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Abstract
Target-oriented dialog aims to reach a global
target through multi-turn conversation. The key
to the task is the global planning towards the
target, which flexibly guides the dialog con-
cerning the context. However, existing target-
oriented dialog works take a local and greedy
strategy for response generation, where global
planning is absent. In this work, we propose
global planning for target-oriented dialog on
a commonsense knowledge graph (KG). We
design a global reinforcement learning with the
planned paths to flexibly adjust the local re-
sponse generation model towards the global tar-
get. We also propose a KG-based method to col-
lect target-oriented samples automatically from
the chit-chat corpus for model training. Ex-
periments show that our method can reach the
target with a higher success rate, fewer turns,
and more coherent responses.

1 Introduction

Human-like dialog agents have three types of
approaches: open-domain (Zhang et al., 2019a;
Huang et al., 2020), task-oriented (Budzianowski
et al., 2018; Rastogi et al., 2020; Yang et al., 2020),
and target-oriented dialog (Tang et al., 2019; Qin
et al., 2020; Zhong et al., 2021). The open-domain
dialog only requires the dialog generation to be flu-
ent and context coherent. In contrast, typical task-
oriented dialog further completes a specific task
by understanding users’ intention and collecting
the required information of predefined sub-tasks
of the intention. However, as a more challenging
task, target-oriented dialog aims to achieve a global
target that often can not be clearly defined as sub-
tasks. The dialog agents are required to lead the
conversation to the target flexibly, and the process
is excepted to be coherent, effective, and successful.
Due to its purpose and flexibility, target-oriented
dialog agents have a broad-based demand, e.g., con-
versational recommendation (Li et al., 2018; Kang
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et al., 2019), psychotherapy (Sharma et al., 2020),
and education (Clarizia et al., 2018). In these fields,
a typical expectation of target-oriented dialog is to
actively lead the conversation by smoothly chang-
ing the dialog topic to a designated one, e.g., a prod-
uct, a stimulus of mind, and a knowledge point.

To reach a target topic effectively and coherently
in dialog, existing approaches primarily represent
the topic as keywords and adopt a two-stage archi-
tecture, i.e., predicting a next-turn keyword and
keyword-augmented response retrieval (Tang et al.,
2019). In this direction, Xu et al. (2020b) further
introduces reinforcement learning with “target sim-
ilarity” rewards to target-oriented dialog learning.
However, the target-oriented dialog is a typical
knowledge-rich task. Although dialog context can
support the semantic concern of dialog generation,
it is not quite effective to model the knowledge-
driven process in the target-oriented dialog. To
involve global knowledge, Qin et al. (2020) and Xu
et al. (2020a) incorporate a dialog graph into the
target-oriented dialog and Zhong et al. (2021) uses
the external commonsense KG (ConceptNet (Speer
et al., 2017)) to improve the performance.

Although existing target-oriented dialog works
have demonstrated practical approaches in self-
simulation test, there is still some open issues: (1)
Lack of multi-turn target-oriented dialog corpus
for training and benchmarks. Most existing target-
oriented corpus are prepared for next-turn local tar-
get (e.g., OTTers(Sevegnani et al., 2021)), or adopt
chit-chat corpora and randomly select a keyword in
the next-turn utterance as the local target, (2) Lack
of global planning of dialog process. Although the
latest works use a global target to guide every turn
of response generation, they adopt a short-sighted
and greedy strategy instead of global planning to
optimize the process towards the global target.

To this end, we propose Target-Oriented dia-
log with global Planning on Knowledge Graph
(TopKG), which effectively supports the target-
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oriented process by global reasoning on KG con-
cerning the dialog context. Specifically, to address
the first data issue, we automatically select a new
dataset named Target-Guided ConvAI (TGConv)
from the chit-chat corpus ConvAI2 (Dinan et al.,
2020). We select target-oriented samples from Con-
vAI2 by identifying the dialog utterances contain-
ing a go-through entity sequence that aligns with
the KG path. Furthermore, we distinguish the se-
lected dialog samples according to whether the
global target is easy to reach or not to verify the
performance of TopKG in dealing with hard global
target-oriented cases. For instance, the sample in
the left part of Figure1 is target-oriented because
the keywords in this dialog are connected (direct
or low-order connected) in a commonsense KG,
which embodies a smooth transition towards global
target words. To address the second issue, we first
improve the existing one-turn target-oriented re-
sponse generation, trained in a supervised fashion
to predict a next-turn keyword and generate a fluent
and coherent response with the predicted keyword.
Using the improved one-turn model as local-model,
we further introduce a reinforcement learning based
global-model to effectively guide the local-model
towards a global target with global planning on
KG. Specially, the global-model adjusts the next-
turn keyword selection of the local-model to follow
the global planning path on KG and reward the
keyword-based response generation with success
in reaching the global target.

Our main contributions are as follows:

(1) We propose a simple yet effective way to au-
tomatically extract multi-turn global target-oriented
dialog from the chit-chat corpus to develop global
target-oriented dialog agent. We also distinguish
the selected dialog into easy-to-reach target and
hard-to-reach target.

(2) We make the first step towards global plan-
ning in global target-oriented dialog. A two-stage
learning framework is designed to guide a next-turn
local model with a reinforcement learning based
global model which is guided by global planning
in commonsense KG.

(3) With automatic and human metrics, we verify
that TopKG exceeds baselines on reaching global
target with more coherent semantics, fewer turns,
and a higher success rate in reaching targets.

The dataset can be downloaded in data folders
from https://github.com/yyyyyyzt/topkgchat

2 Related Work

Target-oriented dialogue systems. Current target-
oriented dialog studies can generally be divided
into local-target oriented and global-target oriented
methods. Local-target oriented methods (Wang
et al., 2021) pays attention to the next-turn target.
For example, Xu et al. (2020b,a) proposes a hierar-
chical policy model to plan and generate responses
of different levels where the high-level policy plans
a topic. However, the low-level policy plans re-
sponses that are coherent to this topic instead of ap-
proaching it. Global-target oriented methods (Qin
et al., 2020; Zhong et al., 2021) uses global target
to guide every turn of response generation. These
methods propose a keyword predictor to determine
the next-turn keyword to talk about and produce a
response relevant to the determined keyword. How-
ever, they adopt a short-sighted and greedy strategy
instead of explicit planning to optimize the process
towards the global target.

KG-grounded dialogue systems. Leveraging
background information for dialogue system im-
provement is a well-researched topic, especially in
target-oriented settings. Some work uses structured
knowledge, DKRN (Qin et al., 2020) incorporates
a dialog graph, and CKC (Zhong et al., 2021) uses
the ConceptNet to improve the performance. For
how to utilize KG, classical methods are divided
into using full path (Ma et al., 2021) and using
flexible path fragments (Zhou et al., 2021). These
models enjoy rich knowledge augmentation since
short KG paths relating to the context are encoded,
but they lack the ability to plan on KG. Another set
of works focuses on grounds in unstructured knowl-
edge (Zhao et al., 2020; Wu et al., 2020), which
can also be divided into independent sentences and
documents. This unstructured knowledge is more
challenging to use than KG.

3 Our Approach

Task Definition Formally, C = {c1, · · · , ci} is
the current dialog context involving latest i utter-
ances. A knowledge graph GKG = VKG × EKG

is composed of the commonsense entities VKG and
relations EKG. Given C, GKG and a global target
keyword Ktarget, the global target-oriented dialog
is firstly required to figure out a next-turn keyword
z from the GKG, and generate a response r related
to z. Furthermore, with multi-turn response gen-
eration, the global target-oriented dialog need to
successfully mentioned a global target keyword
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Figure 1: The left part illustrates how to select target-oriented dialogs for model learning by matching the word
sequence across utterances with reasoning paths in KG. The right part illustrates how the global-model uses
reinforcement learning to guide a GPT-2 based local-model to follow the global planning in KG. Global Planning
on KG is pre-performed before the learning of Local-Model and Global-Model, and planning paths are essential to
guide the multi-turn responses generation.

Ktarget with fewer turns and keep the response be
coherent to the context in each turn.

3.1 Method Overview

Our approach consists of two main contributions:
an automatic method for target-oriented conver-
sation dataset collection and a two-stage learning
model for global target-oriented dialog generation.

Target-oriented Conversation dataset As ex-
isting multi-turn dialog corpora are not specially
created for target-oriented tasks, we firstly propose
automatically selecting the target-oriented dialog
session from the general dialog corpora. A dialog
session was selected from the general chit-chat cor-
pus by examining whether a KG-explainable entity
path is running through a dialog. In addition, we
indicate the entity path and specify the easy target
and the hard target. The example shown in Table1.

Two-stage learning model We divide the task
into two progressive stages in Fig1: local-model of
next-turn strategy learning (stage 1) and global-
model of multi-turn strategy learning (stage 2).
Specifically, at stage 1, the local-model is super-
vised trained to predict next-turn keywords and
generate a response related to the keywords. In
stage 2, we design a reinforcement learning to ad-
just the local-model to explore all potential paths
by global planning in a commonsense KG towards
the global target word, where a bidirectional heuris-

Dialog

A: I spend a lot of time outside.
B: I like the outdoors as well, especially
gardening .
A: Wow! I used to have a garden too.
B: I love sipping coffee while enjoying
flowers in my garden.
A: Flowers are always beautiful and colorful !
B: I like anything with art, especially
colorful things.

Entity Path Outside-Garden-Flower-Color-Art
Target Art

Table 1: A target-oriented example dialog in TGConv

tic reasoning obtains the paths. We also reward
the generated response in each turn by whether the
dialog till this turn is target-oriented and whether
the dialog finally reaches the global target word.

3.2 Target-oriented dialog corpus sampling

In this section, we construct a target-oriented dialog
corpus (named TGConv) from chit-chat corpus
ConvAI2 (Dinan et al., 2020).

3.2.1 Identify target-oriented dialog
We suppose a dialog is a positive example of target-
oriented dialog if there is a consistent reasoning
path of words linking all the utterances in their
order in the dialog. A reasoning path of words
is p = {w1 → w2 → · · · → wn}, where wi is a
word, e.g., “Outside-Garden-Flower-Color-Art” in
Table 1. To be logical, each neighbor word pair, i.e.,
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wi and wi+1, should match the names of the two
nodes of an edge in the ConceptNet, respectively.
To link all the utterances in dialog, each utterance
in the dialog should provide at least one word to
p. To keep the order in dialogue, wi should be in
the same order in p as they appear in the dialog.
Except for positive samples, other samples in the
corpus are identified as negative examples.

3.2.2 Global target assignment
For each positive example dialog associated with a
reasoning path p, we select the last word wn in p
as the global target Ktarget. Furthermore, to better
evaluate the model’s ability to guide the dialog to
the target of different difficulties, we distinguish tar-
get words into "easy-to-reach" and "hard-to-reach".
Specifically, target words with low frequency in
the corpus are classified as "hard-to-reach" target,
because there are fewer cases to learn the semantic
transition to low-frequency target words (less than
800) in local-model and global-model.

3.3 Global Planning

Global planning is the key to successfully accom-
plishing target-oriented task. We finally obtain a
graph consisting of a set of potential paths through
global planning, which embodies the keyword tran-
sition from the initial context to the global target
word. Building a connected graph Gglobal from the
starting to target allows us to learn a better graph
representation and facilitate our model to explore
better paths. Specifically, we identify the noun and
verb concepts in the dialogue context and then use
a bidirectional reasoning method to find KG paths
over ConceptNet effectively. Bidirectional reason-
ing is a graph search algorithm that finds smallest
path from the initial to the target entity. It runs
two simultaneous search: 1) Forward search from
source/initial entity toward goal entity and 2) Back-
ward search from goal/target entity toward source
entity. This algorithm is very suitable for target-
oriented task scenarios, and the detailed process is
shown in Algorithm 1.

3.4 Supervised Learning of Local-Model

We let the local-model learn next-turn target-
oriented policy in a supervised fashion. The local-
model architecture is shown in the right part of
Fig 1. In order to predict the next turn keywords
z, we need to model the candidate words, the con-
text, and the target, respectively. Firstly, we get the
target entity and its neighbors on the ConceptNet

Algorithm 1: Global Planning by Bidirec-
tional Reasoning over ConceptNet

Input : ConceptNet, GKG; Target, Ktarget;
The set of concepts in start:
Vstart = {v1, v2 · · · vm};
Output: A graph consists of all potential paths from

source to target, Gglobal

Initialize graph Gglobal;
foreach node vi of the Vstart do

Initialize a concept stack S contain vi;
for h from 1 to maximum hops H do

while S is not emtpy do
Pop a head entity vh from S;
Ni: the neighbouring concepts of vh in
ConceptNet;

Select the top K concepts most similar
to the head entity vh from Ni;

Select the top K concepts most similar
to the target entity Ktarget from Ni;

Add them to an empty temporal triple
list T ;

foreach (vh, r, vt) in T do
Add vh, vt and r into G;

if vt not in Gglobal then
Push vt in S

end
end

end
end

end
Repeat the above process from Ktarget to Vstart;

to build a subgraph Gtarget and use the method in
the previous section to get a global graph Gglobal.
Then we apply a multi-layer GCN encoder to model
the graphs. Besides, we use a typical transformer
encoder for context understanding. Finally, we pre-
dict a keyword and generate a coherent response
by generator for approaching the target.

3.4.1 Graph-based Encoder

We use a graph-based encoder to model graph node
representations for predicting keywords. Here we
use two graphs Gglobal and Gtarget, The Gglobal is
a large graph that contains all potential paths from
start context to target, and Gtarget only contains
target entity and its neighbor nodes to enhance the
target representation.

Therefore, to obtain the representation of con-
cepts and relations, we apply multi-layer GCN
(Kipf and Welling, 2016) encoders to encode the
Gglobal and Gtarget. Moreover, following the idea
of the TransE model (Bordes et al., 2013), we
update a concept embedding with the subtrac-
tion between each neighbor concept embedding
and the corresponding relation embedding to ob-
tain the relation representation. The concepts V
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in two graphs are initialized by pretrained word
embeddings1, and the relations R in graph are ini-
tialized with randomly embeddings. For each con-
cept vi, we update its embedding at the (l + 1)th

layer by aggregating its neighbours Ni including
pairs of the concept and the relation liking to vi:

h
(l+1)
i = σ

(
W

(l)
s h

(l)
i +

∑
(j,r)∈Ni

1
|Ni|W

(l)
n

(
h
(l)
j − h

(l)
r

))
(1)

where hli, h
l
j and hlr are the embeddings of node

vi, node vj , and the relation between vi and vj at
layer (l)th; W (l)

s and W
(l)
n are the two trainable

parameter matrices specific to the layer (l)th; and
σ is a non-linear active function. The relation em-
bedding is also updated at the (l + 1)th layer via
a linear active function: h(l+1)

r = W
(l)
R h

(l)
r . After

L layers, we are able to obtain a set of concept
representations {h(L)v1 , . . . , h

(L)
v|V |}.

3.4.2 Conversation Context Encoder

We utilize a transformer encoder for conversation
context understanding. Same as previous works,
we flatten conversation context in C, and then add
a special token [CLS] at the beginning of the input.
C̄ = [CLS;C] is fed into Transformer Encoder,
then output representation of [CLS] token denoting
the global memory of the whole sequence.

3.4.3 Classification

Now we have the context representation, Gglobal

concepts representation, and Gtarget concepts rep-
resentation for predicting words. Finally, we con-
catenated these vectors and fed to a linear trans-
formation layer, followed by a softmax layer. We
limited the candidates to two-hop entities based on
context. The entire model is optimized by minimiz-
ing the cross-entropy loss.

3.4.4 Keyword Augmented Generator

After we get the next-turn keywords word z, we
employ a keyword-augmented GPT (Radford et al.,
2019) to generate a response to approaching the
target. The generator takes keywords z and context
C as the input, and the following text r as the target
reference. Specifically, the z and C are first con-
catenated by a special separator token. The training
objective follows a standard language model (LM)

1We use GloVe embedding of size 300 (Pennington et al.,
2014)

loss(Zhang et al., 2019b):

pΘ(r | C, z) =
|r|∏
t=0

p (rt | x, z, r0:t−1) (2)

where rt is the t-th token in r.

3.5 Reinforcement Learning of Global-Model

As our main contribution, we propose a global-
model to explore better dialog strategies toward the
global target through reinforcement learning. Al-
though the local-model performs well on next turn
response generation, it tends to be short-sighted and
ineffective in reaching the global target in the multi-
turn dialog. Therefore, we design a simulation-
based environment to guide the local-model toward
the global target through reinforcement learning.
To this end, we let the model talk to itself. At the
start of the dialog, we explicitly search a set of
planning paths ( described in 3.3 ) in ConceptNet
from the initial context to the global target word.
Then we use searched planning paths to adjust the
next-turn keyword prediction to obey the planning
paths and generate a response with the keyword.
Furthermore, the generated response is rewarded by
its target-oriented coherence to the context and the
success of the global target. Global-model consists
of the following components.

3.5.1 State/Action
At each time step t, the state St is a tuple of
[Gglobal;Gtarget;C], where Gglobal is a graph of
planning paths obtained at the start of the dialog,
and Gtarget is the predefined global target word and
its neighbors, and C is the current context. Given
the current dialog state, an action is the next-turn
keyword z, and the action space is the potential
paths obtained by global planning.

3.5.2 Reward
We use Local Reward and Global Reward to en-
courage the dialog to be contextual and coherent
and explore global target-oriented strategy.

Local Reward encourages the contextual con-
sistency at each turn of dialog, which is the discrim-
inator score of the utterances sequence containing
the current context and generated response, the de-
tail are as below 3.5.3.

Global Reward encourages the global target-
oriented response by giving a positive reward of
"1" if the global target word finally appears in the
last turn or a negative reward of "-1" otherwise.
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3.5.3 Discriminator for local reward
evaluation

To reward the dialog (context+response) which are
more likely to be target-oriented, we train a dis-
criminator to tell whether an utterance sequence
is semantically target-oriented. To this end, the
discriminator is trained to classify the positive and
negative samples collected in section 3.2. Specially,
the positive and negative samples with 1/0 label:
X = [CLS; c;SEP ; r] or X = [CLS; c;SEP ; r]
is fed into pre-trained language model (BERT) (De-
vlin et al., 2018), then output representation of
[CLS] token is used for classification. The classifi-
cation score is formulated as

fscore(X) = σ(w⊤x[CLS] + b) (3)

where w and b are trainable parameters. We use
binary cross-entropy loss to optimize the models.

3.5.4 Training
We apply Proximal Policy Optimization (Schulman
et al., 2017), a stable policy based RL algorithm
using a constant clipping mechanism as the soft
constraint, for dialog policy optimization:

Jπ(θ) = Es,a∼π

[
min

{
βtÂt, clip (βt, 1− ϵ, 1 + ϵ) Ât

}]
(4)

Ât = Rt − V̂ϕ(st) is the estimated advantage,
where Rt =

∑T
τ=t is the local reward adding global

reward, V̂ϕ is the estimated value function of state
St with parameters ϕ, βt =

πθ(at|st)
πθold

(at|st) is the ratio
of the probability under the new and old policies, δ
is TD residual, λ and ε are hyper-parameters.

4 Experiments and Results

4.1 Datasets

We evaluate TopKG and baselines on two datasets.
To verify the ability to guide the user to the target
topic in multi-turn of dialogue, we use our pro-
posed dataset TGConv, which is extracted from
ConvAI2 (Dinan et al., 2020) and is distinguished
into "easy-to-reach/hard-to-reach" targets with the
method in section 3.2. ConvAI2 is a chit-chat
dataset based on the PersonaChat for NIPS 2018
competition, which contains high-quality open-
domain dialogues, including diverse topics. In ad-
dition, one-turn dialogue is a special case of multi-
turn, therefore we also conduct our evaluation on

Dataset Split #Conv.
Avg.

#Utter.
Avg.

#Word.
Avg.

#Entity.
Avg.

#Coh.

OTTers
Train 2034 3.0 9.47 2.86 0.45
Valid 1152 3.0 9.56 2.95 0.45
Test 1130 3.0 9.19 2.80 0.44

TGConv
Train 15197 8.35 12.60 2.89 0.32
Valid 2681 7.96 12.29 2.85 0.31
Test 1000 8.97 12.47 2.91 0.32

Table 2: Dataset statistics. Avg.#Utter., #Word., #En-
tity., #Coh. denotes the average number of utterances,
words, entities, semantic similarity per dialogue, utter-
ance, utterance, utterance.

a next-turn target-oriented dataset OTTers(ood)2

(Sevegnani et al., 2021). OTTers requires the agent
pro-actively generate an "bridging" utterance to ap-
proach the target, which is consistent with the input
and output of the task on TGConv. The statistics of
the two datasets are presented in Table2.

4.2 Baselines

We select four baselines in end-to-end (GPT-2,
MultiGen) and pipeline style (DKRN, CKC), re-
spectively. The first baseline is GPT-2 (Radford
et al., 2019). Next, we test the recent Multi-Gen
(Ji et al., 2020), extends GPT-2 with multi-hop rea-
soning on commonsense knowledge graphs. The
third baseline is DKRN (Qin et al., 2020), which
builds a dialog graph from the corpus for topic
transition. The last baseline is CKC (Zhong et al.,
2021), the state-of-the-art approach using Concept-
Net for this task. In addition, DKRN and CKC are
retrieval models. Here we replace the retriever with
the generator in our paper.

4.3 Metrics

Local-Evaluation To evaluate models’ perfor-
mance in generating next-turn response, we firstly
perform automatic evaluation using commonly
adopted text generation metrics, including CIDEr
(Vedantam et al., 2015), ROUGE-L (Lin, 2004)
and METEOR (Banerjee and Lavie, 2005). How-
ever, we report the full BLEU score3 (Papineni
et al., 2002) that accounts for the overlap across
1-4 ngrams instead of only 4-grams (BLEU-4). In
addition, we use hits@K ratio to measure the num-
ber of relevant entities correctly predicted by the

2OTTers have different train-dev-test (in-domain and out-
of-domain) splits, we choose out-of-domain(ood) split. The
ood split resembles a zero-shot scenario, where the model
has to generate a shift between two topics it has never been
fine-tuned on.

3SacreBLEU (Post, 2018) provides hassle-free computa-
tion of shareable, comparable, and reproducible BLEU scores.
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BLEU1−4 METEOR ROUGE-L CIDEr hits@1 hits@3
GPT2 11.58 10.26 17.67 13.75 4.39 15.79
MultiGen 13.57 12.51 26.27 15.48 6.58 20.51
DKRN 12.86 11.90 21.52 14.33 4.91 17.72
CKC 13.34 11.65 24.77 14.46 6.87 21.89
TopKG 15.35∗ 13.41∗ 27.16 17.18∗ 7.78 22.06∗
w/o global plan 14.89 12.89 26.99 16.22 7.45 21.14
w/ small graph(K=5,H=3) 13.24 10.65 25.53 15.62 6.77 21.22
w/ large graph(K=20,H=6) 15.24 11.65 27.53 16.62 7.79 21.63

Table 3: Automatic evaluation of next-turn response generation on OTTers. Numbers marked with ∗ indicate that
the improvement is statistically significant compared with the best baseline(t-test with p-value < 0.05).

Easy Target Hard Target
Succ.(%) Turns Coh. Succ.(%) Turns Coh.

GPT2 22.3 2.86 0.23 17.3 2.94 0.21
MultiGen 26.7 2.55 0.21 19.6 7.31 0.24
DKRN 38.6 4.24 0.33 21.7 7.19 0.31
CKC 41.9 4.08 0.35 24.8 6.88 0.33
TopKG 48.9∗ 3.95 0.31 27.3∗ 4.96 0.33
w/o global plan 35.4 4.51 0.32 21.3 7.18 0.32

Table 4: Automatic evaluation of global guiding on TGConv. Note that our task requirement is to reach the target
smoothly and fast. “Coh.” and “Turns” not the higher / lower the better.

Easy Target Hard Target
G-Coh. Effect. G-Coh. Effect.

GPT2 1.13 1.20 1.13 0.86
MultiGen 1.24 1.29 1.17 1.13
DKRN 1.26 1.23 1.19 1.18
CKC 1.53 1.31 1.23 1.16
TopKG 1.51 1.67 1.37 1.48
w/o global plan 1.42 1.34 1.24 1.13
kappa 0.45 0.55 0.51 0.58

Table 5: Comparison of human evaluation metric Co-
herence and Effectiveness results on self-chat dialogues
among our model and baselines. The agreement among
the annotators is measured by the Fleiss’s kappa. The
agreement ratio kappa in [0.41, 0.6] denotes the moder-
ate agreement.

local-model, out of the K most important entities
identified in the target references.

Global Evaluation To evaluate models’ perfor-
mance in guiding the dialog to global target, as ex-
isting works (Qin et al., 2020; Zhong et al., 2021)
do, we use a simulator to simulate multi-turn dia-
log. "Succ." automatically measures the success
rate of generating the global target word within 8
turns. "Turns" indicates the average turns of all di-
alogs which successfully generate the global target
word. "Coherence (Coh.)" automatically measures

the contextual semantic similarity between the last
utterance in the context and generated response.

As automatic metrics are widely criticized due
to their lack of correlation with human judgments
(Novikova et al., 2017; Reiter, 2018), we also em-
ploy two dialogue-level metrics by human evalua-
tion: "Global-Coherence (G-Coh.)" manually ex-
amine whether the whole dialog is logical, fluent,
and target-oriented. "Effectiveness (Effect.)" mea-
sures whether the target is efficiently reached. 100
dialogs are generated by simulation for each model.
Three annotators score the generated dialogs rating
in {0, 1, 2}, higher is better.

4.4 Results

Local Evaluation Table 3 shows the next-turn re-
sults on OTTers. GPT2 performs poorly on the one-
turn transition. The multi-hop reasoning compo-
nent added by the MultiGen and our TopKG leads
to substantial improvements. TopKG achieves sub-
stantially better performance than all baselines on
OTTers. This advantage indicates that TopKG suc-
cessfully improves the performance of the existing
local-model, which aims at the next-turn target.

Global Evaluation As shown in Table 4, on
cases with "easy-to-reach" targets, end-to-end mod-
els such as GPT and MultiGen have fewer turns.
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Start: music → dance Easy Target: Travel Start: game → fun Hard Target: Revolutionary

Context
A: My favorite type of music is from the south.
B: Good ! I really like dancing, especially in the moonlight.

Context
A: Nice . i’m playing some card games with my family.
B: That sounds like fun. i like wine and dancing too!

CKC

A: I watch sci fi. mainly, I read supernatural romances.
B: Do you read ? My sister says fantasy novels are the best.
A: I have a library in my house , I like to read books.
B: I prefer historical story to romance.
A: Cool! I love to wander and travel the world.
Path: romance → novel → book → story → travel

CKC

A: You sound like a fun person!
B: What music do you like?
A: Classical. how about you, what kind do you like?
B: I like all music.
....(get trapped)

TOPKG

A: I watch sci fi. mainly, I read supernatural romances.
B: Reading fantasy novel and poetry are my true loves !
A: Awesome! I like adventures , been in sales all my life .
B: I love to travel and see different places. Do you?
Path: romance → novel → adventure → travel

TOPKG

A: And what games are you into?
B: Action games, do you?
A: Not much into those. i like the rebel.
B: Revolutionary. is that your favorite?
Path: game → action → rebel → revolutionary

Table 6: Case study from self-play simulations on TGConv. In the left easy target case, TopKG generates responses
similar in quality to CKC but plans a diverse path to the target. In the right hard target case, CKC gets trapped, but
TopKG successfully reaches the target.

We notice that they tend to directly generate an
utterance containing the target, despite that the ut-
terances are of low quality in human evaluation.
This may be due to that they are designed without
global view. However, our TopKG has a higher suc-
cess rate and higher efficiency in manual evaluation
benefiting from the global planning.

In cases with "hard-to-reach" targets, GPT,
which does not rely on KG, can also directly gen-
erate responses, and its performance is similar to
that of "easy-to-reach" cases. For all KG-based
methods, the performance significantly degrades
on "hard-to-reach" targets, but our TopKG still ex-
ceeds all baselines. The ablation discussion below
demonstrates the contribution of our global plan-
ning. Furthermore, our generated responses’ av-
erage contextual “Semantic Similarity(Coh.)” is
similar to the golden similarity in Table 2, which
shows that our TopKG effectively learns the seman-
tic patterns in the corpora. We also found that KG
methods (CKC and TopKG) outperform the other
models, which verifies the benefits of using KG in
global target-oriented dialog.

4.5 Ablation Studies

We perform ablation studies for TopKG to better an-
alyze the main components’ relative contributions.
The results are shown in Tables 3, 4, 5.

Does the global planning work? To prove the
contribution of proposed global planning, we re-
place the global planning (w/o global plan) with a
2-hop neighbors graph (based on context entities),
which results in the most significant performance
drop in multi-turn evaluation. In contrast, the drop
in the next-turn evaluation is not noticeable. The
main reason is that the target often can be found
in two-hop neighbors on the graph in a next-turn

dialogue. This verifies the contribution of global
KG planning to global target-oriented dialog.

How much graph information we need? We
also explore the number of neighbors needed for
initializing the Gglobal graph’s nodes in two aspects
(refer in Algorithm1): the maximum number of
hops H, and the number of neighboring nodes in
the hth hop (denoted as K). Contrary to our expecta-
tions, expanding the average size of the knowledge
graphs from 1000 nodes to 2000 did not improve
the hits@K ratio, as shown in the last row of Table
3. Therefore, the final version of TopKG adopts
the global planning with K = 10, H = 3.

4.6 Case study
In the case study, we compare our TopKG with
CKC, the most competitive baseline. In the left
case of “Easy Target” in Table 6, TopKG and CKC
followed different KG paths. In the first path fol-
lowed by CKC, the novel indicates books, and the
following two keywords are the topics of the books.
In the second path followed by TopKG, the novel
is an adjective, adventure is novel, and travel is one
kind of adventure. In such easy cases, although
the best existing method works well, TopKG can
further explore diverse paths based on reinforce-
ment learning. In the right case of “Hard Target”
in Table 6, CKC gets trapped and fail to reach the
goal. However, TopKG still successfully guides the
dialog to the goal with effective global planning.

5 Conclusion and Future Work

We propose effectively guiding the target-oriented
dialog towards a global target with global planning
on KG. We first design a novel method to auto-
matically select target-oriented samples from the
chit-chat corpus by identifying KG reasoning paths
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throughout the dialog. We train a reinforcement
learning model with a selected high-quality corpus
that can guide a GPT-2 based response generation
model to reach a global target word by global plan-
ning on ConceptNet. Automatic and human evalu-
ations show that our method exceeds the baselines
from both local and global views, and global plan-
ning provides a significant contribution. We will
explore to balance the coherence and number of
turns in global planning in future work.
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A Appendix

A.1 Discriminator
Discrimination measures the different between the
positive/negative examples we extracted. In experi-
ments, we verify the significant difference between
the conversational behaviour of selected positive
and negative examples by accurately classifying
positive and negative examples by a discriminator.

Accuracy
BERT-small 76.8%
BERT-base 78.1%

Table 7: The accuracy of the discriminator classification

According to the result of the discriminator and
data analysis, we found that some negative samples
may contain positive segments (e.g., the first few
utterances in a negative sample can generate a short
reasoning path), so false negative may be a problem
in training the discriminator.

A.2 Fail cases
Here are some cases of TopKG failures. It can be
seen that the failure can be roughly divided into
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two situations. One is that in the face of some
uncommon words, even if there is a correct path,
the generative model can only generate sentences
with similar semantics. The other is that the path is
very long and it is difficult to generate replies that
contain relevant words.

Start: dye Hard Target: volley

Context
A: hi i dye my hair 4 times a year.
B: do you live in the sky ? i do . in the clouds.

TOPKG

A: i dye it dark brown
B: do you also like the martant? it is my favorite.
A: yes i like it because it is on the ground
B: do you have a favorite field?
....(can not reached)
Path: dye-mordant-ground-volley

Start: mowing Hard Target: ethicist

Context
A: i also enjoy lawn mowing on sunny days .
B: i enjoy green living and just put solar
panels on roof

TOPKG

A: that’s awesome. solar roofs are awesome.
B: yes they’re. are you good at math
A: i am excellent at it. mornings mornings are like night.
B: i like the night
A: it is my favorite part
B: what is your favorite part about it?
....(can not mention related words and can not reached)
Path: mowing-morning-forenoon-
-part-particular-ethicist

Table 8: Some failure cases

A.3 Implementation Details
The default parameter settings across all experi-
ments are as follows. We select conceptnet-5.7.0
and glove.6B.300d for initialization. The discount
factor γ is 0.99 and the advantage discount factor is
0.95. Our policy reasoning model is trained for 200
epochs using Adam optimization with the learning
rate of 5e-4 for actor network and 1e-3 for critic
network with the batch size of 64. 256 action-state
pairs to rollout for trajectory collection per epoch, 4
steps of gradient descent to perform on each batch,
capacity of the replay buffer is 8.


