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Abstract

Target-oriented Opinion Words Extraction
(TOWE) is a fine-grained sentiment analysis
task that aims to extract the corresponding opin-
ion words of a given opinion target from the
sentence. Recently, deep learning approaches
have made remarkable progress on this task.
Nevertheless, the TOWE task still suffers from
the scarcity of training data due to the expen-
sive data annotation process. Limited labeled
data increase the risk of distribution shift be-
tween test data and training data. In this pa-
per, we propose exploiting massive unlabeled
data to reduce the risk by increasing the ex-
posure of the model to varying distribution
shifts. Specifically, we propose a novel Multi-
Grained Consistency Regularization (MGCR)
method to make use of unlabeled data and de-
sign two filters specifically for TOWE to filter
noisy data at different granularity. Extensive
experimental results on four TOWE benchmark
datasets indicate the superiority of MGCR
compared with current state-of-the-art meth-
ods. The in-depth analysis also demonstrates
the effectiveness of the different-granularity
filters. Our codes are available at https:
//github.com/TOWESSL/TOWESSL.

1 Introduction

Target-oriented Opinion Words Extraction
(TOWE) (Fan et al., 2019) is an important subtask
of aspect-based sentiment analysis (ABSA) (Pon-
tiki et al., 2014), which aims to extract the
corresponding opinion words for a given opinion
target from the sentence. For the TOWE task,
opinion targets, also called aspect terms, are the
entities or objects in the sentence toward which
users show attitudes; opinion words, sometimes
known as opinion expressions, are those words
explicitly mentioned in the sentence and used to
express attitudes or opinions. Figure 1 shows an
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The dishes are amazingly delicious but the waiter is so rude .

Given opinion target: dishes Corresponding opinion words: amazingly delicious

Given opinion target: waiter Corresponding opinion words: rude

Figure 1: Example of TOWE. Words in red are opinion
targets and words in blue are corresponding opinion
words. TOWE extracts corresponding opinion words
when given opinion targets.

example of the TOWE task. For the sentence “The
dishes are amazingly delicious but the waiter is so
rude.”, the terms “dishes” and “waiter” are two
opinion targets. The goal of TOWE is to extract
“amazingly delicious” as the opinion words for the
opinion target “dishes” and opinion word “rude”
when given the opinion target “waiter”.

While seminal work casts TOWE as a sequence
labeling problem, using fully supervised learning
methods to identify opinion words and phrases
from sentences, recent work shows that external
sources of information can be highly useful for
improving the performance. In particular, both syn-
tactic knowledge (Dai et al., 2022; Veyseh et al.,
2020; Jiang et al., 2021; Zhang et al., 2021b) and
sentiment information (Wu et al., 2020b) have been
exploited, with the former helping to identify the
correlation between opinion targets and opinion ex-
pressions, and the latter helping to identify words
and phrases that are correlated with sentiment po-
larities. Existing work integrates these external
features via representation structures (Dai et al.,
2022; Veyseh et al., 2020; Jiang et al., 2021) and
multi-task learning (Wu et al., 2020b; Zhang et al.,
2021b).

Intuitively, the goal of opinion words extrac-
tion is to obtain structured knowledge from raw
data, and therefore ideally the amount of test data,
namely the data from which opinion words are
mined, should be large. This can inevitably in-
crease the risk of distribution shift between test
instances and the training data, even if the test data

https://github.com/TOWESSL/TOWESSL
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is from the same domain (Ganin et al., 2016). Ex-
isting work, however, adopt a supervised training
setting, with the model being tuned on a set of fixed
training data. To address this issue, we consider
making use of raw text inputs to increase the ex-
posure of the model to varying distribution shifts.
Our main idea is to (1) find raw data in a similar
domain as the target-oriented opinion words extrac-
tion training data (i.e. gold data), (2) using a model
trained on the gold data to assign silver labels, and
then (3) design a set of filters to select the most
useful set of silver data, so that (4) the selected
silver data can be used together with the gold data
for training a final model.

As a pre-processing step, we train a opinion tar-
get extraction model, which is used to label the set
of raw data. Those raw sentences without any opin-
ion target are filtered. The resulting raw data has
the same format as the input structure of TOWE
data. Then in our implementation, steps (2) to (4)
above are done in a joint batch training process.
First, we initialize a TOWE model using BERT.
Then in each batch, we randomly sample a subset
of gold data and a subset of raw data, using the
current model to assign pseudo labels to the raw
data. According to the current model probabilities
and an external sentiment classifier, we filter the sil-
ver data by removing low-confidence sentences, as
well as masking low-confidence words from the re-
maining sentences. Finally, the model parameters
are updated by using the standard cross-entropy
losses separately on both the gold and silver data,
so that the next batch of training can start with the
new model. The training process continues for a
fixed number of iterations, and the model with the
highest development scores are selected for testing.

Results on four standard benchmarks show that
our method gives significantly improved results
when raw data are used. We achieve the best
reported results on all the datasets. In addition,
the critical ablation demonstrates our sentence-
level and word-level noises filtering both bring
improvements for the final results. In-depth anal-
ysis shows our method significantly reduces the
extraction errors on different error types. To our
knowledge, we are the first to consider the use
of unlabeled data for TOWE, successfully giving
state-of-the-art results on benchmarks. Our code
and datasets are available at https://github.
com/TOWESSL/TOWESSL.

Labeled data:

The/O entire/O dining/O experience/O was/O very/B wonderful/I !/O     

Unlabeled data with the generated pseudo opinion target:

Their menu is too expensive for a bubble drink .

Figure 2: Examples of labeled data and unlabeled data
with the pseudo opinion target. Words with underline
indicate opinion targets. The span in the labeled data
beginning with B and followed by I represent the cor-
responding opinion words.

2 Background

2.1 Task Formalization

The TOWE task requires the opinion target as the
input and extracts the target-oriented opinion words
from the sentence. It can be formulated as a target-
oriented sequence labeling task. In this work, we
use the notation s to represent a labeled sentence
from the TOWE dataset, and use su to denote a
unlabeled sentence. Formally, given an input sen-
tence s = {w1, w2, . . . , wn} consisting of n words
and an opinion target wt in s (here we notate an
opinion target as one word for simplicity and t is
the position of the opinion target in the sentence),
the goal of TOWE is assign a corresponding la-
bel yi ∈ {B, I,O}(B: Beginning, I: Inside, O:
Others) for each word wi in s. The spans beginning
with B and followed by I represent the correspond-
ing opinion words of the opinion target wt. Figure
2 shows an sequence labeling example of TOWE.

2.2 Pseudo Opinion Targets Labeling

Raw unlabeled data can not be directly used in
the semi-supervised scenario for TOWE, as they
lack the necessary annotations of opinion targets.
We use the opinion targets in labeled TOWE data
as the ground truth to train a BERT-based target
extraction model.

Specifically, given an input sentence s =
{w1, w2, . . . , wn} from the TOWE dataset, we em-
ploy a BERT model (Devlin et al., 2019) to gener-
ate the context representation of the each word wi

as follows:

hpt
1 , . . . ,hpt

n = BERT(w1, . . . , wn) (1)

Then the context representation hpt
i of the word

wi is fed to a linear layer and a softmax layer to
predict the corresponding label. Similar to TOWE,
the BIO scheme is used. We train the opinion target
extraction model by minimizing the cross-entropy
loss between the predicted BIO label distribution

https://github.com/TOWESSL/TOWESSL
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Figure 3: Overview of the architecture of multi-grained consistency regularization. For simplicity, we mark the
confidence of i-th word as ci. Note that the input sentence of the TOWE model is the same as the input sentence of
the pre-trained sentiment classifier.

and the ground truth. After training, we can employ
the opinion target extraction model to obtain the
pseudo opinion targets of the unlabeled sentence
su, which makes semi-supervised learning feasible
for the TOWE task.

2.3 Consistency Regularization
Consistency regularization is a semi-supervised
learning method that shows effectiveness in a vari-
ety of fields (Sohn et al., 2020; Chen et al., 2020;
Xie et al., 2020; Zhang et al., 2021a). It improves
the generalization performance of a TOWE model
by generating a perturbed version ω(su) of the
original unlabeled sentence su and forcing the pre-
dicted category of each word to be the same, where
ω is the perturbing function (Lee et al., 2013).

To perform semi-supervised learning for TOWE,
we feed the unlabeled sentence su and the position
t of the pseudo opinion target wu

t to the TOWE
model (see section 3.1), and obtain the predicted
probability pi(y|θ; su, t) of the word wu

i , where θ
represents the parameters of the TOWE model. A
vanilla consistency loss for consistency regulariza-
tion of TOWE is computed as:

1

n

n∑
i=1

H(p̂i(y|θ; su, t), pi(y|θ;ω(su), t)), (2)

where p̂i(y|θ; su, t) = argmax pi(y|θ; su, t) and
p̂i(y|θ; su, t) denotes the predicted label of the wu

i ,

the H(·, ·) refers to the cross-entropy loss. In this
work, we use Random Mask and Random Synonym
Replacement by using WordNet (Miller, 1995) as
the perturbing function ω.

3 Method

Figure 3 shows the the framework of our Multi-
Grained Consistency Regularization (MGCR)
method. The TOWE model is a BERT-based neural
sequence labeling network. As mentioned in the
introduction, we initialize a BERT TOWE model
(Section 3.1), and then iteratively conduct batch
training. In each batch, we impose a standard cross-
entropy loss on a set of sampled gold data (Eq 5),
and a regularization loss on a set of randomly sam-
pled raw data with targets (Eq 11). The latter is
defined by using the current model to assign TOWE
labels, and then adding a sentence-level (Section 9)
and a word-level (Section 10) filter. Besides, as
mentioned in the introduction, MGCR exploits la-
tent opinion words from a pre-trained review sen-
timent classification (Wu et al., 2020b) to filter
noises more accurately.

3.1 TOWE Model

For the sentence s = {w1, w2, . . . , wn}, the
TOWE model first employs a pre-trained BERT to
generate the context representations {h1, . . . ,hn}
of s. To incorporate the opinion target information
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into the sentence representations, we use the num-
ber 1 to represent the position of opinion target wt

in s and 0 to denote the positions of other words,
and then map them to the position embedding se-
quence {e1, . . . , en}. We integrate opinion target
information by concatenating, i.e., h̃i = [hi; ei].

To better encode opinion target information, we
additionally employ a multi-layer Transformer ar-
chitecture (Vaswani et al., 2017) to generate the
target-specific context representations as follows:

r1, . . . , rn = Transformer(h̃1, . . . , h̃n). (3)

Finally, we use the representation ri to predict
the opinion word probability pi(y|θ; s, t) of the
word wi when given the opinion target wt:

pi(y|θ; s, t) = softmax(Wrri + br), (4)

where Wr and br are learnable weight and bias.
The loss of supervised learning on the TOWE
dataset is defined as:

Ls =
1

n

n∑
i=1

H(yi, pi(y|θ; s, t)). (5)

3.2 Multi-Grained Consistency
Regularization

3.2.1 Sentence-level Filtering
Given an unlabeled input sentence su =
{wu

1 , w
u
2 , . . . , w

u
n} with wu

t as the pseudo opinion
target position, the sentence-level confidence scavg
is defined as follows:

scavg =
1

n

n∑
i=1

max(pi(y|θ; su, t)), (6)

where max(pi(y|θ; su, t)) (i.e., the maximum of
the probabilities of B, I , and O) is the confidence
of the i-th word. Sentences with confidences be-
low the given threshold T are masked during train-
ing. In Eq. (6), different words in the sentence are
treated equally, which ignores the importance of
the opinion words. We highlight the confidences
of opinion words identified by their larger senti-
ment scores. Specifically, we obtain the sentiment-
attention scores from a pre-trained attention-based
sentiment classifier parameterized by θsenti from
(Wu et al., 2020b)1. After acquiring the represen-
tations {z1, z2, . . . , zn} of the unlabeled sentence,

1The sentiment classifier we use is the same as (Wu et al.,
2020b), except that we use BERT as the word representation
model while they use GloVe vectors (Pennington et al., 2014).

the attention score αi of zi is calculated as follows:

zavg =
1

n

n∑
i=1

zi,

f(zi, zavg) = zi ·W · zavg + b,

αi =
ef(zi,zavg)∑n
j=1 e

f(zj ,zavg)
,

(7)

where W and b are learnable weight and bias.
We then compute the sentiment-aware confidence
based on the obtained attention scores as:

scsenti =
n∑

i=1

αi ·max(pi(y|θ; su, t)). (8)

Similar to Eq. (6), any sentence whose sentiment-
aware confidence is lower than the threshold T
will be masked in consistency regularization. The
final filtering mechanism of noisy sentences can be
expressed as:

1(scsenti > T ), (9)

where 1(· > T ) is the indicator function for confi-
dence thresholding with T being the threshold.

3.3 Word-level Filtering
To further reduce the noise in the unlabeled data,
we filter the noisy words with a more fine-grained
confidence thresholding mechanism. The filtering
of noisy words can be expressed as

1(max(pi(y|θ; su, t)) > τ). (10)

Any word with a confidence lower than τ is
masked. Note that the word-level threshold τ can
be different from the sentence-level threshold T .

3.4 Training Objective
For labeled sentences, the supervised loss is the
same as Eq. (5). For unlabeled sentences, the con-
sistency loss is:

Lc =1(scsenti > T )

· { 1
n

n∑
i=1

1(max(pi(y|θ; su, t)) > τ)

· H(p̂i(y|θ; su, t), pi(y|θ;ω(su), t))}.
(11)

The final training objective is given by:

L = Ls + Lc. (12)
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Datasets #sentences #opinion targets

14res Train 1,627 2,643
Test 500 864

15res Train 754 1,076
Test 325 436

16res Train 1,079 1,512
Test 329 457

14lap Train 1,158 1,634
Test 343 482

Yelp Unlabeled 100,000 -

Amazon Unlabeled 100,000 -

Table 1: Statistics of TOWE datasets and unlabeled
datasets. For TOWE datasets, sentence may contain
multiple opinion targets. For unlabeled datasets, we
randomly sampled data from Yelp for 14res, 15res,
16res datasets and Amazon for 14lap dataset. The un-
labeled data is available at https://github.com/
TOWESSL/TOWESSL.

4 Experiments

4.1 Datasets and Metrics
Following previous studies (Fan et al., 2019; Wu
et al., 2020b; Veyseh et al., 2020; Mao et al., 2021;
Jiang et al., 2021; Feng et al., 2021; Zhang et al.,
2021b), we conduct evaluations on four benchmark
datasets for TOWE. The suffixes ‘res’ and ‘lap’
refer to restaurant reviews and laptop reviews, re-
spectively. For the 14res, 15res, and 16res datasets,
we use the unlabeled sentences from Yelp2. For
the 14lap dataset, we use the unlabeled sentences
from Amazon Electronics3 (Ni et al., 2019). The
statistics of these datasets are listed in Table 1.

We use the evaluation metrics of precision, re-
call, and F1 score to measure the performance of
different methods following previous studies (Fan
et al., 2019; Wu et al., 2020b; Jiang et al., 2021).
An extraction is considered correct only if opin-
ion words from the beginning to the end are all
correctly predicted.

4.2 Experimental Settings
For our MGCR method, we set the hidden size of
both the BERT and the Transformer to 512. The
mini-batch sizes of labeled and unlabeled data are
set to 16 and 96, respectively. All parameters are
optimized using the AdamW optimizer (Loshchilov
and Hutter, 2018) with an initial learning rate 2e-5
for BERT and 2e-4 for others. We randomly split

2https://www.yelp.com
3https://www.amazon.com

Hyperparameter TOWE model Sentiment Classifier

Batch size 16(96) 128
Epochs 50 -
Steps - 3000
Learning rate (BERT) 2e-5 1e-5
Learning rate (Others) 2e-4 1e-4
Hidden dimension 512 512
Optimizer AdamW AdamW

Table 2: Experimental setting of the training of the
TOWE model and the sentiment classifier. For the
TOWE model, batch size for labeled data is 16 and
96 for unlabeled data.

20% of the training set as the validation set and
used early stopping. We search different combina-
tions of sentence-level and word-level confidence
thresholds for each dataset and use the ones with
best validation performances. The experimental
results of different threshold combinations are pro-
vided in Table 5, Table 6, Table 7 and Table 8. The
training details of the pseudo opinion targets gen-
erator and the sentiment classifier are provided in
Table 2, respectively. We pre-train the sentiment
classifier on the same data as the unlabeled data
used for MGCR.

4.3 Baselines

We compare our MGCR method with the following
methods.

Distance-rule (Fan et al., 2019) uses POS tags
and regards the nearest adjective to the opinion
target as the corresponding opinion word.

Dependency-rule (Fan et al., 2019) builds tem-
plates from the training set with the POS tags
of opinion targets and opinion words and the de-
pendency path between them, then uses the hign-
frequency dependency templates for target-oriented
opinion words extraction on the testing set.

TC-BiLSTM (Fan et al., 2019) follows the de-
sign of the work for target-oriented sentiment clas-
sification (Tang et al., 2016) and concatenate an
opinion target embedding for each word position
to perform sequence labeling.

IOG (Fan et al., 2019) employs six different po-
sitional and directional LSTMs to encode sentence
and then extract the opinion words of the target.

LOTN (Wu et al., 2020b) transfers the latent
opinion knowledge from sentiment classification
task into the TOWE task via an auxiliary learning
task.

ONG (Veyseh et al., 2020) leverages syntax-
based opinion possibility scores and the syntactic

https://github.com/TOWESSL/TOWESSL
https://github.com/TOWESSL/TOWESSL
https://www.yelp.com
https://www.amazon.com
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Methods
14res 15res 16res 14lap

P R F1 P R F1 P R F1 P R F1

Distance-rule (Fan et al., 2019) 58.39 43.59 49.92 54.12 39.96 45.97 61.90 44.57 51.83 50.13 33.86 40.42
Dependency-rule (Fan et al., 2019) 64.57 52.72 58.04 65.49 48.88 55.98 76.03 56.19 64.62 45.09 31.57 37.14
TC-BiLSTM (Fan et al., 2019) 67.65 67.67 67.61 66.06 60.16 62.94 73.46 72.88 73.10 62.45 60.14 61.21
IOG (Fan et al., 2019) 82.85 77.38 80.02 73.24 69.63 71.35 76.06 70.71 73.25 85.25 78.51 81.69
LOTN (Wu et al., 2020b) 84.00 80.52 82.21 76.61 70.29 73.29 86.57 80.89 83.62 77.08 67.62 72.02
ONG (Veyseh et al., 2020) 83.23 81.46 82.33 76.63 81.14 78.81 87.72 84.38 86.01 73.87 77.78 75.77
Dual-MRC (Mao et al., 2021) 89.79 78.43 83.73 77.19 71.98 74.50 86.07 80.77 83.33 78.21 81.66 79.90
PER (Dai et al., 2022) 86.43 80.39 83.30 81.50 75.05 78.14 90.00 84.00 86.90 80.68 70.72 75.38
ARGCN (Jiang et al., 2021) 87.32 83.59 85.42 78.81 77.69 78.24 88.49 84.95 86.69 75.83 76.90 76.36
TSMSA (Feng et al., 2021) - - 86.37 - - 81.64 - - 89.20 - - 82.18
MRC-MVT (Zhang et al., 2021b) 86.31 89.42 87.83 82.04 81.54 81.79 90.60 88.19 89.38 79.59 81.12 80.84

MGCR (ours) 88.65 89.36 89.01† 84.29 83.37 83.80† 91.31 91.74 91.51† 83.76 81.25 82.47†

Table 3: Main results (%) including recall, precision and F1-score. The best results are in bold and second-best
results are underlined. Results of all comparison methods were copied from the original papers. The marker †

represents that MGCR outperforms other methods significantly (p < 0.01) .

Methods
14res 15res 16res 14lap

P R F1 P R F1 P R F1 P R F1

MGCR 88.65 89.36 89.01 84.29 83.37 83.80 91.31 91.74 91.51 83.76 81.25 82.47
w/o Pre-trained Sentiment Classifier 87.69 89.03 88.35 82.79 82.89 82.77 90.67 90.60 90.63 84.18 79.19 81.05
w/o Filtering Noisy Unlabeled Sentences 88.84 88.00 88.41 80.13 85.39 82.62 89.59 91.68 90.62 82.84 78.83 80.77
w/o Filtering Noisy Unlabeled Words 87.29 88.12 87.70 80.10 85.33 82.66 91.02 91.30 91.16 81.99 80.19 81.07
w/o Consistency Regularization (Labeled Data Only) 87.34 87.05 87.19 82.42 81.81 82.11 87.19 88.38 87.76 81.70 77.89 79.70

Table 4: Ablation study results (%) when removing different components from MGCR method.

connections between the words for TOWE.
Dual-MRC (Mao et al., 2021) used BERT as

the encoder and transforms the TOWE task into a
question answering (QA) problem to solve.

PER (Dai et al., 2022) proposes a padding-
enhanced reinforcement learning model on both
sequential structure and syntactic structure to ex-
tract opinion words for opinion targets.

ARGCN (Jiang et al., 2021) proposes a directed
syntactic dependency graph and a attention-based
relational graph convolutional neural network to
exploit syntactic information for TOWE.

TSMSA (Feng et al., 2021) design a target-
specified sequence labeling with multi-head self-
attention based on transformer architecture.

MRC-MVT (Zhang et al., 2021b) leverages
a machine reading comprehension model trained
with a multiview paradigm to extract target-
oriented opinion words.

4.4 Main Results and Discussion
Table 3 shows main results of different methods on
four benchmarks. These results demonstrate that
MGCR achieves the best F1-score on all datasets.
Concretely, MGCR has the following advantages:

• MGCR significantly outperforms other meth-
ods. In these methods, rule-based methods

(Distance-rule and Dependency-rule) achieve
the worst performance, since they lack ro-
bustness and only cover a small number of
cases. By contrast, neural methods obtain
obvious improvements by introducing the ex-
ternal knowledge (e.g., LOTN and ARGCN)
or other solution paradigm (e.g., Dual-MRC
and MRC-MVT). Among the neural meth-
ods, MRC-MVT achieves very competitive
results on all datasets with using machine
reading framework. Nevertheless, our MGCR
still outperforms it by 1.18%, 2.01%, 2.13%,
and 1.63% in F1-score respectively on 14res,
15res, 16res and 14lap datasets. These com-
parisons demonstrate the great superiority of
MGCR in exploiting unlabeled data to reduce
distribution shift for TOWE, thereby success-
fully boosting the extraction performance.

• With few labeled TOWE data, MGCR can
also bring great performance gain. As illus-
trated in Table 1, the labeled training sen-
tences of the 14res dataset is about twice the
amount of the 15res dataset, while MGCR
outperforms MRC-MVT by 1.18% and 2.01%
in F1-score respectively on 14res and 15res
datasets. The more improvement on 15res
proves that MGCR is promising because it
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τ
T 0.5 0.7 0.9

P R F1 P R F1 P R F1

0.5 89.55 86.53 88.02 88.60 88.28 88.44 87.88 89.29 88.55
0.7 89.58 87.63 88.60 87.80 88.77 88.28 88.65 89.36 89.01
0.9 88.64 87.83 88.23 87.65 89.28 88.45 87.73 88.35 88.03

Table 5: Results (%) of combinations of sentence-level
threshold and word-level threshold on 14res. T and
τ represent sentence-level threshold and word-level
threshold respectively.

τ
T 0.5 0.7 0.9

P R F1 P R F1 P R F1

0.5 81.31 82.62 81.94 81.17 83.57 82.33 82.16 84.17 83.12
0.7 80.13 85.39 82.62 81.84 84.04 82.92 84.29 83.37 83.80
0.9 81.38 83.43 82.38 81.41 84.38 82.81 81.35 84.24 82.73

Table 6: Results (%) of combinations of sentence-level
threshold and word-level threshold on 15res. T and
τ represent sentence-level threshold and word-level
threshold respectively.

perform well even with few labeled sentences.

4.5 Ablation Study

To evaluate the effectiveness of each component of
MGCR, we conduct an ablation study. As shown in
Table 4, we observe different levels of performance
degradation on the four TOWE datasets when re-
moving the components from MGCR. Specifically,
when removing the pre-trained sentiment classifier,
the F1 score of MGCR drops from 0.5% to 1.5%
on all datasets, indicating that using sentiment-
attention scores to emphasize latent opinion words
helps better filter the noisy unlabeled sentences.
After removing either of the coarse-grained and
fine-grained filtering processes, the performance
declines on all datasets, demonstrating that these
two confidence-based thresholding mechanisms al-
leviate the issue of confirmation bias caused by
noisy training signals in consistency regularization.
In addition, we find that removing the consistency
regularization (i.e., supervised learning only) wors-
ens the performance most.

4.6 Results of Different Thresholds
Combinations

We present the results of different combinations
of sentence-level threshold and word-level thresh-
olds on four TOWE datasets. The range of each
threshold is from 0.5 to 0.9. The detailed results
for the 14res, 15res, 16res, and 14lap dataset are
listed in Tables 5, 6, 7 and 8, respectively. An inter-
esting finding is that using a high T with a low τ
is the best strategy on most datasets, which means

F
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Figure 4: F1-score (%) on four TOWE datasets with
varying amounts of unlabeled data.

τ
T 0.5 0.7 0.9

P R F1 P R F1 P R F1

0.5 90.44 90.66 90.55 91.31 91.74 91.51 91.09 90.79 90.94
0.7 90.21 90.72 90.46 89.85 91.68 90.76 90.73 90.72 90.72
0.9 89.45 90.35 89.88 90.16 91.36 90.75 90.90 91.36 91.13

Table 7: Results (%) of combinations of sentence-level
threshold and word-level threshold on 16res. T and τ
represent the sentence-level threshold and word-level
threshold respectively.

τ
T 0.5 0.7 0.9

P R F1 P R F1 P R F1

0.5 83.29 79.65 81.42 84.85 78.07 81.32 84.43 77.51 80.82
0.7 83.78 79.48 81.56 84.54 79.36 81.86 83.29 78.48 80.78
0.9 82.43 78.83 80.77 84.21 78.82 81.36 83.76 81.25 82.47

Table 8: Results (%) of combinations of sentence-level
threshold and word-level threshold on 14lap. T and τ
represent the sentence-level threshold and word-level
threshold respectively.

we should filter noisy unlabeled sentences more
strictly than filtering noisy unlabeled words.

4.7 Effect of Amounts of Unlabeled Data

We conduct experiments by varying the amounts
of unlabeled data to investigate the effect of differ-
ent data amounts. The results are shown in Figure
4. Compared with supervised training only, even a
few unlabeled data can improve the performance on
all datasets, which validates the effectiveness of uti-
lizing semi-supervised consistency regularization.
Besides, the generalization performance is better
with more unlabeled data used, because more data
effectively reduce the risk of domain shift between
test data and training data. This trend demonstrates
the potential of MGCR, which are likely to be fur-
ther improved with even more unlabeled sentences
and computing resources.
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Methods NULL Under-extracted Over-extracted Others Total

MGCR 2 9 24 8 43
MGCR w/o Pre-trained Sentiment Classifier 3 12 29 11 54
MGCR w/o Filtering Noisy Unlabeled Sentences 5 9 29 7 55
MGCR w/o Filtering Noisy Unlabeled Words 4 14 38 11 67
MGCR w/o Consistency Regularization (Labeled Data Only) 8 11 44 15 70

Table 9: Statistics of different error types of our MGCR method and different ablation versions on the 16res dataset.

4.8 Error Analysis
We count all the error instances on the 16res dataset
to analyze the distribution of different error types.
We categorize errors into four types: ‘NULL’: no
opinion word is extracted, ‘Under-extracted’: only
parts of opinion words are extracted from the in-
put sentences, ‘Over-extracted’: the model extracts
redundant opinion words, and ‘Others’: wrong ex-
traction and other error types. As shown in Table
9, training with only labeled data suffers from the
severe overfitting problem, which leads to many
‘Over-extracted’ errors. For instance, in the sen-
tence “open & cool place with the best pizza and
coffee.”, the overfitted TOWE model extracts both
“cool” and “best” as opinion words for the opin-
ion target “coffee”, actually the word “cool” is the
opinion word for “place”. Our MGCR reduces the
number of ‘Over-extracted’ errors from 44 to 24,
indicating that introducing high-quality unlabeled
data improves the generalization performance of
the TOWE model. It is worth noting that MGCR
also reduces 40% of total errors compared with
training with only labeled data.

5 Related Work

5.1 TOWE
Aspect-based Sentiment Analysis (ABSA) contains
a set of various subtasks (Pontiki et al., 2014; Liu
et al., 2015; Tang et al., 2016; Wang et al., 2016;
Ning et al., 2018; Zhao et al., 2020; Wu et al.,
2020a). Fan et al. (2019) first propose TOWE as a
new subtask to expand the ABSA research, which
aims to extract opinion words for a given opin-
ion target from a sentence. They employ several
LSTM networks and propose a target-fused neural
sequence labeling model that achieves promising
results on TOWE. Following the idea, many works
design advanced multi-head self-attention or multi-
view deep attention mechanism to generate target-
specific context representation (Feng et al., 2021;
Zhang et al., 2021b). On this basis, some works
incorporate syntactic knowledge (Feng et al., 2021;

Zhang et al., 2021b) or sentiment knowledge (Wu
et al., 2020b) to further improve the performance
of TOWE. There are also some other works that
transform TOWE into a question answering prob-
lem and adopt the framework of machine reading
comprehension (MRC) to solve TOWE (Mao et al.,
2021; Zhang et al., 2021b), achieving very compet-
itive results. Different from these works, we argue
that insufficient labeled data greatly increase the
risk of distribution shift for the TOWE task, and
thus propose making use of massive unlabeled raw
text to reduce the shift risk.

5.2 Semi-supervised Learning

Low-resource learning including semi-supervised
learning (Sohn et al., 2020; Zhang et al., 2021a;
Xie et al., 2020; Wang et al., 2022; Wang et al.;
Oliver et al., 2018) has proven effective in the nat-
ural language processing (Peters et al., 2017; He
et al.; Cheng et al., 2019; Gururangan et al., 2019;
Izmailov et al., 2020; Sintayehu and Lehal, 2021;
Clark et al., 2018; Ruder and Plank, 2018; Liu et al.,
2022; Lu et al., 2022; Yang et al., 2021), especially
ABSA tasks (Marcacini et al., 2018; Xu and Tan,
2019; Augenstein et al., 2018; Cheng et al., 2019;
Li et al., 2020). Consistency regularization (Saj-
jadi et al., 2016) is a very popular semi-supervised
learning technique, which has been widely applied
in various tasks (Berthelot et al., 2019b,a; Sohn
et al., 2020; Xie et al., 2020; Chen et al., 2020). Its
core idea is to improve the robustness of the model
by minimizing the discrepancy between data and
its perturbation. Miao et al. (2020) first applied
consistency regularization to aspect sentiment clas-
sification task by interpolating embeddings of input
sentences. By contrast, we are the first to success-
fully apply semi-supervised learning consistency
regularization to TOWE.

6 Conclusion

The TOWE task suffers from the risk of distribu-
tion shift which arises from scarce labeled data. In
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this paper, we propose the novel MGCR method
to increase the exposure of the model to varying
distribution shifts by exploiting unlabeled data, and
naturally the risk can be reduced. In the MGCR
method, two different-grained filters, i.e., sentence-
level (coarse-grained) and word-level (fine-grained)
confidence-based thresholding, are designed to
filter noisy sentences and words for the high-
quality exposure. To further underline the pos-
sible opinion words during learning, we employ
a pre-trained sentiment classifier and incorporate
sentiment-attention scores into the sentence-level
filter. Experimental results indicate that our MGCR
method significantly outperforms all other TOWE
methods and achieves state-of-the-art performance
on four TOWE datasets. The in-depth analysis
demonstrate the effectiveness of each component
in MGCR.
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