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Abstract

Stance detection aims to identify the attitude
from an opinion towards a certain target. De-
spite the significant progress on this task,
it is extremely time-consuming and budget-
unfriendly to collect sufficient high-quality la-
beled data for every new target under fully-
supervised learning, whereas unlabeled data
can be collected easier. Therefore, this paper
is devoted to few-shot stance detection and
investigating how to achieve satisfactory re-
sults in semi-supervised settings. As a target-
oriented task, the core idea of semi-supervised
few-shot stance detection is to make better
use of target-relevant information from labeled
and unlabeled data. Therefore, we develop a
novel target-aware semi-supervised framework.
Specifically, we propose a target-aware con-
trastive learning objective to learn more distin-
guishable representations for different targets.
Such an objective can be easily applied with or
without unlabeled data. Furthermore, to thor-
oughly exploit the unlabeled data and facili-
tate the model to learn target-relevant stance
features in the opinion content, we explore a
simple but effective target-aware consistency
regularization combined with a self-training
strategy. Experimental results demonstrate that
our approach can achieve state-of-the-art per-
formance on multiple benchmark datasets in
the few-shot setting.

1 Introduction

Stance detection is intended to identify the attitude
of opinions towards certain targets, where labels
can be favor, against, and neutral. For example, the
opinion “True equality allows all to be born.” is
against the target “Legalization of Abortion”. The
settings of stance detection can be generally di-
vided into in-target and cross-target ones. Specif-
ically, in-target stance detection aims to train an
exclusive classifier for prediction on the same set
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of targets (Mohammad et al., 2016b; Augenstein
et al., 2016; Li et al., 2021). Obviously, in-target
stance detection is the most ideal setting when there
is sufficient labeled data. However, in practice, a
severe challenge is the scarcity of annotations for
new targets. Cross-target stance detection (Zhang
et al., 2020a; Xu et al., 2018; Wei and Mao, 2019)
is to train on the labeled data of one source target
and test on the destination target, which is based
on an assumption that there is a strong correla-
tion between the two targets. No doubt the harsh
demand from the assumption above limits the ex-
tension of cross-target stance detection, in which it
still requires a large amount of annotated data for
the source target. In this paper, we focus on the
in-target few-shot stance detection with unlabeled
data and limited labeled data, which is to alleviate
the demand for human supervision.

Different from common classification tasks
(e.g., sentiment classification), the identification
of stance is heavily dependent on the specific tar-
get (Siddiqua et al., 2019). As a target-oriented
task, the key problem of few-shot stance detection
is how to thoroughly exploit the target-relevant in-
formation from the limited labeled data and the
unlabeled data. Existing methods like supervised
contrastive learning (Gunel et al., 2021) and semi-
supervised learning (Sohn et al., 2020) prove sig-
nificant effectiveness in the few-shot setting. When
only a few labeled samples are provided, super-
vised contrastive learning (SCL) hopes to improve
the representation ability of the model to a cer-
tain extent by leveraging class label information.
However, such an objective ignores target label in-
formation, the crucial clue, which plays a vital role
in stance detection. When the unlabeled data is
available, semi-supervised learning (SSL) like self-
training and consistency regularization, is a way of
bringing unlabeled data into full play, which helps
to overcome the scarcity of sufficient annotated
data. However, self-training algorithm (Glandt
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et al., 2021; Li et al., 2021) only encourages the
student network to mimic the teacher network’s
label predictions simply. Moreover, consistency
regularization (Xie et al., 2020a; Sohn et al., 2020)
constrains the model to make consistent predictions
of the same example under some task-agnostic
data augmentation strategies. Neither of them digs
deeply into target-relevant stance features in the
opinion content.

To further tackle the challenges above, we pro-
pose a novel Semi-supervised framework with
Target-aware Contrastive learning and Consistency
regularization (STCC). First, we introduce a target-
aware contrastive learning objective to consider
both target and stance label information, which
promotes the distinction and isolation of sam-
ples from different targets, as well as different
classes. Since the target-aware contrastive learn-
ing objective learns more distinguishable repre-
sentations, the model trained here can be used in
semi-supervised learning as a better teacher model.
Second, we combine two approaches to SSL: con-
sistency regularization and self-training. Specifi-
cally, we design a simple but effective target-aware
data augmentation strategy for consistency regu-
larization, i.e., masking the corresponding target
for every unlabeled example, so that the model can
perceive the target-related information contained in
the content as much as possible. Moreover, our pro-
posed target-aware contrastive learning objective
can be naturally extended to semi-supervised learn-
ing with additional unlabeled data. Specifically, the
pseudo-labels generated by the teacher model are
used for the contrastive learning objective. Finally,
we conduct comprehensive experiments on two
large datasets of SemEval-2016 and COVID-19-
Stance to verify the effectiveness of our framework
for few-shot stance detection. The experimental
results demonstrate that our approach achieves the
state-of-the-art performance1.

2 Methodology

2.1 Problem Definition
The semi-supervised few-shot stance detection is
to train a classifier by leveraging labeled and un-
labeled data, which identifies the users’ stance
from the context and the corresponding target. For-
mally, given a collection of limited labeled data
X = {(xi, ti, yi)}Nl

i=1 and a collection of unlabeled

1Our code and data are available at
https://github.com/monolith-v1/STCC.

data U = {xi, ti}Nu
j=1, where xi is the opinion con-

tent, ti is the corresponding target, yi is the stance
label, Nl is the number of the labeled data and Nu

is the number of the unlabeled data.

2.2 BERT Model

First of all, we select the pretrained model BERT as
the encoder. For the labeled data X , we concatenate
the content xi and the target ti of each sample in the
following format: [CLS] ti [SEP] xi [SEP] and uti-
lize BERT to process it. We then feed the represen-
tation h

[CLS]
i of [CLS] from the last layer of BERT

into the final classification layer. Finally, we com-
pute the probability distribution with the softmax
function: p(ŷi|xi, ti) = softmax(Whh

[CLS]
i ),

where Wh is a trainable matrix. We fine-tune the
model by minimizing the cross-entropy loss:

Lce = − 1

|X |

|X |∑
i

CE(p(ŷi|xi, ti), yi), (1)

where CE denotes the cross entropy loss function.

2.3 Target-aware Contrastive Learning

The core idea of contrastive learning is to bring
the representations of positive sample pairs closer,
and push the negative sample pairs farther, to learn
more distinguishable representations. In supervised
contrastive learning, samples under the same label
match each other as positive pairs and samples of
different labels match as negative pairs. Given the
index I = {1, · · · , B} in a batch, the supervised
contrastive learning loss is formulated as:

Li
sup = −

B∑
i=1

1

|Ni|
∑
j∈Ni

log
esim(hi,hj/τ)∑

k∈C(i) e
sim(hi·hk/τ)

,

(2)

where B is the batch size, Ni = {hj |i ̸= j, yi =
yj} is the positive examples of hi, |Ni| is the num-
ber of examples labeled as yi in the same batch,
C(i) ≡ I\{i}, and τ is temperature parameter.

It is our goal to integrate target label informa-
tion into contrastive training, enabling the model
to learn the target-specific information adequately
under the setting of few labeled data. Specifically,
as shown in Figure 1, target-aware contrastive train-
ing (TCL) tries to make intra-target representations
being more compact in the feature space and inter-
target ones more distinguishable. The target-aware
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Figure 1: Structure overview of our target-aware semi-supervised framework. There are mainly three parts in the
figure: (a) The teacher model, aiming at generating pseudo-labels, is trained on labeled data with a combination
of cross-entropy (CE) loss and target-aware contrastive learning (TCL) objective. (b) an illustration for TCL,
in which different shapes stand for different targets, and different colors represent different stance labels. (c) is
the semi-supervised learning procedure. The teacher model comes from part (a), fed with original data, and its
prediction is then softmaxed and regarded as pseudo-labels ŷi. Simultaneously, the original data are also fed into
the student model, generating a prediction qa and pseudo-labels ȳi. Then, pseudo-labels ŷi from the teacher model
and qa are used to compute the self-training loss Lst. Afterwards, in another branch, the student model is fed with
augmented data to generate a prediction qb. Consistency regularization term Lcr is then computed by qb and ȳi.

contrastive learning loss can be written as:

Ltcl = −
B∑
i=1

Li
tcl (3)

Li
tcl =

1

|Ti|
∑
j∈Ti

log
esim(hi,hj/τ)∑

k∈C(i) e
sim(hi·hk/τ)

, (4)

where Ti = {hj |i ̸= j, yi = yj , ti = tj} is the
positive examples of hi, |Ti| is the number of ex-
amples with the target ti labeled as yi in the same
batch, and τ is temperature parameter.

The above trained model can be utilized alone or
as a teacher model to participate in semi-supervised
training. Note that TCL can also be applied to
semi-supervised learning. For the labeled data, the
annotated labels are used for picking positive and
negative pairs. For the unlabeled data, the teacher
model generates pseudo-labels as a complement.

2.4 Target-Aware Consistency Regularization
in Semi-supervised Learning

Consistency regularization utilizes data augmen-
tation to add perturbations for the unlabeled data.
An ideal model is ought to make consistent predic-
tions of samples before and after adding perturba-
tion. Therefore, such property makes it possible for

us to tailor target-aware data augmentation strat-
egy, which can facilitate model mining the target-
relevant stance features in the content. Practically,
given the prediction distribution of the original data,
qa = ps(ȳi|xi, ti), the ȳi = argmax(qa) is used
as pseudo-labels in the later process. There is a sim-
ple but effective way of acquiring the augmented
version of the unlabeled data for stance detection
here. Specifically, the prediction of an augmented
sample qb = ps(ỹi|xi) from the model can be gen-
erated by masking the corresponding target ti of
the content xi.

Lcr = − 1

|U|

|U|∑
i

CE(qb, ȳi), (5)

Note that conventional consistency regulariza-
tion performs a supervised training from the la-
beled data as well, of which the loss is computed
by Eq (1). Such a process utilizes the pseudo-labels
generated by the model under training. In con-
sistency training, the model trained from scratch
has a low accuracy and high entropy, which pre-
vents the model from achieving good accuracy (Xie
et al., 2020b). Therefore, we incorporate the
self-training strategy into consistency training to
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Algorithm 1 Target-aware Semi-supervised Learn-
ing for Few-shot Stance Detection

Require: Labeled data X and unlabeled data U .
Require: ∆ = 20 ▷ The increment every step

1: K = 100 ▷ The initial threshold
2: t = 1 ▷ The time step
3: Train the teacher model θt using labeled data

via Eq (1) and Eq (4).
4: repeat
5: K = K −∆
6: Generate pseudo labels ŷi using the teacher

model θt for unlabeled data.
7: Select unlabeled data with top K% high-

confidence pseudo labels.
8: Update student model θs using the combi-

nation of labeled data and unlabeled data via
Eq (7).

9: Using the student model θs as the teacher
model θt for next iteration.

10: t = t+ 1
11: until K ̸= 0
12: return θs

stabilize the entire training process. Instead of
using the model trained from scratch, we train
a teacher model ahead to generate high-quality
pseudo-labels. Pseudo-labels generated by the
teacher model can stabilize the training of a stu-
dent model that uses these generated pseudo-labels,
following the loss function:

Lst = − 1

|U|

|U|∑
i

CE(qa, ŷi), (6)

where, ŷi is the pseudo labels generated by the
teacher model. Inspired by a self-training method
of curriculum labeling (Cascante-Bonilla et al.,
2021), which applies self-paced curriculum learn-
ing principles in each self-training cycle, we select
samples of the top K% highest confidence from
the entire unlabeled dataset in each iteration with
an increment ∆.

The total loss for the semi-supervised learning
is as follows:

L = Lce + Lst + λaLcr + λbLtcl, (7)

where λa and λb are scalar weighting hyper-
parameters.

The procedure of our semi-supervised frame-
work is summarized in Algorithm 1.

3 Experiments

3.1 Datasets and evaluation

The macro-averaged F1 is used as the evaluation
metric for all datasets. We conducted experi-
ments using two well-known standard benchmarks,
SemEval-2016 and COVID-2019-Stance.

SemEval-2016 (Mohammad et al., 2016a) is the
earliest dataset to detect users’ stance from tweets,
which contains 6 targets, specifically, “Atheism”,
“Climate Change is a Real Concern”, “Feminist
Movement”, “Hillary Clinton”, and “Legalization
of Abortion” and “Donald Trump”. The data with
“Donald Trump” in the original dataset is not split
into the training and test sets. We split this target’s
data for training and testing with a ratio of 5:2.
The processed dataset has 3414 tweets for training
and 1456 for testing. Additionally, we split the
original training set in a ratio of 9:1 into training
and validation subsets.

COVID-19-Stance (Glandt et al., 2021) con-
sists of 6,133 tweets for stance towards four targets
relevant to COVID-19 health mandates, specifi-
cally “Anthony S. Fauci, M.D.”, “Keeping Schools
Closed”, “Stay at Home Orders”, and “Wearing a
Face Mask”. This dataset has 4533 samples for
training, 800 samples for validation, and 800 sam-
ples for testing.

3.2 Model comparisons

We compare our method with several strong base-
line methods:

(1) Some general models trained only using la-
beled data:

CrossNet (Xu et al., 2018): It is a BiLSTM
model for cross-target stance with an aspect-
specific attention layer.

BERT (Devlin et al., 2019): It is a transformer-
based language model pre-trained by two self-
supervised tasks.

ProtoNets (Snell et al., 2017): It aims to learn
prototypes embedding for each class, in which the
model makes predictions by computing distances
to prototype representations of each class.

(2) Fine-tuning objectives:
SCL (Gunel et al., 2021): A contrastive learning

objective combining the label information with the
self-supervised contrastive learning.

PT-HCL (Liang et al., 2022): This method uses
a pre-text task to distinguish the types of the stance
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data, then integrates the type information into the
supervised contrastive learning.

(3) Semi-supervised learning methods using the
unlabeled data and few labeled data:

Prompt (Schick and Schütze, 2021): The
prompt-based learning is a fine-tuning strategy
leveraging language prompts as contexts to stimu-
late knowledge from pre-trained Language Models,
which can has the flexibility to use or not use unla-
beled data.

UDA (Xie et al., 2020a): A consistency training
algorithm enforcing the model predictions to be
consistent between an unlabeled example and its
augmented version.

ST (Glandt et al., 2021): A vanilla self-
training method transferring the knowledge from
the teacher model to the student model iteratively.

UPS (Rizve et al., 2021): An uncertainty-aware
pseudo-label selection framework that leverages
the prediction uncertainty to guide the pseudo-label
selection procedure.

CL (Cascante-Bonilla et al., 2021): A pseudo-
label selection framework with a hand-crafted cur-
riculum choice strategy, which selects unlabeled
samples progressively from high confidence to low
confidence.

Finally, we add the model BERT w/ full data
trained by the full labeled data to present the upper
bound of the performance for all few-shot methods.

3.3 Implementation Details

In the few-shot setting, we randomly select 5, 10,
and 20 samples for each target for training under
different settings. For example, the size of the
labeled data for SemEval-2016 under the 5-shot
setting is 30. In order to obtain a relatively uniform
distribution, samples of different labels, which are
favor, against, and none, are picked by a ratio of
2:2:1. Under the setting of semi-supervised learn-
ing, in each of the datasets above, the rest of the
data in the training set is used as the unlabeled
data. We implement our model using PyTorch2

and BERT-base from huggingface Transformers3

is used as the backbone. The models are optimized
by AdamW and the batch size is set as 32. An
iteration for the self-training procedure is set as
20 epochs. We report the average results of the
models using a fixed set of 5 random seeds. We
set λa to 1.0. As few-shot learning is extremely

2https://pytorch.org/
3https://huggingface.co/docs/transformers/index

sensitive to hyper-parameters, we conduct a grid
hyper-parameters search based on the performance
on the validation data for learning rate, tempera-
ture τ and scalar weighting λb on two different
datasets across different shot sizes. The details are
in Appendix A.

3.4 Main Results

Table 1 shows the results from baselines on Se-
mEval2016 and COVID-19, including the perfor-
mance with and without unlabeled data. We select
BERT-base as the base encoder of these baselines,
except for CrossNet. Table 1 is divided into two
parts by whether unlabeled data is available. Mod-
els in the upper part are only trained by N-shot
labeled data (minimal few-shot setting), while re-
sults in the lower part come from semi-supervised
learning (semi-supervised few-shot setting).

First of all, generally, our method shows sub-
stantial improvement compared to baseline models
under minimal few-shot setting. Then, specifically,
the comparison of results from TCL and SCL un-
der different datasets validates that the application
of target label information in contrastive learning
further improves the performance of models. Con-
sidering the significant improvement of our model
over PT-HCL, it is clear that the distinguishing of
whether a data is sensitive to the target or not under
the minimal few-shot setting does not make the
most of target-specific information.

In addition, we also would like to acknowl-
edge that, SCL performs better than TCL under
5-shot learning on SemEval2016, but no such phe-
nomenon is observed on COVID-19. A possible
explanation is that the short length of texts of Se-
mEval2016 impedes the model from learning gen-
eral representations because TCL has to distinguish
the belonged target and stance at the same time,
making the number of data in each potential clus-
ter too small to learn. Note that there is no such
phenomenon in models with unlabeled data, indi-
cating the application of unlabeled data alleviates
the scarcity of data and enables STCC to develop
its full potential. Moreover, the model CrossNet
based on a traditional BiLSTM performs poorly
under the setting of few-shot stance detection here.

Next, from the lower part of Table 1, where the
results under semi-supervised learning are shown,
we find that STCC outperforms all other semi-
supervised methods by a great margin. Consid-
ering different settings of numbers of labeled data,
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Model SemEval2016 COVID19
5 10 20 5 10 20

without unlabeled data
CrossNet (Xu et al., 2018) 29.82 33.85 35.37 31.20 34.93 44.32
BERT (Devlin et al., 2019) 41.12 44.45 49.72 32.45 36.85 50.83
ProtoNets(Snell et al., 2017) 41.50 44.13 48.72 33.90 40.50 48.44
SCL (Gunel et al., 2021) 48.02 49.40 52.22 37.40 42.23 52.83
PT-HCL (Liang et al., 2022) 34.72 39.56 45.22 - - -
Prompt (Schick and Schütze, 2021) 37.88 41.80 43.74 34.96 37.46 47.52
TCL (Ours) 47.32 51.41 53.47 40.27 46.80 53.52

with unlabeled data
Prompt (Schick and Schütze, 2021) 37.93 42.41 43.80 34.96 49.42 47.11
UDA (Xie et al., 2020a) 46.86 46.77 50.87 40.27 47.02 53.52
ST (Glandt et al., 2021) 48.35 51.12 55.01 42.08 47.66 55.67
UPS (Rizve et al., 2021) 43.45 48.11 52.73 41.45 44.37 53.87
CL (Cascante-Bonilla et al., 2021) 48.92 51.34 55.42 40.96 50.22 56.86
STCC (Ours) 52.84 55.00 57.11 44.38 52.26 58.06
BERT w/ full data 68.34 73.12

Table 1: Summary of test results for few-shot stance detection using the shot size of 5, 10, 20 for training. The best
results are in bold.

STCC exceeds the best baselines by an average of
3.09% on SemEval 2016 and 1.84% on COVID-19.
It is also verified that BERT performs better with
the help of unlabeled data from the same target.
At last, the increase in numbers of labeled data
guarantees a steady growth for all semi-supervised
learning methods, especially outstanding for ours.
Besides, the performance of prompt-tuning meth-
ods whose backbone is BERTbase is not ideal. A
possible reason is that such methods depend on the
generalization ability of large pre-trained models
and hand-crafted prompt designs, which are not the
focus of our work.

3.5 Ablation Study

As shown in Table 2, we conduct an ablation
study to inspect the importance of the compo-
nents in STCC on SemEval2016, including the
target-aware contrastive learning (TCL), the target-
aware consistency regularization (TCR), and the
self-training procedure (ST). It is clear that the re-
moval of either one of our three independent mod-
ules causes the drop in performance, especially for
the self-training procedure. A possible explanation
is that the training of a model from the very begin-
ning introduces consistency training under a low
accuracy, forcing the model to stay in a condition
of high entropy.

Moreover, compared with “-TCR&TCL” (i.e.,

Model 5-shot 10-shot 20-shot

STCC 52.84 55.00 57.11
-TCR 51.32 53.53 56.48
-TCL 49.91 52.32 56.18
-ST 43.45 47.70 52.65
-ST&TCR 47.32 51.41 53.47
-ST&TCL 45.19 46.29 48.96
-TCR&TCL 48.92 51.34 55.42
-TCR&TCL + SCL 49.32 51.40 55.92
-ST&TCR&TCL 41.12 44.45 49.72

Table 2: Ablation results on SemEval-2016. “ST”
means self-training procedure, and “TCR” means target-
aware consistency regularization.

only using ST), the performance further improves
after equipping TCR, indicating the effectiveness
of our proposed target-aware consistency training.
The comparison among “-ST&TCL” (i.e., only us-
ing TCR), “-TCR&TCL” (i.e., only using ST) and
“-TCL” (i.e., using ST&TCR) further validates that
the model can achieve an acceptable performance
merely with the self-training procedure. In addi-
tion, TCL is replaced by SCL (i.e., “-TCR&TCL +
SCL”) to verify the indispensability of TCL under
the semi-supervised framework. The drop in perfor-
mance compared to TCL (i.e., “-TCR”) confirms
that target-specific information is of vital signifi-
cance in semi-supervised learning. The proposed
method of TCL adapts well to few-shot stance de-
tection with or without labeled data.

To demonstrate the effectiveness of our proposed
data augmentation, i.e., “masking the target”, we
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Figure 2: 2D t-SNE plots of the learned [CLS] representations on the unlabeled data of the SemEval2016 from the
BERT models only trained by 20-shot labeled samples for every target, which are fine-tuned on different objectives
CE (left), SCL (middle), and TCL (right).

Model 5-shot 10-shot 20-shot

NT 52.84 55.00 57.11
BT 52.13 52.21 55.96
SR 52.26 54.28 55.23
RD 50.92 52.35 55.99

Table 3: The performance of different data augmen-
tation in semi-supervised learning on SemEval2016.
“NT”: masking the target, “BT”: back translation, “SR”:
synonym replacement, “RD”: random deletion.

replace it with multiple common data augmenta-
tion methods in NLP, and the results are shown in
Table 3. Evidently, our method performs best for
the current task. Back translation is implemented
by the toolbox of nlpaug4, while synonym replace-
ment and random deletion are from EDA (Wei and
Zou, 2019) method5. Note that although common
data augmentation methods improve the results as
well, none of the improvements is as significant as
ours.

3.6 Visualization

Visualization for TCL In Figure 2, the t-SNE
plots from the representations of [CLS] are shown.
Such representations are the output from BERT-
base fine-tuned by different objectives, under the
setting of 20 available labeled samples. As ob-
served, for the case of using cross-entropy loss only,
all samples are promiscuously scattered. There is a
similar but better distribution for the model trained
by SCL, where most samples are mixed. For TCL,
there are six obviously independent clusters, as
there are six targets in SemEval2016. Furthermore,

4https://github.com/makcedward/nlpaug
5https://github.com/jasonwei20/eda_nlp

(a)

(b)

Target: Climate Change is a Real Concern
ST+TCR

ST

Target: Legalization of Abortion
ST+TCR

ST

Figure 3: The heatmap of the attention weights of [CLS]
towards each subword in the content for “ST+TCR”
and “ST” under semi-supervised setting. The attention
weights are averaged from the multi-heads in the top
layer. The darker the color, the greater the weight.

even inside a cluster itself, representations from
the same target but of different labels can be iden-
tified and are much more separate than that in the
other two diagrams. Such a phenomenon verifies
TCL helps to learn better representations, increas-
ing intra-target compactness and inter-target dis-
crepancy, which improves the performance of the
model.

Visualization for TCR In Figure 3, we show the
heatmap of attention weights to demonstrate the
effectiveness of our proposed target-aware consis-
tency regularization. As the classifier deals with
the representations from “[CLS]”, we pick the
attention-weight matrix of “[CLS]” from the top
layer towards each subword in the content. In order
to avoid possible influence from TCL, the model
is trained by “ST” and “ST+TCR” respectively.
Take (a) in Figure 3 for an example, whose target
is “Legalization of Abortion”, the model trained
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by “ST+TCR” notices target-relevant words like
“people, woman, opposed and disgusted”, while
“ST” merely pays attention to “woman”. Such a
phenomenon confirms that the proposed method of
target-aware consistency regularization improves
the ability of digging target-relevant information
for models.

4 Related Work

Stance Detection Stance detection aims to iden-
tify the attitude from an opinion towards a cer-
tain target. Incipient studies focus on in-target
stance detection (Augenstein et al., 2016; Siddi-
qua et al., 2019; Mohammad et al., 2016b; Du
et al., 2017; Wei et al., 2019), which only train
the model and perform the prediction on a single
target. Li et al. (2021) investigated the multi-target
training and knowledge distillation in the stance
detection task. Data augmentation (Li and Caragea,
2021) has been used for in-target setting to improve
performance in fully supervised learning. Cross-
target stance detection (Zhang et al., 2020b; Wei
and Mao, 2019; Allaway et al., 2021) hopes to
transfer knowledge between related targets, which
attempts to mitigate the lack of labeled training
data for a new target. Dutta et al. (2022) focused
on semi-supervised user stance detection using
the information from tweets posted by users and
their followers, whereas we do not consider spe-
cific user information. Hardalov et al. (2021) stud-
ied few-shot cross-lingual stance detection, which
transferred the knowledge from English resources
to non-English scenarios. Recently, Allaway and
McKeown (2020) defined zero-shot and few-shot
stance detection, according to which the targets
have no or very few training examples. And, they
present a new dataset VAST, which consists of thou-
sands different targets. However, VAST includes
a wide range of similar expressions for one target
(e.g., “guns on campus” versus “firearms on cam-
pus”). The situation above makes the source of
the model’s benefit too ambiguous to trace. There-
fore, SemEval-2016 and COVID-19-Stance are rel-
atively much more accessible for studying in the
few-shot setting, compared with VAST.

Contrastive Learning In recent years, con-
trastive learning has made significant progress in
self-supervised representation learning, both in the
CV (Chen et al., 2020) and NLP (Gao et al., 2021)
domains. Khosla et al. (2020) introduced super-
vised contrastive learning (SCL), which further ex-

tended the self-supervised contrastive learning to
the fully-supervised setting by leveraging label in-
formation. Gunel et al. (2021) integrated the SCL
objective for fine-tuning pre-trained language mod-
els, which significantly improves the performance
in the few-shot learning settings. In stance detec-
tion, Liang et al. (2022) proposed a hierarchical
contrastive learning loss to take both the data types
and the stance labels into account. They subdi-
vided the data types by judging whether a sample
is sensitive to its corresponding target based on
the self-supervised learning pretext task. However,
this strategy is not suitable for the few-shot setting,
which further reduces the target-related informa-
tion availability to the model.

Semi-supervised Learning Consistency regular-
ization, pseudo-labeling, and self-training are all
important components of semi-supervised learn-
ing. Consistency regularization (Xie et al., 2020a;
Sohn et al., 2020) constrains the model to make
consistent predictions of the same example un-
der varied noises. And, pseudo-labeling (Lee,
2013) selects those unlabeled data with high con-
fidence as a form of entropy minimization. These
methods use the model being trained to generate
pseudo-labels instead of a separate teacher model
pre-trained on labeled data. Self-training (Xie
et al., 2020b) allows a teacher model pre-trained
on labeled data, and then applies the combina-
tion of labeled and pseudo-labeled data to retrain
a student model. Recent, semi-supervised learn-
ing methods have combined those techniques to
some extent. Cascante-Bonilla et al. (2021); Rizve
et al. (2021) combine the self-training process with
pseudo-labeling, while using curriculum labeling
and uncertainty-aware techniques to improve the
filter process for unlabeled data. Sohn et al. (2020)
unify the consistency regularization and pseudo-
labeling. However, these task-agnostic methods
cannot adequately mine target-relevant stance fea-
tures in the opinion content for stance detection.

5 Conclusion

In this paper, we focus on in-target few-shot stance
detection to alleviate the demand for human su-
pervision, and propose a novel target-aware semi-
supervised framework with contrastive learning
and consistency regularization. The target-aware
contrastive learning objective performs well on
both labeled and unlabeled data, which promotes
the model’s ability to distinguish various classes
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and targets. Moreover, our proposed target-aware
consistency regularization is validated to be more
efficient in mining target-relevant stance features
in the content. Experiments on two popular bench-
marks demonstrate the effectiveness and consistent
improvements over baselines.
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A Hyper-parameters setting

As few-shot learning is extremely sensitive to
hyper-parameters, we conduct a grid hyper-
parameters search based on the performance on the
validation data for learning rate lr ∈ {2e-5, 3e-5},
temperature τ ∈ {0.05, 0.1, 0.2, 0.3, 0.4} and
scalar weighting λb ∈ {0.05, 0.1, 0.2, 0.5} on two
different datasets across different shot sizes. Here,
we give the hyperparameter settings of our model
in Table 4 and Table 5. Experiments are conducted
on NVIDIA RTX TITAN GPUs.

Model 5 10 20
BERT 3e-5 3e-5 2e-5
SCL (3e-5,0.5,0.2) (3e-5,0.5,0.3) (3e-5,0.05, 0.3)
TCL (3e-5,0.2,0.05) (3e-5,0.2,0.05) (3e-5,0.2,0.05)
STCC (3e-5,0.5,0.2) (2e-5,0.5,0.2) (3e-5,0.5,0.4)

Table 4: Hyper-parameter configurations for SemEval-
2016. In parentheses from left to right are learning rate,
scalar weighting λb, and temperature τ .

Model 5 10 20
BERT 3e-5 3e-5 3e-5
SCL (2e-5,0.5,0.3) (3e-5,0.5,0.4) (3e-5,0.5,0.4)
TCL (2e-5,0.5,0.2) (2e-5,0.5,0.3) (3e-5,0.5,0.3)
STCC (2e-5,0.5,0.3) (3e-5,0.5,0.1) (2e-5,0.2,0.3)

Table 5: Hyper-parameter configurations for COVID-19.
In parentheses from left to right are learning rate, scalar
weighting λb, and temperature τ .
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