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Abstract

Knowledge distillation is an effective method
to transfer knowledge from a large pre-trained
teacher model to a compacted student model.
However, in previous studies, the distilled stu-
dent models are still large and remain impracti-
cal in highly speed-sensitive systems (e.g., an
IR system). In this study, we aim to distill a
deep pre-trained model into an extremely com-
pacted shallow model like CNN. Specifically,
we propose a novel one-teacher and multiple-
student knowledge distillation approach to dis-
till a deep pre-trained teacher model into mul-
tiple shallow student models with ensemble
learning1. Moreover, we leverage large-scale
unlabeled data to improve the performance of
students. Empirical studies on three sentiment
classification tasks demonstrate that our ap-
proach achieves better results with much fewer
parameters (0.9%-18%) and extremely high
speedup ratios (100X-1000X).

1 Introduction

Sentiment classification is a task of classifying a
text into sentimental orientation categories, such
as positive and negative, and this task plays an im-
portant role in natural language processing (NLP)
and benefits many real applications (Clavel and
Callejas, 2016; Shen et al., 2018; Wang et al.,
2019).

The past few years have witnessed the prevail-
ing of deep pre-trained models on sentiment clas-
sification (Yu and Jiang, 2019; Ke et al., 2021;
Chen et al., 2021). However, despite their signif-
icant improvements over non-pre-trained models
like CNN and LSTM, their need for a large num-
ber of computing resources and relatively long in-
ference time becomes a major bottleneck for real-
world applications.

∗*Corresponding author
1Our code is available at https://github.com/

strive-hhh/OTMS-KD

To solve this problem, knowledge distillation,
which transfers knowledge from a large model
(the teacher) to a smaller model (the student), is
gaining popularity for reducing the computing and
time costs. However, existing distilled models’
parameters are still too large for some low-end
devices and speed-sensitive applications. For in-
stance, sentiment classification is usually an es-
sential component of an information retrieval (IR)
system (Paltoglou and Thelwall, 2010; Kauer and
Moreira, 2016), in which users are highly speed-
sensitive to the responding speed. Thus, improv-
ing the inference speed of the pre-trained model
on sentiment classification becomes a critical el-
ement of applying the pre-trained sentiment clas-
sification model to IR applications. Motivated
by the above, in this paper, we aim to propose a
novel distillation technique that can distill a huge-
parameterized pre-trained model like BERT (De-
vlin et al., 2019) into a minimal-parameterized
non-pre-trained model like CNN or LSTM.

In principle, compared with traditional shal-
low models, deep pre-trained models have two
major advantages. First, most pre-trained mod-
els are architectured in the manner of ensemble
learning. In the literature, ensemble learning
has been proven to be effective in performance
boosting. For instance, BERT combines multi-
ple Transformer layers under an ensemble archi-
tecture. Meanwhile, each Transformer layer con-
tains the attention ensemble by using multiple self-
attention heads (Vaswani et al., 2017).

Second, a pre-trained model highly benefits
from the knowledge contained in unlabeled data.
For instance, the BERT-base model is pre-trained
using unlabeled data containing 3.3 billion words
from Wikipedia and BooksCorpus. At least, the
large scale of unlabeled data enables the pre-
trained model to handle unknown words in a down-
stream task more easily. For instance, given a
sentence “Everything is awesome!”, suppose that

https://github.com/strive-hhh/OTMS-KD
https://github.com/strive-hhh/OTMS-KD
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Figure 1: (a): The framework of most existing approaches; (b): The framework of our approach.

the word “awesome” is not observed in the train-
ing data in a sentiment classification task. Thus,
non-pre-trained shallow models like CNN-based
or LSTM-based classifiers cannot easily determine
the sentiment orientation of “awesome”. On the
contrary, however, pre-trained models like BERT
can infer the meaning of “awesome”, which is
close to the observed word “excellent”.

In this paper, inspired by the above, we pro-
pose a novel ensemble knowledge distillation ap-
proach by leveraging both ensemble learning and
unlabeled data. Specifically, first, we use mul-
tiple shallow models, together with their ensem-
ble model, as student models during distillation
in order to take advantage of ensemble learning.
Thanks to many previous studies on multi-view
learning on sentiment classification, multiple stu-
dent models could be easily obtained by using vari-
ous kinds of multiple views, such as multiple types
of embeddings (Ren et al., 2016) and multiple lan-
guages (Fei and Li, 2020). Second, we leverage
large-scale unlabeled sentiment classification cor-
pora during distillation. Different from most previ-
ous studies on one-teacher and one-student knowl-
edge distillation, we propose a one-teacher and
multiple-student ensemble distillation framework,
which is illustrated in Figure 1.

Empirical studies on three sentiment classifica-
tion tasks demonstrate that our approach outper-
forms the pre-trained teacher models with much
fewer parameters (0.9%-18%) and extremely high
speedup ratios (100X-1000X).

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of the re-
lated studies on sentiment analysis and knowledge
distillation. Section 3 explains the details of our

approach. Section 4 introduces the experimental
settings and results. Section 5 states the conclu-
sion and the future work.

2 Related Works

2.1 Sentiment Classification

In the last decade, the studies of sentiment clas-
sification have been dominated by neural network
approaches. This line of research begins with de-
veloping sentiment classification models with shal-
low models, such as CNNs (Rakhlin, 2016; John-
son and Zhang, 2015), RNNs (Castellucci et al.,
2014; Tang et al., 2015), and LSTM (Tai et al.,
2015). Thereafter, some studies incorporate other
methods into shallow models, such as attention
methods (Yang et al., 2017; Liu and Zhang, 2017;
Zeng et al., 2019) and graph neural networks, e.g.,
GCN (Marcheggiani and Titov, 2017; Vashishth
et al., 2019).

Recently, deep pre-trained neural network mod-
els are becoming popular due to their highly
promising performances. Large-scale pre-trained
language models, such as ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019; Gao et al.,
2019), and RoBERTa (Liu et al., 2019), have
been shown to be rather effective for sentiment
classification tasks with the learning paradigm of
fine-tuning. More recently, pre-training models
with the learning paradigm of prompt have be-
come popular in some zero-shot or few-shot nat-
ural language processing tasks, among which sen-
timent classification is a classic and important task
(Schick et al., 2020; Schick and Schütze, 2020;
Gao et al., 2020).
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2.2 Knowledge Distillation

In the field of natural language processing, the ma-
jority of the previous work on knowledge distilla-
tion has attempted to reduce the depth of BERT.
For instance, Tang et al. (2019) propose compress-
ing BERT models into a small LSTM model. Sun
et al. (2019) introduce the Patient Knowledge Dis-
tillation approach to compress a large model into
an equally effective lightweight shallow network.
Sanh et al. (2019) develop a general-purpose pre-
trained version of BERT called DistilBERT. Jiao
et al. (2019) also propose a compact model called
TinyBERT based on a new two-stage learning
framework that captures both the general domain
and task-specific knowledge in BERT. Zhou et al.
(2021) suggest training a light named entity recog-
nition using novel multi-grained knowledge distil-
lation techniques. Instead of reducing the depth of
BERT, Sun et al. (2020) attempt to reduce its width
and develop a deep and thin model called Mobile-
BERT. Unlike the existing fixed-size BERT com-
pression models, Hou et al. (2020) introduce the
DynaBERT model which can adjust the size and
latency by selecting the sub-networks with differ-
ent depth and width.

More recently, Reich et al. (2020) and Wu et al.
(2021) propose multiple-teacher and one-student
knowledge distillation frameworks for pre-trained
language model compression. Besides, in the re-
search field of computer vision, teacher-free en-
semble distillation approaches, i.e., zero-teacher
and multiple-student approaches, have been pro-
posed in (Chen et al., 2020; Guo et al., 2020;
Walawalkar et al., 2020; Li and Wang, 2019).

Different from the above studies, this paper in-
troduces a novel ensemble knowledge distillation
approach with the paradigm of one-teacher and
multiple-student, harnessing the power of multi-
ple shallow student models during distillation. To
the best of our knowledge, this is the first work
to research the ensemble knowledge distillation
paradigm of the one-teacher and multiple-student
model.

3 Methodology

In this section, we introduce the details of our ap-
proach.

3.1 Problem Description

Let D be a dataset and it contains both labeled
data and unlabeled data where Dl = {x, y} is la-

beled data and Du = {xu} is unlabeled data. Our
one-teacher and multiple-student knowledge distil-
lation approach aims to distill the knowledge from
a pre-trained teacher model f(x; θt) into an ensem-
bled student model g(x; θs), where θt and θs are
the model parameters of the teacher and the stu-
dent respectively. In contrast to most existing stud-
ies, the parameters of the ensemble student model
are much fewer than those of the teacher model,
(i.e., |θs| << |θt|).

In this study, we apply our approach to three dif-
ferent types of sentiment classification tasks, i.e.,
supervised sentiment classification, zero-shot sen-
timent classification, and cross-lingual sentiment
classification.

3.2 One Teacher Model
The teacher model is trained in different manners
according to different types of sentiment classifi-
cation tasks.
Supervised or Cross-lingual Sentiment Classi-
fication: In the supervised or cross-lingual sen-
timent classification task, we train the teacher
model in a supervised manner. Let {xi, yi}Ni=1 be
a training set which contains N labeled training
samples. xi and yi denote the ith input sample of
the teacher and its gold label, respectively.

Following the work of Sun et al. (2019), the
teacher model first computes the embedding ht

i =
f(xi; θ

t) of xi where f represents the function of
the teacher network. Then the teacher model feeds
ht
i into a linear layer and a softmax activation func-

tion to obtain the predicted sentiment label of xi,
i.e.,

ŷi = P t(yi|xi) = softmax(Wtht
i) (1)

where the superscript t means “teacher” model,
Wt denotes the weight matrix to be learned in the
linear layer. The tuned parameters of the teacher
model can be represented as follows:

θ̂t = arg min
θt

N∑
i=1

Lt
CE(xi, yi; [θ

t,Wt]) (2)

where Lt
CE denotes the cross-entropy loss func-

tion applied in teacher’s training. Then, the
teacher model predicts samples in unlabeled data
with soft labels, i.e.,

ŷu = P t(yu|xu) = softmax(
Wtht

u

T
)

= softmax(
Wtf(xu; θ̂t)

T
)

(3)
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where P t(·|·) denotes the prediction probability of
the teacher. θ̂t denotes the updated parameters of
the teacher. T denotes the temperature during dis-
tillation.
Zero-shot Sentiment Classification: In the zero-
shot sentiment classification task, following the
work of Gao et al. (2020), the teacher model is a
prompt-based zero-shot learner. Let xuN

′
u=1 be N ′

unlabeled data. Given an unlabeled sample xu, a
rewritten input through a manual prompt template
is generated as follows:

xprompt
u = [CLS] xu It was [MASK]. [SEP ]

Let M : Y → V be a mapping from the task
label space to sentiment words. In our sentiment
classification task, the sentimental labels {0, 1}
are mapped into two opinion words, i.e., {terrible
(negative), great (positive)}. Then xprompt

u is pre-
dicted by the teacher model through predicting the
probability of filling [MASK] with terrible (or
great), which can be considered as the probability
of predicting label. Specifically, the teacher model
outputs the hidden representation of [MASK]:

h[MASK] = f(xprompt
u ; θt) (4)

where h[MASK] denotes the hidden representation
of [MASK]. Then the probability of predicting
label (i.e., the soft label) is fetched through a linear
layer and a softmax activation function, i.e.,

P t(yu|xu) = P t([MASK] = M(y)|xprompt
u )

= softmax(
WM(y) · h[MASK]

T
)

(5)
where M(y) ∈ {terrible, great} denotes a cer-
tain sentiment word, and WM(y) denotes the pre-
trained weight of the sentiment word.

3.3 Multiple Student Model
The ensembled student model consists of k student
models. Let Au be the sequential input (i.e., a
matrix of word embeddings of a sentence) of the
students model. gj(Au; θ

s
j ) represents the func-

tion of the jth student network, where j ∈ [1, k]
and θsj denotes its parameters. Each student model
first computes the vectorized representation hs

uj =
gj(Au; θ

s
j ) of xu. hs

uj is then fed into a linear layer
to obtain the prediction probability of the jth stu-
dent model, i.e.,

ŷuj = P s
j (yu|Au) = Ws

jh
s
uj (6)

where Ws
j is the weight matrix of the jth student

model to be learned, and P s
j (·|·) denotes the pre-

diction probability of the jth student model. The
final ensembled probability is the weighted sum of
all students’ outputs, i.e.,

P s
ensemble(yu|Au) = softmax(

∑k
j=1 α

s
j ∗ ŷuj

T
)

(7)
where αs

j ∈ [0, 1] denotes the weight of the pre-
diction probability of the jth student model and
subjects to

∑k
j=1 α

s
j = 1. In supervised or cross-

lingual sentiment classification, the weights are
learnable during model training with labeled data.
But in zero-shot sentiment classification, since no
labeled data is available, the weights are simply set
to be the same (i.e., αs

1 = αs
2 = ... = αs

k).

3.4 Model Training
The objective loss function of a one-teacher and
one-student distillation model is defined as fol-
lows:

LKD(P
t, P s) =

n∑
i=1

T 2DKL(P
t
i ||P s

i ) (8)

where n denotes the batch size, P t
i and P s

i denote
the prediction probabilities of the ith sample out-
putted by the teacher and the student, respectively.
DKL is the KL divergence.

Different from the above, our approach applies
an ensembled knowledge distillation loss function
to train the multiple student models. Specifically,
the ensembled KD loss is computed according to
the predicted probabilities of student models as
well as the final ensembled probability, i.e.,

Loss = (
k∑

j=1

λjLKD(P
t, P s

j ))

+ λeLKD(P
t, P s

ensemble)

(9)

where λj denotes the weight of KD loss of the jth
student and λe denotes the weight of KD loss of
the ensembled students.

The learned ensembled student model is finally
applied for evaluating the test set.

4 Experiments

In this section, we systematically evaluate our one-
teacher and multiple-student knowledge distilla-
tion approach in three types of sentiment classi-
fication tasks, i.e., supervised sentiment classifica-
tion, zero-shot sentiment classification, and cross-
lingual sentiment classification.
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4.1 Supervised Sentiment Classification

Dataset: The data of YELP (sentence-level) (Li
et al., 2018), a widely used dataset for super-
vised sentiment classification, is used. Specifi-
cally, 3,000, 1,000, and 1,000 balanced samples
are selected as training, development, and test data.
An additional 100,000 samples are selected as un-
labeled data which will be leveraged in the distil-
lation process.
Evaluation Metrics: Standard Accuracy and
Macro-F1 are used to evaluate the performance of
sentiment classification. Besides, the parameters
and the inference time of per sample on CPU are
applied to evaluate the operational performance of
the distilled models.
Learning Models and Parameter Settings: All
hyper-parameters are tuned according to the de-
velopment set. The temperature T is set to 1.0.
The batch size is set to 128. The teacher model is
optimized by the AdamW (Loshchilov and Hutter,
2017) optimizer, where the initial learning rate is
2e-5 and weight decay is 1e-3. The student mod-
els are optimized by the Adam (Kingma and Ba,
2014) optimizer, where the initial learning rate is
1e-3 and weight decay is 1e-4 or 1e-5. In this
task, the teacher model is the pre-trained 12-layer
BERT-base, which has been the most frequently-
researched teacher model in previous studies in
the supervised learning setting. The student model
is CNN with 100 kernels of 3 different sizes, in
which the embedding size is 50 and the kernel size
is 3x50, 4x50 and 5x50 respectively.
Multi-view Settings: Different types of word
embeddings are used as multiple views to gen-
erate different student models. Specifically, we
employ three different types of Glove embed-
dings (Pennington et al., 2014), i.e., Glove.6B.50d,
Glove.twitter.27B.50d, and Glove.42B.300d.
Baselines: For comparison, we implement the fol-
lowing knowledge distillation approaches.
(1) DistilBERT (Sanh et al., 2019): This ap-
proach obtains a student model by transferring
knowledge from the last layer of a pre-trained
BERT in both the pre-training stage and optional
fine-tuning stage. This is a one-teacher and one-
student distillation approach and no unlabeled data
is used.
(2) TinyBERT (Jiao et al., 2019): This approach
obtains a student model by transferring knowledge
from BERT with a novel transformer distillation
method. This is a one-teacher and one-student dis-

tillation approach and no unlabeled data is used.
(3) MobileBERT (Sun et al., 2020): This ap-
proach obtains a student model by transferring
knowledge from BERT-Large in the pre-training
stage. This is a one-teacher and one-student distil-
lation approach and no unlabeled data is used.
(4) XtremeDistil (Mukherjee and Awadallah,
2020): This approach obtains a student model by
transferring knowledge from a multilingual pre-
trained model, by leveraging teacher representa-
tions agnostic of its architecture and stage-wise op-
timization schedule. Moreover, this approach em-
ploys unlabeled data to boost performance. This
is a one-teacher and one-student distillation ap-
proach and unlabeled data is used.
(5) MT-BERT (Wu et al., 2021): This approach
obtains a student model with TinyBERT by trans-
ferring knowledge from multiple teachers, i.e.,
BERT, Roberta and UniLM. This is a multiple-
teacher and one-student distillation approach and
no unlabeled data is used.
(6) Distilled BiLSTM (Tang et al., 2019): This
approach obtains a student model with a shallow
neural network BiLSTM by transferring knowl-
edge from BERT. This is a one-teacher and one-
student distillation approach and no unlabeled data
is used.
(7) Distilled Single CNN and Distilled Single
CNN with more parameters: This approach dis-
tills a pre-trained BERT into a CNN with unla-
beled data. The model with more parameters is
obtained by leveraging 275 kernels and the embed-
ding size of 300.

For reference, apart from distillation models,
we also provide the results from models including
CNN, BiLSTM, and Ensembled CNNs, which are
trained with the labeled data only with no knowl-
edge distillation.
Results: As shown in Table 1, compared with
a single CNN, Ensembled CNNs improves very
little (0.2%) when only training data are avail-
able. However, Distilled Ensembled CNNs with
unlabeled data (our approach) achieves a 3.7%
improvement in both Accuracy and Macro-F1.
Moreover, our approach performs better than Dis-
tilled Single CNN with more parameters, which
indicates that performance gain is more the re-
sult of ensemble distillation than only distilling a
larger model. Even better, our approach achieves
a slightly higher classification performance com-
pared with the teacher model.
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Methods #Params Accuracy Macro-F1
BERT-base (Teacher) (Devlin et al., 2019) 109.48M 0.958 0.958

DistilBERT6 (Sanh et al., 2019) 65.78M 0.952 0.952
TinyBERT4 (Jiao et al., 2019) 14.35M 0.938 0.938
TinyBERT6 (Jiao et al., 2019) 66.96M 0.956 0.956
MobileBERT (Sun et al., 2020) 24.58M 0.947 0.947

XtremeDistil (Mukherjee and Awadallah, 2020) † 12.75M 0.960 0.960
MT-BERT4 (Wu et al., 2021) 14.35M 0.945 0.945
BiLSTM (Wang et al., 2018) 2.35M 0.919 0.919

CNN (Kim, 2014) 0.15M 0.927 0.927
Ensembled CNNs 1.20M 0.929 0.929

Distilled BiLSTM (Tang et al., 2019) 2.35M 0.920 0.920
Distilled Single CNN † 0.47M 0.958 0.958

Distilled Single CNN with more parameters † 3.74M 0.960 0.960
Distilled Ensembled CNNs (Our approach) † 3.74M 0.964 0.964

Table 1: Performances in supervised sentiment classification. “†” denotes that this model leverages unlabeled data
during distillation.

Methods #Params Inf. time on CPU
Teacher 109.48M 10.61ms

Our approach 3.74M 0.03ms

Table 2: Operational performance of the teacher model
and our approach in supervised sentiment classifica-
tion.

Operational performance: The parameters and
inference times of the teacher model and our
approach are given in Table 2. The proposed
model has a significantly smaller size (96.6%
fewer parameters) and a notably faster inference
speed (353 times faster) compared with the teacher
model.

Figure 2: The influence of the scale of leveraged unla-
beled data in supervised sentiment classification.

Influence of ensemble learning and leveraging
unlabeled data: Figure 2 shows the influence of
leveraging different scales of unlabeled data and

applying ensemble learning. Both Distilled Sin-
gle CNN and Distilled Ensembled CNNs perform
much worse than the teacher model when no un-
labeled data is available. However, Distilled Sin-
gle CNN is able to achieve a highly similar perfor-
mance compared with the teacher when 100k un-
labeled data are leveraged. Furthermore, Distilled
Ensembled CNNs surpasses the teacher when the
scale of unlabeled data is over 80k.

4.2 Zero-shot Sentiment Classification

Dataset: The data of YELP (sentence-level) (Li
et al., 2018) is used. Specifically, 1,000 balanced
samples are selected as test data. An additional
100,000 samples are selected as unlabeled data,
which will be leveraged in the distillation process.
It is worthwhile to note that no training and devel-
opment data is used in zero-shot sentiment classi-
fication.
Learning Models and Parameter Settings:
The teacher model is the pre-trained 24-layer
RoBERTa-large, which has been shown as an ex-
cellent model for zero-shot learning (Gao et al.,
2020). Other parameter settings and multi-view
settings are the same as supervised sentiment clas-
sification.
Baselines: Since few previous studies have con-
ducted their research on knowledge distillation on
zero-shot learning, we only implement the base-
line approach of Distilled Single CNN with unla-
beled data in this experiment.
Results: As shown in Table 3, Distilled Single
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Methods #Params Accuracy Macro-F1
RoBERTa-large (Teacher) (Liu et al., 2019) 408.98M 0.847 0.844

Distilled Single CNN † 0.46M 0.861 0.859
Distilled Single CNN with more parameters † 3.67M 0.872 0.874

Distilled Ensembled CNNs (Our approach) † 3.67M 0.881 0.879

Table 3: Performances in zero-shot sentiment classification. “†” denotes that this model leverages unlabeled data
during distillation.

Methods #Params Inf. time on CPU
Teacher 408.98M 45.25ms

Our approach 3.67M 0.03ms

Table 4: Operational performance of the teacher model
and our approach in zero-shot sentiment classification.

CNN outperforms the teacher model in both Ac-
curacy and Macro-F1 when 40k unlabeled sam-
ples are leveraged. Moreover, our approach out-
performs the Distilled Single CNN with a 2.0%
improvement in both Accuracy and Macro-F1 and
performs better than Distilled Single CNN with
more parameters.
Operational performance: The parameters and
inference times of the teacher model and our ap-
proach are given in Table 4. The proposed model
has a significantly smaller size (99.1% fewer pa-
rameters) and a notably faster inference speed
(1507 times faster) compared with the teacher
model.

Figure 3: The influence of the scale of leveraged unla-
beled data in zero-shot sentiment classification.

Influence of ensemble learning and leveraging
unlabeled data: Figure 3 shows the influence of
leveraging different scales of unlabeled data and
applying ensemble learning. The zero-shot sen-
timent classification performance grows with the
scale of leveraged unlabeled data when the size is
less than 40k. However, the performance of our

approach declines when the size of unlabeled data
increases to over 60k and 100k. This might be
due to the absence of a training set and validating
set. Fortunately, the weaker performances of our
approach are still better than those of the teacher
model.

4.3 Cross-lingual Sentiment Classification

Datasets: In this experiment, Chinese is consid-
ered as the source language where labeled data is
available and English is considered as the target
language where only unlabeled data (with no la-
beled data) is available. 4,000 and 2,000 labeled
Chinese samples in the document-level data of Ho-
tel Review (Jie et al., 2016) is selected as the train-
ing and development data. 2,000 and 80,000 sam-
ples in the data of YELP (document-level) (Zhang
et al., 2015) is selected as test and unlabeled data.
All English (or Chinese) samples are translated
into Chinese (or English) samples via Baidu Trans-
lator API.
Teacher Models: Several teacher models are de-
signed to perform cross-lingual sentiment classifi-
cation. As shown in Table 5, the first part is to em-
ploy BERT-Chinese-base and XLM-R-base(Chn)
to train the teacher model with Chinese labeled
data. Then, all English samples, i.e., unlabeled
and test samples, are translated into Chinese for
distillation and testing. The second part is to trans-
late the Chinese labeled samples into English and
then train the teacher model with BERT-English-
base and XLM-R-base(Eng). Note that XLM-R
(Conneau et al., 2020) is a state-of-the-art multi-
lingual pre-training model. From Table 5, we can
see that BERT-Chinese-base performs best and
thus we choose it as the teacher model in the dis-
tillation experiment.
Multi-view Settings: English text, Chinese text,
and together with their mixed text, are considered
as three different views to generate three student
models.
Baselines: Since few previous studies have con-
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Methods #Params Accuracy Macro-F1
BERT-Chinese-base (Devlin et al., 2019) 102.27M 0.876 0.876
XLM-R-base(Chn) (Conneau et al., 2020) 278.05M 0.855 0.854
BERT-English-base (Devlin et al., 2019) 109.48M 0.840 0.838

XLM-R-base(Eng) (Conneau et al., 2020) 278.05M 0.873 0.872

Table 5: Performances of different teacher models in cross-lingual sentiment classification.

Methods #Params Accuracy Macro-F1
BERT-Chinese-base (Teacher) (Devlin et al., 2019) 102.27M 0.876 0.876

CNN (Chn) (Kim, 2014) 0.97M 0.691 0.691
CNN (Eng) (Kim, 2014) 0.46M 0.692 0.690

Ensembled CNNs 5.05M 0.714 0.714
Distilled Single CNN (Chn) † 1.31M 0.869 0.869
Distilled Single CNN (Eng) † 2.51M 0.868 0.868

Distilled Single CNN (Chn and Eng) † 15.36M 0.871 0.871
Distilled Ensembled CNNs (Our approach) † 18.88M 0.878 0.878

Table 6: Performances in cross-lingual sentiment classification. “†” denotes that this model leverages unlabeled
data during distillation.

Methods #Params Inf. time on CPU
Teacher 102.27M 268.52ms

Our approach 18.88M 1.22ms

Table 7: Operational performance of the teacher model
and our approach in cross-lingual sentiment classifica-
tion.

ducted their research on knowledge distillation
on cross-lingual learning, we only implement the
baseline approach of CNN, Ensemble CNNs and
Distilled Single CNN with unlabeled Data in this
experiment.
Results: Table 6 shows the results of baselines and
our approach in cross-lingual sentiment classifica-
tion. CNN in both Chinese view and English view
perform much more poorly than the teacher model,
resulting in a significantly lower performance by
Ensembled CNNs. However, by leveraging the un-
labeled data, Distilled Single CNN in three views
improve notably with an over 18% improvement
in Accuracy and Macro-F1 compared with a single
CNN. Furthermore, our approach achieves higher
Accuracy and Macro-F1 than the teacher model.
Operational performance: The parameters and
inference times of the teacher model and our
approach are given in Table 7. The proposed
model has a significantly smaller size (81.5%
fewer parameters) and a notably faster inference
speed (219 times faster) compared with the teacher
model.

Figure 4: The influence of the scale of leveraged unla-
beled data in cross-lingual sentiment classification.

Influence of ensemble learning and leveraging
unlabeled data: Figure 4 shows the influence of
leveraging different scales of unlabeled data and
applying ensemble learning. From this figure, we
can see that, in cross-lingual sentiment classifi-
cation, our approach benefits greatly from unla-
beled data. Moreover, distilling knowledge into
ensembled CNNs results in consistently better per-
formance than distilling knowledge into a single
CNN.

5 Conclusion

In this study, we propose a novel approach of
knowledge distillation, namely one-teacher and
multiple-student knowledge distillation, in senti-
ment classification. Our approach is capable of
compacting a large model into a minimal ensem-
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ble model with both ensemble learning and unla-
beled data. Empirical studies on three sentiment
classification tasks demonstrate that the distilled
model performs even better than the teacher model
with much fewer parameters and a much better op-
erational performance on CPU.

In our future work, we aim to improve our ap-
proach by carefully selecting a suitable number of
unlabeled samples instead of using all of them. In
addition, we would like to apply our approach to
other NLP tasks besides sentiment classification.
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