = CMT(Et-a, Ev). (7)

In order to distinguish the importance of pre-
vious and latter modalities, we only use one-way
CMT, that is, one input provides more information
as base and another input provides less informa-
tion as addition. For comparison, we also design
a bidirectional module, as shown by the dashed
line in Figure 1. The results from two CMTs are
concatenated and transmitted to the next step. The
model with one-way CMT is called S-AMOA and
the model with two-way CMT is called B-AMOA.
In this paper, we use S-AMOA by default.

Finally, a dropout layer and max-pooling layer
are utilized to extract the most salient features
across the time dimension:

Ef =Maxpooling(Dropout(Et-a-v)), (8)

where Ef ∈ Rdh is the multimodal fusion feature.

3.2 GAF & Contrastive Learning
We use IS10 in openSMILE to extract GAF. In-
stead of splitting the video into frames, we extract
the global acoustic feature of the whole video and
get a one-dimensional feature vector: Xg ∈ Rdg .
We unsqueeze Xg to make it fit the input shape of



7140

Transformer. Finally, we utilize the Transformer en-
coder to obtain the GAF representation: Eg ∈ Rdg .

During training, apart from the final classifica-
tion loss, we introduce another loss through con-
trastive learning, called loss_c, to align the multi-
modal fusion feature Ef and global acoustic feature
Eg. One of the important steps of contrastive learn-
ing is to construct positive and negative samples.
A direct idea is to take Ef and Eg belonging to
the same sample in a batch as a positive pair and
those not belonging to the same sample as negative
pairs. Previous studies show that more negative
samples promote contrastive learning. However, a
larger batch size requires higher computing power
so infinitely increasing the batch size is unpractical.

To applicably increase the number of negative
samples, we construct a queue storing (Ef , Eg)
pairs in the model. All the Ef in the queue are
combined into the matrix Eq

f ∈ R
K×dh , and all

the Eg in the queue are combined into the matrix
Eq

g ∈ RK×dh . K is the upper limit of the queue
size. The data in the queue comes from the previous
batches and acts as negative samples.

When a new batch comes, we get Eb
f ∈ RB×dh

and Eb
g ∈ RB×dg which are positive samples of

each other. B should be the batch size, but in
practice, the utterance is processed with the context,
so B is actually the product of the original batch
size and the number of sentences in a sample. Next,
we calculate the cosine similarity between each
same row (i.e. the same sample) of the two matrices
in this batch, which should be maximized:

Spos = Cosine(Eb
f , E

b
g), (9)

where Cosine is the cosine similarity function.
Each value in Spos ∈ RB×1 is the similarity of
the corresponding samples in this batch. Because
there are multimodal fusion features and global
acoustic features in both batch and queue, we con-
struct double negative samples by calculating the
similarity of Eb

f and Eq
g and the similarity of Eb

g

and Eq
f respectively, which should be minimized:

Sf→g
neg = Cosine(Eb

f , E
q
g), (10)

Sg→f
neg = Cosine(Eb

g, E
q
f ), (11)

where the value in the ith row and the jth column
of Sf→g

neg ∈ RB×K is the cosine similarity between
Ef of the ith sample in the current batch and Eg of
the jth sample in the queue. Then we concatenate

the three similarity matrices:

S = Concat(Spos, S
f→g
neg , S

g→f
neg ), (12)

where the first column of S ∈ RB×(1+2×K) is the
similarity between positive samples, and the others
are the similarity between positive samples and
negative samples. Then we define a loss function
to maximize the value of the first column of S and
minimize the value of the other columns:

loss_c =
∑B

i=1 | log(Softmax(Si)[0]) |
B

. (13)

As part of the final loss, loss_c will help to align
Ef and Eg.

Finally, we add Eb
f and Eb

g in the current batch
to the queue, and if the queue size exceeds K, we
pop up the pairs from the head of the queue.

3.3 Classification

We get the multimodal fusion feature Ef through
MOA, and also extract the global acoustic feature
Eg. Now we concatenate the two features and then
get:

R = Concat(Ef , Eg), (14)

where R ∈ R(dh+dg)×1 is the final multimodal
representation. Finally, We input the R into a mul-
tilayer perceptron (MLP) layer for classification:

ŷ =W2(ReLU(W1R)) + b2, (15)

where W1, W2, b1 and b2 are the parameters and
ReLU is the nonlinear activation function. During
training, we use the MSE loss function to calculate
the classification loss loss_f and then add con-
trastive learning loss with a certain weight:

loss = (1− α) · loss_f + α · loss_c, (16)

where α is a hyper-parameter, which is set to bal-
ance the two losses.

Dataset Train Valid Test All

CMU-MOSI 1284 229 686 2199
CMU-MOSEI 16326 1871 4659 22856

MUStARD 552 69 69 690

Table 1: Split of three datasets.
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Models
CMU-MOSI CMU-MOSEI

Acc-2 ↑ F1 ↑ MAE ↓ Corr ↑ Acc-2 ↑ F1 ↑ MAE ↓ Corr ↑

TFN* -/0.8080 -/0.8070 0.901 0.698 -/0.8250 -/0.8210 0.593 0.700
LMF* -/0.8250 -/0.8240 0.917 0.695 -/0.8200 -/0.8210 0.623 0.677
MFM* -/0.8170 -/0.8160 0.877 0.706 -/0.8440 -/0.8430 0.568 0.717
ICCN* -/0.8300 -/0.8300 0.862 0.714 -/0.8420 -/0.8420 0.565 0.713
MulT* 0.8150/0.8410 0.8060/0.8390 0.861 0.711 -/0.8250 -/0.8230 0.580 0.703
MISA* 0.8079/0.8210 0.8077/0.8203 0.804 0.764 0.8259/0.8423 0.8267/0.8397 0.568 0.724
MAG-BERT* 0.8250/0.8430 0.8260/0.8430 0.731 0.789 0.8380/0.8520 0.8370/0.8510 0.539 0.753
self-MM* 0.8400/0.8598 0.8442/0.8595 0.713 0.798 0.8281/0.8517 0.8253/0.8530 0.530 0.765

MMIM‡ 0.8324/0.8521 0.8311/0.8515 0.722 0.786 0.8418/0.8558 0.8425/0.8535 0.538 0.763
BBFN‡ 0.8134/0.8353 0.8124/0.8351 0.833 0.743 0.8298/0.8569 0.8327/0.8570 0.579 0.759
S-AMOA (ours) 0.8411/0.8415 0.8452/0.8421 0.720 0.788 0.8560/0.8645 0.8601/0.8654 0.526 0.772
B-AMOA (ours) 0.8163/0.8277 0.8173/0.8283 0.735 0.786 0.8501/0.8575 0.8508/0.8587 0.578 0.766

Table 2: Performances of multimodal models on the CMU-MOSI and CMU-MOSEI datasets. * indicates that
the results are from (Han et al., 2021b). ‡ indicates that the results are reproduced from open-source code with
hyper-parameters provided in original papers. For Acc-2 and F1, we have two methods of calculation: non-
negative/negative (left) and positive/negative (right). The best results are marked in bold. ↑ indicates that the higher
the value, the better the result; ↓ indicates that the lower the value, the better the result. Bolded numbers represent
the best results.

Models Acc-2 F1

MFN� 0.7391 0.7386
MulT� 0.7536 0.7541
MAG(BERT)� 0.7826 0.7818
MAG(XLNet)� 0.7681 0.7679
A-MTL† - 0.7657
QPM† - 0.7753
HKT† 0.7941 0.7925

S-AMOA (ours) 0.8406 0.8412
B-AMOA (ours) 0.8116 0.8116

Table 3: Performances of multimodal models on the
MUStARD dataset. � are the results on the dataset using
the original code provided in the paper. † indicates that
the results are from the original paper. - indicates that
the original paper provides neither the results under the
Acc metric nor the training code.

4 Experiments

4.1 Datasets and Metrics

In order to verify the performance of our model in
sentiment polarity prediction, we conduct experi-
ments on two widely used public datasets: CMU-
MOSI (Zadeh et al., 2016) and CMU-MOSEI
(Zadeh and Pu, 2018). CMU-MOSI has 2199 video
clips, each of which is a speaker sharing their opin-
ions on something. Each clip is labeled with the
polarity of sentiment, and the range of labels is:
[-3, 3]. CMU-MOSEI has 23454 film review clips,
which are labeled in the same way as CMU-MOSI.
Our model is not only applicable to the prediction

of general sentiment polarity, but also can detect
more complex sentiments, such as sarcasm. To ver-
ify this, we conduct experiments on the MUStARD
dataset (Castro et al., 2019), the unique multimodal
sarcasm dataset containing three modalities. The
dataset is collected from four TV shows, with a
total of 690 samples.

We use four commonly used evaluation met-
rics to evaluate the performance of the model on
the MOSI and MOSEI datasets: binary classifi-
cation accuracy (Acc-2), which divides seven la-
bels into two categories (positive/negative and non-
negative/negative); binary classification F1; mean
absolute error (MAE), which is the difference be-
tween the predicted value and the real value; Pear-
son correlation (Corr), which measures the degree
of prediction skew. The label of each sample is
sarcasm or non-sarcasm, so we only use Acc-2 and
F1 to evaluate the performance on the MUStARD
dataset.

The split specifications of the three datasets are
provided in Table 1. To motivate future research,
the code will be released soon.

4.2 Baselines
For sentiment polarity prediction, we compare our
model with many baseline models.

TFN (Zadeh et al., 2017): It integrates three
modal features by outer product, which is a very
classic work.

LMF (Liu et al., 2018): It performs multi-
modal fusion using low-rank tensors to improve
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efficiency.
MFM (Tsai et al., 2018): It decomposes fea-

tures into modal fusion features and modal specific
features to enhance model robustness.

ICCN (Sun et al., 2020): It obtains multimodal
embedding by calculating the outer product of the
text and the other two modalities.

MulT (Tsai et al., 2019): It uses cross-modal
transformers to fully integrate three modalities for
aligned sequences or unaligned sequences.

MISA (Hazarika et al., 2020): It projects the
modalities into two different subspaces to learn
the intra modal features and inter modal features,
respectively.

MAG (Rahman et al., 2020): It adds a multi-
modal adaptation gate to the existing pre-trained
language models (BERT and XLNet) so that they
can receive acoustic and visual information during
fine-tuning. Because our model uses BERT for
word embedding, MAG-BERT is employed as a
baseline.

self-MM (Yu et al., 2021): It generates uni-
modal labels based on self-supervised learning,
and then jointly trains uni-modal and multi-modal
tasks.

MMIM (Han et al., 2021b): It maximizes the
mutual information in a multimodal fusion pipeline
to maintain task-related information.

BBFN (Han et al., 2021a): It focuses on bimodal
fusion process and balances the contribution of
different modality pairs properly.

Furthermore, we also select some sarcasm detec-
tion baselines for comparison on the MUStARD
dataset.

MFN (Zadeh et al., 2018): It obtains the intra-
modal information and inter-modal information
based on LSTM and passes the multimodal fusion
information through time.

A-MTL (Chauhan et al., 2020): It manually
annotates the samples in the MUStARD dataset
with sentiment and emotion as well as analyzes
sarcasm, sentiment, and emotion together through
multi-task learning.

QPM (Liu et al., 2021): It builds a quantum
probability-driven multi-task learning framework,
including a quantum-like fusion network and quan-
tum incompatibility measurements.

HKT (Hasan et al., 2021): Besides the three
modalities, it introduces the ambiguity of words
and sentiment dictionary and constructs a bimodal
cross-attention layer based on Transformer.

4.3 Main Results
The experimental results on the MOSI and MOSEI
datasets are shown in Table 2. On the MOSEI
dataset, our model outperforms all baseline models
in every metric. In the binary classification task,
our model attains an improvement of 1% - 2% over
other models, which indicates the advantage of our
model in sentiment polarity prediction. On the
MOSI dataset, our model outperforms all baseline
models in Acc-2 and F1 (non-negative/negative). In
other metrics, our model also achieves results close
to SOTA. It is worth noting that the advantage of
our model in Acc-2 (non-negative/negative) is more
obvious than that in Acc-2 (negative/positive). This
is because our model tends to classify the samples
labeled neutral into the positive category, which is
consistent with life experience.

The experimental results on the MUStARD
dataset are shown in Table 3. The results illustrate
that our model achieves the best performance and
outperforms all baseline models (+4.65%). Some
baseline models use context information (A-MTL,
QPM, HKT), but the results are worse than our
model without context information.

These results demonstrate the superiority of our
proposed model and indicate the effectiveness of
the modal-order-aware network and GAF com-
pared with all baseline models.

4.4 Analysis
In order to further analyze the performance of our
model and verify the contribution of each module,
we conduct extensive experiments on the MOSI
and MOSEI datasets.

4.4.1 CMT
We design two kinds of CMT, one-way and two-
way, and their experimental results are shown in
Table 2 and Table 3. The results show that the two-
way CMT enhances the noise influence of the latter
modality, and makes the previous modality unable
to play a full role, which has an adverse impact on
the performance of the model.

The number of layers N of CMT in the model is
also a hyper-parameter. We set differentN and con-
duct experiments on MOSI and MOSEI datasets.
The results in Figure 3 show that when N is 5, the
model achieves the best performance on the MOSI
dataset, and when N is 2, the model achieves the
best performance on the MOSEI dataset. As the
number of layers increases, the information cap-
tured by CMT also increases. However, CMT may
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Models
CMU-MOSI CMU-MOSEI

Acc-2 F1 MAE Corr Acc-2 F1 MAE Corr

AMOA 0.8411/0.8415 0.8422/0.8421 0.720 0.788 0.8560/0.8645 0.8601/0.8654 0.526 0.772

t-v-a 0.8265/0.8307 0.8287/0.8335 0.737 0.786 0.8521/0.8614 0.8555/0.8639 0.589 0.771
a-t-v 0.8279/0.8338 0.8291/0.8327 0.739 0.780 0.8542/0.8608 0.8576/0.8630 0.582 0.770
a-v-t 0.8236/0.8323 0.8255/0.8314 0.748 0.781 0.8499/0.8611 0.8542/0.8637 0.584 0.771
v-t-a 0.8250/0.8262 0.8255/0.8303 0.741 0.775 0.8499/0.8622 0.8530/0.8640 0.575 0.769
v-a-t 0.8309/0.8262 0.8314/0.8303 0.744 0.774 0.8527/0.8617 0.8565/0.8633 0.581 0.771

−v 0.8250/0.7988 0.8252/0.7978 0.733 0.770 0.8492/0.8564 0.8506/0.8573 0.578 0.759
−a 0.8090/0.8231 0.8091/0.8240 0.756 0.769 0.8475/0.8581 0.8472/0.8590 0.579 0.757
−t 0.7116/0.7215 0.7168/0.7015 0.899 0.335 0.7391/0.7095 0.7639/0.7252 0.795 0.392

−GAF 0.7804/0.8192 0.7791/0.8224 0.760 0.761 0.8486/0.8564 0.8498/0.8567 0.573 0.761
−CL 0.8265/0.8033 0.8290/0.8099 0.739 0.769 0.8518/0.8603 0.8537/0.8612 0.587 0.761
−CL (f→g) 0.8309/0.8368 0.8314/0.8387 0.731 0.771 0.8544/0.8608 0.8580/0.8623 0.583 0.769
−CL (g→f) 0.8294/0.8246 0.8291/0.8259 0.734 0.772 0.8555/0.8611 0.8595/0.8623 0.581 0.771
−q 0.8236/0.8105 0.8251/0.8112 0.733 0.771 0.8520/0.8625 0.8541/0.8645 0.600 0.762

Table 4: Order study and ablation study. −m means to remove the m mode, where m ∈ {t, a, v} is the three
modalities. −GAF means not using GAF to enhance feature learning. −CL means to directly concatenate the
multimodal fusion feature and GAF without contrastive learning for alignment. −CL (f→g) means to remove
half of the negative samples calculated by Eq.(10) and −CL (g→f) means to remove half of the negative samples
calculated by Eq.(11). −q means to construct positive and negative samples only from the same batch without using
the queue.
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Figure 3: Experimental results with different layers of
CMT. (a) is on the CMU-MOSI dataset. (b) is on the
CMU-MOSEI dataset.

suffer from the distribution shift in the up layers,
which will make the similarity less reliable. So
bigger isn’t necessarily better for N . Please re-
fer to the experiment results in the supplementary
materials.

4.4.2 Order of Modalities

In our modal-order-aware network, we put text at
the core and then integrate acoustic modality in
stage 1, and visual modality is integrated in stage
2 (i.e., t-a-v). We try all permutations and obtain
the prediction results under the same settings, as
shown in Table 4. The order of t-a-v performs best,
which verifies our hypothesis of modal order.

4.4.3 Role of Unimodalities

In order to verify the role of every single modality,
we separately remove one modality and integrate
the other two modalities in the original order. For
example, the fusion order t-v removes the acoustic
modality (−a). The experimental results are shown
in Table 4. When a modality is removed, the perfor-
mance of the model decreases in varying degrees,
which shows that each modality plays an impor-
tant role. Specifically, when the textual modality
is removed, the performance decreases most obvi-
ously. In addition, The impact of acoustic modality
is slightly greater than that of visual modality.
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Figure 4: Experimental results with different α. (a) is
on the CMU-MOSI dataset. (b) is on the CMU-MOSEI
dataset.

4.4.4 Role of GAF
To verify the role of the global acoustic feature, we
remove GAF and the contrastive learning module
from our model. The results are shown in Table 4
(−GAF). Without GAF, model performance drops
to some extent, which indicates that GAF plays an
important role in our model. In addition, GAF is
more effective in MOSI dataset. This is related to
the different distribution of data in the two datasets.
In many cases, GAF contributes more to the analy-
sis of the examples which are relatively short but
have large sound fluctuations. The proportion of
this kind of example in MOSI is greater than that
in MOSEI.

4.4.5 Role of Contrastive Learning
Furthermore, we remove the contrastive learning
module from the original model and concatenate
the multimodal fusion feature and GAF directly to
verify the role of contrastive learning. The results
in Table 4 (−CL) show that when the contrastive
learning module is removed, we can see a clear
drop in all metrics. In contrastive learning, we con-
struct double negative samples based on different
Ef and Eg. When only one group negative samples
are used, the performance of the model decreases
to varying degrees.

In our experiments, we set the hyper-parameter
α as the weight of the loss of the contrastive learn-
ing module in the whole loss. The influence of the
value of α on the experimental results is shown in
Figure 4. When α is 0.4, the model achieves the
best performance on the MOSI dataset. When α
is 0.3, the model achieves the best performance on
the MOSEI dataset.

A queue is used to construct more negative sam-
ples. We try to remove this queue and construct
negative samples only in the same batch. As shown
in Table 4 (−q), the queue plays an important role
in the contrastive learning module of our model.

5 Conclusion

For multimodal sentiment analysis, we propose the
modal-order-aware network to integrate the three
modalities in a certain order to distinguish the im-
portance of different modalities. Besides, we are
the first to introduce the global acoustic feature
into this task to capture the changes in the tone of
the whole video. Considering the misalignment
between the multimodal fusion feature and GAF,
contrastive learning is utilized to align them before
concatenation. Experiments on three widely used
datasets show that our model achieves the best per-
formance. Besides, we also verify the effectiveness
of each module of our model.
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