@inproceedings{zhao-etal-2022-multi,
title = "A Multi-Task Dual-Tree Network for Aspect Sentiment Triplet Extraction",
author = "Zhao, Yichun and
Meng, Kui and
Liu, Gongshen and
Du, Jintao and
Zhu, Huijia",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2022.coling-1.616/",
pages = "7065--7074",
abstract = "Aspect Sentiment Triplet Extraction (ASTE) aims at extracting triplets from a given sentence, where each triplet includes an aspect, its sentiment polarity, and a corresponding opinion explaining the polarity. Existing methods are poor at detecting complicated relations between aspects and opinions as well as classifying multiple sentiment polarities in a sentence. Detecting unclear boundaries of multi-word aspects and opinions is also a challenge. In this paper, we propose a Multi-Task Dual-Tree Network (MTDTN) to address these issues. We employ a constituency tree and a modified dependency tree in two sub-tasks of Aspect Opinion Co-Extraction (AOCE) and ASTE, respectively. To enhance the information interaction between the two sub-tasks, we further design a Transition-Based Inference Strategy (TBIS) that transfers the boundary information from tags of AOCE to ASTE through a transition matrix. Extensive experiments are conducted on four popular datasets, and the results show the effectiveness of our model."
}