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Abstract

While there is much research on cross-domain
text classification, most existing approaches fo-
cus on one-to-one or many-to-one domain adap-
tation. In this paper, we tackle the more chal-
lenging task of domain generalization, in which
domain-invariant representations are learned
from multiple source domains, without access
to any data from the target domains, and clas-
sification decisions are then made on test doc-
uments in unseen target domains. We propose
a novel framework based on supervised con-
trastive learning with a memory-saving queue.
In this way, we explicitly encourage examples
of the same class to be closer and examples of
different classes to be further apart in the em-
bedding space. We have conducted extensive
experiments on two Amazon review sentiment
datasets, and one rumour detection dataset. Ex-
perimental results show that our domain gen-
eralization method consistently outperforms
state-of-the-art domain adaptation methods1.

1 Introduction

Text classification is a highly important and widely
studied natural language understanding task. Re-
cent success in self-supervised pre-training has
significantly improved the state-of-the-art perfor-
mance in sentiment analysis. However, senti-
ment classification is widely known as a domain-
dependent task, mainly because sentiment expres-
sions can have different meanings in different do-
mains (e.g., “long” in “long waiting time” of a
restaurant review is negative, while in “long bat-
tery life” of a laptop review is positive). More-
over, the amount of labeled data is highly imbal-
anced across different domains. Many NLP do-
mains still lack sufficient labeled data for training
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a high-performance classifier. Therefore, it is cru-
cial to adapt sentiment knowledge from resource-
rich domains to low-resource domains. This strand
of research is known as domain adaptation (DA).
Prior works on domain adaptation typically follow
a one-to-one (Jiang and Zhai, 2007) or many-to-one
adaptation setting (Zhao et al., 2018), where the
model is usually trained on labeled data from the
source domain along with unlabeled data from the
target domain and is then evaluated on the target do-
main data. The usage of the unlabeled target data is
crucial in DA. Prior works mainly use it for domain-
invariant representation learning or model selection.
More recently, Wright and Augenstein (2020) have
demonstrated that large pretrained language models
(PrLMs) are able to achieve promising performance
for cross-domain sentiment classification. Subse-
quent works further improve the adaptation per-
formance through domain adversarial training (Du
et al., 2020; Karouzos et al., 2021), iterative pseudo-
labeling (Ye et al., 2020), or prompting (Ben-David
et al., 2022), where they all adapt the DA setting
and assume unlabeled target data is available dur-
ing model training.

However, in more realistic scenarios, one may
be asked to build a text classification model that
will be applied to unknown target domains, which
implies unlabeled target domain data is unavailable
during training or model selection. Domain gener-
alization (Li et al., 2018;Wang et al., 2021b;Wang
et al., 2021a) has been proposed to address this
problem by learning a universal representation us-
ing labeled data from multiple source domains,
without access to target domain data. Building
such a generalized model enables us to predict
sentiment polarity of emerging domains, such as
COVID-19 vaccines and pandemic-related medi-
cal equipment. Compared to domain adaptation,
the major advantage of domain generalization is
that one trained model can be used for all target
domains, whereas domain adaptation needs to train
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a tailored model for each target domain. To the
best of our knowledge, even though there are many
works that focused on multi-source domain adap-
tation (Zhao et al., 2018; Guo et al., 2020; Wright
and Augenstein, 2020), there is no prior work that
tackles domain generalization in the context of text
classification.

In this work, we focus on domain generalization
for text classification. We aim to build a general-
ized sentiment classifier using labeled source data
from multiple domains. The trained model can
be applied to other unseen domains. We train a
classifier to learn a joint hypothesis over all source
domain data. On this basis, we propose to use
supervised contrastive learning (SCL) to better cap-
ture the similarity between examples from different
domains but belong to the same sentiment class
and contrast them with examples belonging to the
other class. SCL explicitly pulls the representa-
tions from the same class together and repulses the
representations from different classes in the embed-
ding space. This objective helps the model better
extract the domain invariant features among all
source domains, thereby allowing a better classifi-
cation decision boundary. The usage of SCL helps
the classifier achieve better generalization ability,
which is especially beneficial to the domain gener-
alization scenario. Although SCL has previously
been applied to image classification tasks (Khosla
et al., 2020) and in-domain sentence-level classi-
fication tasks (Gunel et al., 2021), to the best of
our knowledge, we are the first to apply it in the
context of domain generalization. It is shown that
the performance of SCL is highly affected by batch
size as it requires a large number of contrasting ex-
amples for computing the contrastive loss (Khosla
et al., 2020;Gunel et al., 2021). An optimal batch
size requires large memory, making it impractical
in many use cases. To apply SCL without exces-
sive memory consumption, we further propose to
use a memory bank to store the representations to
increase the size of contrasting features, so that the
hidden representations for sentiment classification
will be reused for computing supervised contrastive
loss. In this way, we can significantly improve per-
formance compared to directly applying SCL for
text classification.

To examine our proposed method, we conducted
domain generalization experiments on two popular
Amazon review datasets (one monolingual and the
other multilingual) and on the PHEME rumour de-

tection dataset. Following previous works (Chen
and Cardie, 2018; Ye et al., 2020; Li et al., 2020;
Liu et al., 2021), different languages can be seen as
distinct domains based on a shared cross-lingual en-
coder. Hence, the domain generalization problem
can also be extended to language generalization.
We conducted experiments in cross-domain (CD),
cross-language (CL), and cross-language cross-
domain (CLCD) settings. In our experiments, our
proposed method is able to outperform the second
best domain adaptation method by 0.81% accuracy
score in sentiment analysis and 1.68% F1 score in
rumour detection.

Our contributions can be summarized as follows:

• We are the first to tackle the domain general-
ization problem for text classification.

• We proposed a novel memory-based alterna-
tive for supervised contrastive learning to im-
prove its performance. Experimental results
show that our proposed method consistently
outperforms state-of-the-art domain adapta-
tion baselines.

2 Related Work

2.1 Domain Adaptation
Prior works on domain adaptation mainly focus
on minimizing the distributional discrepancy be-
tween the source domain and the target domain.
Kernelized methods, such as Maximum Mean Dis-
crepancy (MMD) (Arbel et al., 2019), spectral
feature alignment (Pan et al., 2010), and domain-
adversarial training (Ganin et al., 2016) are com-
monly used for feature alignment from different
domains. Another widely explored approach for
DA is self-training, where a classifier is first trained
on the source domain and later used for predict-
ing pseudo-labels for unlabeled data in the target
domain. Ye et al. (2020) have proposed a robust
self-training approach to improve the performance
of the joint hypothesis between source and target
domains and thereby improve performance on the
target domain.

When multiple source domains are present, DA
methods should be modified accordingly. Li et al.
(2018) have used pairwise-MMD and an adver-
sarial autoencoder to overcome domain discrep-
ancy. Wu and Huang (2016) extended domain-
adversarial training from Ganin et al. (2016) to
multiple source domains. Domain adversarial train-
ing has many popular variants (Zhao et al., 2018;
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Liu et al., 2018; Chen et al., 2018), showing that
extracting domain-invariant representation is a cru-
cial part for domain adaptation. Another strand
of work for multi-source DA is based on mixture
of experts (MoE). Chen and Cardie (2018) have
explored MoE for multi-source cross-lingual senti-
ment classification, and MoE encourages the model
to learn from more relevant source languages. Guo
et al. (2020) proposed a DistanceNet-Bandits ap-
proach to tackle multi-source DA. It first measures
domain distance with multiple metrics, and then
uses a multi-armed bandit mechanism to learn from
closer source domains. However, prior works on
multi-source domain adaptation rely on distance
measurement from source to target domain. There-
fore, even though no labeled data from the target
domain is used, unlabeled target data must be used
to perform domain adaptation. Unlike multi-source
domain adaptation, domain generalization has no
access to any target domain data during training.
In many practical scenarios, we may need to find
people’s opinions towards emerging and unseen
domains, such as pandemic-related medical equip-
ment. Therefore, it is important to study the prob-
lem of domain generalization for sentiment and
text classification.

2.2 Contrastive Learning

Recently, contrastive learning (CL) has led to major
advances in self-supervised representation learning.
The common idea in these works is maximizing the
agreement score between an anchor and a ‘positive’
example in the embedding space, and pushing apart
the anchor from many ‘negative’ examples (Chen
et al., 2020). The positive example pair is typically
a particular image and its augmentation, and the
negative pairs are formed by that image with other
images within the same batch. However, such ap-
proaches require a substantially large batch size.
Otherwise the performance of contrastive learn-
ing deteriorates significantly. On the other hand,
other approaches have been proposed to alleviate re-
source consumption due to a large batch size. Grill
et al. (2020) have shown superior performance by
maximizing the agreement of positive pairs by a
momentum encoder, without the need of negative
samples. Khosla et al. (2020) have extended the
idea of contrastive learning to the supervised set-
ting, i.e., supervised contrastive learning (SCL).
To leverage label information, SCL considers ex-
amples with the same label as positive pairs and

examples with different labels as negative pairs,
and achieves significant performance gain in image
classification tasks. Gunel et al. (2021) extended
the application of SCL to finetuning pre-trained
language models in natural language understand-
ing tasks. Graf et al. (2021) further analyzed SCL
in image classification problem, showing that SCL
is able to increase the inter-cluster distance and
reduce the intra-cluster distance for each class. We
leverage the idea of SCL to explicitly align features
of the same class but from different domains. Since
the negative sample size is crucial for accurate mu-
tual information estimation, we propose to use an
additional memory bank to store representations
and progressively reuse the encoded sentence rep-
resentations, thereby improving the performance
of contrastive learning. In this way, we force the
domain generalization model to focus on aligning
features of the same class and implicitly reduce
the domain discrepancy among the multi-source
training data.

3 Problem Definition

For the task of domain generalization on text clas-
sification, suppose we have labeled data from k
source domains {Dsi}ki=1. For each source do-
main, the labeled data Dsi is denoted as Dsi =
{Xsi , Ysi}. In the training phase, only source do-
mains are available. Then, the labeled dataset from
the target domain Dt = {Xt, Yt} is used for evalu-
ation. The problem setup of domain generalization
is different from multi-source domain adaptation
(MSDA), which requires an additional unlabeled
set from the target domain during training (Wu and
Huang, 2016; Ding et al., 2019; Zhao et al., 2018;
Guo et al., 2020). In contrast, in the domain gener-
alization setup, the model is only trained to obtain
a domain-invariant feature from the given source
domains, while the target-domain data Dt is only
used during evaluation. In this way, the trained
model can be used to make predictions on unseen
domains.

4 Model Description

Since the domain generalization problem is to train
an algorithm based on multiple source domains,
the key challenge of this classification problem is
to learn an ideal joint hypothesis of the source do-
mains. That is, we aim to separate the data points
by their labels as much as possible, thereby min-
imizing domain discrepancy within each class in
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the feature embedding space. Our supervised con-
trastive learning model not only widens the margin
of decision boundaries, but also enforces the distri-
bution within the same class to be more uniform,
hence minimizing the source domain distances for
each class.

We first shuffle all the source domain data and
divide the joint dataset into mini-batches. This is
mainly for enforcing a stable domain distribution
for each mini-batch. For one sampled mini-batch
of size N , we have S = {xi, yi}Ni=1, where xi
represents the input text, yi represents the senti-
ment label of that example. We first adopt a pre-
trained language model (PrLM) as encoder. We use
the hidden state of the last layer’s [CLS] token as
document representation, and denote it as h. We
then use a feed-forward neural network (followed
by a tanh activation function and layer norm) f
for dimension reduction. Specifically, we have
z = f(h). Feature z will later be fed into a classi-
fier g for downstream tasks:

LCE = − 1

N

N∑
i=1

yilog
(
g(zi)

)
(1)

where g is a fully connected classifier and LCE is
the cross-entropy classification loss.

Figure 1: Illustration of SCL. ⃝ refers to a positive
review, × refers to a negative review, and the different
colors of data points represent their domains.

4.1 Supervised Contrastive Loss for Domain
Generalization

As illustrated in Figure 1, supervised contrastive
learning explicitly pulls the representations of the
same class together and repulses representations
from different classes, which increases the discrim-
inative capability of hidden representations and
benefits hard negative mining (Khosla et al., 2020).
This objective suits our goal of learning a joint hy-
pothesis for different source domains, and enables
the model to learn a more uniform distribution for
each label class. Specifically, for a given mini-
batch S of size N , the supervised contrastive loss
is computed as follows:

LSCL = −
∑
zi∈S

1
N

∑
zp∈P (i)

log
exp(zi·zp/τ)∑

za∈A(i) exp(zi·za/τ)

(2)
where z is the vector representation. For a given
anchor representation zi, P (i) ≡ {zj ∈ S, yj =
yi} refers to the set of positive examples, A(i) ≡
{zj ∈ S, j ̸= i} refers to the union of positive
examples and negative examples, S refers to the set
of the mini-batch. τ is a scaling hyper-parameter,
also known as temperature. Then, we have our
combined loss function as:

L = LCE + LSCL (3)

However, in our preliminary experiments, di-
rectly applying supervised contrastive learning has
marginal effect for domain generalization. This is
because the performance of supervised contrastive
learning is heavily related to batch size, as a larger
batch size is better in representing the mixed distri-
bution of multiple domains. However, increasing
the batch size inevitably introduces high compu-
tation and memory costs. In order to improve the
performance of domain generalization while reduc-
ing memory consumption, we propose to use an
additional memory bank to reuse the previously
encoded sentence representations. The details for
our memory bank are described in the following
subsection.

4.2 Memory-Based Supervised Contrastive
Learning

To increase the number of contrasting examples
while limiting memory consumption, we propose
to use a memory bank Q to store the sentence rep-
resentations and their labels of each batch. The
purpose of introducing this memory bank is to pro-
gressively reuse the encoded sentence to compute
LSCL. The memory bank Q stores the sentence
representations z and their corresponding labels y,
S

′
= {zi, yi}Ni=1, during computation of one batch.

The maximum size of Q is denoted as M , which
indicates that when the number of examples in Q
exceeds M , only the last M examples will be kept
and previous examples will be discarded. To avoid
repeated computation, for each batch S, all the ex-
amples of the current batch S are deemed as anchor
features. The computation of SCL with memory
bank Q still follows Equation 2, except that the
number of contrasting features is increased. Let
SC denote the set of contrasting features, which
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is the union of the current batch S and memory
bank Q, i.e., SC = S ∪Q. Then the set of positive
examples becomes P (i)

′ ≡ {zj ∈ SC , yj = yi}
and the union of positive and negative examples
becomes A(i)

′ ≡ {zj ∈ SC , j ̸= i}. Given batch
size N and memory bank size M , the number of
anchor features is N , whereas the number of con-
trasting features becomes N +M , since the set of
contrasting features SC is the union of the current
batch S and the memory bank Q. We provide the
pseudo-code for our approach in Algorithm 1.

Algorithm 1: Algorithm for supervised
contrastive learning with memory bank
Input: Batch size N , encoder f , classifier g ,

memory bank Q
1 for t ≤ Tmax do
2 Sample minibatch S = {xi, yi}Ni=1

3 z = f(PrLM(x));
4 Q = None;
5 LCE = 1

N

∑N
i=1−yilog

(
g(zi)

)
;

6 SC = S ∪Q;
7 P (i) ≡ {zj ∈ SC , yj = yi};
8 A(i) ≡ {zj ∈ SC , j ̸= i};
9 LSCL =∑

zi∈S

−1
N

∑
zp∈P (i)

log
exp(zi·zp/τ)∑

za∈A(i) exp(zi·za/τ) ;

10 EnqueueAndDequeue(Q, {zi, yi}Ni=1);
11 L = LCE + LSCL;
12 update network by combined loss L
13 end

5 Experiments

5.1 Dataset Statistics

We have conducted experiments on two bench-
marks for cross-domain and cross-lingual senti-
ment classification and one benchmark for rumour
detection.
Multi-Domain Sentiment Dataset (Blitzer et al.,
2007) This dataset contains 8,000 Amazon product
reviews, equally distributed from four domains:
books (B), DVDs (D), kitchen and housewares (K),
and electronics (E). In each domain, there are 1,000
positive and 1,000 negative reviews. We follow
the split of prior works (Ganin et al., 2016; Du
et al., 2020; Guo et al., 2020) for fair comparison,
resulting in 1,600 training examples and 400 test
examples for each domain. Since we do not have
access to target domain data, training and model

selection are all based on the mixture distribution
of source domains.
Cross-Lingual Sentiment Dataset (Prettenhofer
and Stein, 2010) This is a multi-lingual and multi-
domain Amazon review dataset. It contains four
languages: English (En), German (De), French (Fr),
and Japanese (Jp). For all languages, there are three
domains: books (B), DVDs (D), and music (M).
For each domain, there are 2,000 training examples
and 2,000 test examples, where each set contains
1,000 positive and 1,000 negative reviews. In sum-
mary, there are twelve language-domain combina-
tions in this dataset.
PHEME Rumour Detection Dataset There are
5,802 annotated tweets from 5 different events
((C)harlie(H)ebdo, (F)erguson, (G)erman(W)ings,
(O)ttawa(S)hooting, and (S)ydneySiege) labeled
as rumour or non-rumour (1,972 rumours, 3,830
non-rumours).

5.2 Experimental Setup

We conducted experiments in cross-domain (CD),
cross-language (CL), and cross-language cross-
domain (CLCD) settings. For CD experiments,
the model is trained on three source domains and
evaluated on the target domain. Model selection
is based on validation performance on the com-
bined test set of the source domains. Using the
multi-domain Amazon review dataset as an exam-
ple, since there are three source domains in total,
for each target domain experiment, there are 4,800
training examples.

In CL experiments, the training and test domains
are the same while the source languages are differ-
ent from the target language. For example, for tar-
get German-DVD, the training data will be English,
French, and Japanese DVD, and the total number of
training examples is 6,000. Since English is a high-
resource language, we did not conduct experiments
with English as the target language.

For CLCD experiments, the training data for a
given language-domain combination come from
both a different language and a different domain.
For example, for the same target German-DVD, the
training data will still be in English, French, and
Japanese, while the domains for the training data
will be books and music. For a fair comparison
with CL experiments, the training data for CLCD
experiments will be down-sampled to half of its
original size, with 6,000 reviews in total.

In the monolingual domain generalization ex-
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D E K B Avg Acc CH F GW OS S Avg µF1
Guo et al. (2018) 87.70 89.50 90.50 87.90 88.90 - - - - - -
Wright and Augenstein (2020) 88.90 90.30 90.80 90.00 90.00 67.90 45.40 74.50 62.60 64.70 63.02
DistilBERT
Baseline 89.300.3 89.800.2 89.980.2 89.240.2 89.58 64.781.3 43.031.5 69.871.9 60.420.8 62.021.4 60.02
MMD 89.000.2 89.860.2 89.640.2 89.380.4 89.47 63.801.0 43.441.1 69.042.1 63.971.1 63.270.7 60.70
MoE 89.200.3 89.920.3 90.260.3 89.880.1 89.82 65.842.2 43.611.1 72.231.2 61.631.0 64.251.4 61.51
Intra 88.460.6 89.800.3 90.060.2 89.220.4 89.39 64.141.4 42.891.2 70.771.6 61.841.5 62.410.7 60.41
Adv 88.400.4 89.600.2 90.000.2 89.040.2 89.30 64.831.5 42.231.2 65.941.0 61.470.9 62.811.6 59.45
SCL 89.350.1 89.850.1 90.250.2 89.500.2 89.74 65.570.9 43.221.9 73.031.1 63.501.5 63.521.4 61.77
SCL+M=64 90.100.2 90.260.2 90.800.2 89.980.2 90.28 65.880.8 43.641.2 74.541.1 67.250.5 65.991.7 63.46
SCL+M=128 89.730.3 90.300.1 90.500.1 90.040.3 90.14 68.081.0 44.551.9 75.410.8 66.522.0 65.190.8 63.95
SCL+M=256 89.430.5 89.970.3 90.000.2 89.470.3 89.72 67.410.8 42.830.9 74.640.7 65.732.0 64.061.5 62.93
Roberta-Large
Basline 90.000.4 93.950.2 93.400.5 92.650.7 92.50 67.121.2 43.972.4 70.783.2 65.692.9 62.661.7 62.04
MMD 89.850.4 94.150.3 93.700.5 92.550.5 92.56 64.881.7 43.131.2 69.862.9 66.600.7 63.172.9 61.53
MoE 90.250.3 94.040.4 93.990.2 92.500.2 92.69 67.241.8 43.632.2 73.601.8 68.772.4 63.591.2 63.38
Intra 90.060.3 94.000.3 94.060.2 92.750.2 92.72 66.872.2 43.632.2 73.731.6 69.281.8 63.721.0 63.44
Adv 90.250.7 94.450.5 94.600.3 92.850.6 93.04 64.712.4 42.921.0 71.011.6 66.692.2 63.843.7 61.83
SCL 89.950.3 94.250.7 93.100.6 93.450.5 92.69 65.832.0 42.651.5 71.411.7 65.921.5 62.332.0 61.63
SCL+M=64 91.400.7 95.100.5 95.050.4 93.250.4 93.70 67.440.6 43.531.2 75.230.5 72.223.2 67.182.0 65.12
SCL+M=128 91.450.5 95.100.4 95.100.5 93.70.5 93.85 68.320.8 43.392.8 73.891.2 72.012.4 66.701.3 64.86
SCL+M=256 91.100.3 95.050.5 94.900.5 93.400.6 93.62 66.810.8 40.911.1 73.521.0 72.212.0 65.591.3 63.81

Table 1: Experimental results for cross-domain text classification. The reported metric is accuracy for sentiment
analysis and micro-F1 for rumour detection. The experimental results are averaged over five runs and each subscript
indicates the standard deviation of five runs.

Batch Size 8 16 32 64 128 256 16+M=128
Memory (GB) 10.5 14.1 21.3 35.6 64.3 121.7 14.7

Table 2: Memory consumption for training Roberta-
large model for sentiment analysis. The memory sizes
used above batch size of 32 are interpolated.

periments, we adopt Distil-Bert-base (Sanh et al.,
2019) and RoBERTa-large (Liu et al., 2019) pre-
trained models as encoders. In the cross-lingual
experiments, we use XLM-R-large (Conneau et al.,
2020) as encoder. We pre-process each review to
180 sentencepiece tokens. For all encoders, we
set the dimension for classifier representation z to
be 256. We train all the models with Adam Opti-
mizer with learning rate of 1e-5. The batch size
we use for training DistilBert/RoBERTa baselines
is 16. We use batch size of 2 with 8 gradient ac-
cumulation steps for training XLM-R due to GPU
memory constraint. All our experiments are con-
ducted on Nvidia 16GB V100 GPU. We conduct
grid-search for M ∈ {16, 32, 64, 128, 256, 512}
and τ ∈ {0.1, 0.2, 0.5, 0.7, 0.8, 1.0} in D,K,E-B
transfer (i.e., D, K, E as source domains and B
as the target domain) and select M = 128 and
τ = 0.2. We provide the memory consumption
for training the Roberta model with different batch
sizes in Table 2. We use interpolation estimate
for memory usage above batch size of 32. From
Table 2, we observe that our proposed method sig-
nificantly saves memory consumption compared to
directly using large batch sizes.

5.3 Compared Methods

We compare our methods with several state-of-the-
art domain adaptation methods. However, previous
works are trained with unlabeled target domain
data, which is a more relaxed setup compared to
ours. For fair comparison, we also employed state-
of-the-art DA models in the same domain general-
ization setting as our baselines:
MoE (Guo et al., 2018; Wright and Augenstein,
2020): Mixture-of-Experts (MoE) models are the
current state-of-the-art method for multi-source do-
main adaptation. It can also be applied to domain
generalization. The MoE models consist of mul-
tiple models. For K source domains {Si}K1 , each
source domain will be treated as a meta-target do-
main during training and each of them will have a
dedicated model. The labeled data for each meta-
target will be excluded during training of its model.
There is an additional global encoder that is trained
on labeled data from all source domains. Hence,
there are K + 1 models in total for the MoE struc-
ture. During inference, the ensemble predictions of
K + 1 models are aggregated.
CFd (Ye et al., 2020): This one-to-one domain
adaptation approach is based on self-training. The
model is first trained on a source domain, and high-
confidence pseudo-labeled data in the target do-
main are generated for bootstrapping. We also
compare to the optimal one-to-one transfer pair for
this baseline.
CLDFA (Xu and Yang, 2017): This method, cross-
lingual knowledge distillation on parallel corpora
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German
Avg

French
Avg

Japanese
Avg

Book DVD Music Book DVD Music Book DVD Music
Cross-language: With unlabeled target data, results taken from original papers
CLDFA 83.95 83.14 79.02 82.04 83.37 82.56 83.31 83.08 77.36 80.52 76.46 78.11
MAN-MoE 82.40 78.80 77.15 79.45 81.10 84.25 80.90 82.08 62.78 69.10 72.60 68.16
CFd 93.95 91.69 93.89 93.18 94.25 93.79 93.39 93.81 89.41 88.68 89.54 89.21
Cross-language: Without unlabeled target data
Baseline 93.940.3 91.370.4 93.740.4 93.02 93.760.5 93.090.4 93.280.4 93.38 89.610.4 89.200.3 89.730.6 89.51
Intra 94.560.4 91.990.5 94.210.6 93.59 94.680.2 93.600.2 93.590.2 93.96 90.260.2 90.220.4 91.090.3 90.52
Adv 94.610.4 92.190.3 94.360.3 93.72 94.670.3 93.740.3 93.630.5 94.01 90.160.3 90.250.3 90.780.5 90.40
SCL 93.780.5 91.670.5 93.910.2 93.12 94.250.7 93.260.2 93.370.3 93.63 89.410.3 89.330.8 89.761.1 89.50
SCL+M=64 94.550.4 92.320.3 94.420.3 93.76 94.580.3 94.050.2 93.850.2 94.16 90.740.4 90.480.3 91.340.4 90.85
SCL+M=128 94.690.4 92.420.3 94.200.2 93.77 94.700.3 93.850.3 94.020.2 94.19 90.520.4 90.670.4 91.210.3 90.80
SCL+M=256 94.700.5 92.190.6 93.880.2 93.59 94.540.4 93.660.3 93.870.3 94.02 90.550.3 90.530.2 90.970.4 90.68
Cross-language and cross-domain Without unlabeled target data
Baseline 93.760.3 90.780.3 93.950.4 92.83 93.670.3 93.250.2 92.980.2 93.30 89.490.5 89.160.4 89.730.5 89.46
Intra 94.230.3 91.550.3 93.780.2 93.19 93.90.3 93.390.3 93.160.2 93.48 89.750.4 89.900.4 90.660.3 90.1
Adv 94.130.3 91.510.3 93.640.3 93.09 93.310.4 93.440.3 93.150.2 93.3 89.70.4 89.720.4 90.740.3 90.05
SCL 93.830.4 90.980.3 93.860.2 92.89 93.860.3 93.590.3 93.160.2 93.54 89.50.3 89.340.4 89.50.3 89.45
SCL+M=64 94.050.3 91.260.2 93.830.4 93.04 94.170.2 93.940.3 93.670.2 93.93 89.850.3 89.830.4 90.450.2 90.05
SCL+M=128 94.460.4 91.900.3 93.970.2 93.41 94.240.5 93.790.3 93.950.4 93.99 89.830.6 90.270.4 91.020.4 90.37
SCL+M=256 94.230.5 91.130.2 94.070.3 93.14 94.060.3 93.960.4 93.820.2 93.95 90.150.4 89.860.3 90.250.2 90.07

Table 3: Experimental results for Multilingual Amazon benchmark. Experiments are conducted in both cross-
language (CL) and cross-language cross-domain (CLCD) settings. The reported metric is average accuracy and
each subscript indicates the standard deviation of five runs.

for cross-lingual transfer learning, leverages trans-
lated Amazon reviews as a parallel corpus.
MAN-MoE (Chen and Cardie, 2018): This model
uses a multinomial adversarial network to extract
language-invariant features for sentiment classifica-
tion. It studies cross-lingual transfer with multiple
source languages. Besides, it also leverages MoE
to focus on more transferable source languages.
Baseline fine-tunes pretrained language models
(DistilBERT/Roberta/XLM-R) on labeled data
from source domains and directly tests on the target
domain. MMD: Following Li et al. (2018), pair-
wise Maximum Mean Discrepancy (MMD) losses
among three source domains are added to cross-
entropy loss. Intra refers to center loss used in Wen
et al. (2016) and Ye et al. (2020), which maximizes
the agreement between each example and its class
center. Adv refers to the widely studied domain
adversarial neural network (Ganin et al., 2016),
where a gradient reversal layer is used to reverse
the gradients calculated by the domain classifica-
tion task. SCL adopts supervised contrastive loss
from Gunel et al. (2021). It refers to directly ap-
plying supervised contrastive learning with a small
batch size. Our model that enhances supervised
contrastive learning (SCL) with memory bank is
denoted as SCL+M. We provide experimental re-
sults for M ∈ {64, 128, 256}.

5.4 Experimental Results

The experimental results of CD text classification
are shown in Table 1. We compare our methods

with previous SOTA methods on multi-source do-
main adaptation and strong baselines of RoBERTa
variants. Our findings are as follows. Firstly, di-
rectly applying supervised contrastive loss has lim-
ited improvement over the baseline performance
of directly fine-tuning the pretrained language
model, and the performance of SCL does not ex-
ceed previous domain adaptation methods, such
as Mixture-of-Experts (MoE) and intra-class loss
(Intra). Secondly, increasing the number of con-
trasting examples M significantly improves perfor-
mance compared to directly using SCL. Our pro-
posed method SCL+M=128 achieves the best per-
formance among the compared methods, exceeding
the Roberta baseline by 1.35% in cross-domain sen-
timent analysis and by 2.82% in cross-domain ru-
mour detection. Finally, the domain generalization
method MMD performs poorly in the CD setting.
This may be because the data distribution of com-
puter vision tasks is different from that of sentiment
analysis.

The CL and CLCD experimental results are
shown in Table 3. In the CL and CLCD settings,
we do not include the baseline result for MMD,
as we observe high variance validation loss dur-
ing training, and sometimes training diverges. We
also do not include MoE for CL experiments, as
the encoder for CL experiments is significantly
larger than CD experiments and the MoE structure
exceeds our hardware limit. From Table 3, our
XLM-R baseline does not exceed the one-to-one
self-training based DA approach CFd, showing
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(a) RoBERTa (b) MoE (c) SCL (d) SCL+M=128
Figure 2: T-SNE visualization of the 256-dimensional sentence embeddings z for each model. The models are
trained with B,K,E as source domains and D as the target domain. We sample 1,000 examples for each domain.

that knowledge of unlabeled target data is more
important than increasing out-of-language train-
ing examples. In addition, in CL and CLCD set-
tings, the performance of directly applying SCL
is worse than intra-class loss (Intra) and adver-
sarial training (Adv). We believe this is due to
the small batch size (i.e., 2) during training of
XLM-R. Hence, it is important to increase the
contrasting examples for SCL in the small-batch
setting. With increasing contrasting examples for
SCL, we are able to achieve significant perfor-
mance gain over our competitive baselines, and
our best model SCL+M=128 achieves state-of-the-
art performance for both CL and CLCD settings.
We observe performance drop when M is larger
than 128. This is primarily due to the trade-off be-
tween the number of contrasting examples and their
quality. Even though increasing the size of memory
bank will benefit the lower bound of mutual infor-
mation estimation, using an excessive number of
prior examples will introduce noise for contrastive
learning, since the text encoder has already been
updated for many steps.

5.5 Analysis on Domain Divergence

To further analyze the performance of our model,
we provide both intuitive visualization and quantita-
tive analysis of domain discrepancy. Following Du
et al. (2020) and Ben-David et al. (2010), we use A-
distance as the measurement for domain distance.
To calculate A-distance, we freeze the fine-tuned
language model and the feed-forward layer f as
encoder. Since the 256-dimensional z is used for
the downstream classification task, we analyze do-
main discrepancy in this feature space. We sample
two balanced sets of source examples and target
examples with binary domain labels, i.e., source
and target. Since we have multiple source domains,
examples from each source domain will be down-
sampled when calculating A-distance, so that the
total number of source examples and the number of
target examples are balanced. This mixed dataset
with binary domain labels will be split into two

equal-size subsets, one for training and the other
for testing. We then train a linear classifier with the
first subset to distinguish source and target domain
features. The error rate ϵ for this domain distin-
guishing classifier is calculated on the second sub-
set, and we have the A-distance as dA = 2(1−2ϵ).

Figure 3: A-distance of B,K,E to D generalization trans-
fer.

We compare dA of RoBERTa baseline, MoE,
SCL, and SCL+M=128 with B,K,E to D transfer,
as well as dA of source domain pairs. Results are
shown in Figure 3. We see that the MoE model
has little impact on reducing domain divergence
for the backbone encoder. In contrast, the SCL and
SCL+M=128 models are able to reduce domain di-
vergence and the latter achieves the lowest domain
divergence compared to all other baselines.

To intuitively understand how our models over-
come domain discrepancy, we also plot the t-
SNE (Van der Maaten and Hinton, 2008) visual-
ization of the features from different domains, as
shown in Figure 2. For the RoBERTa baseline
(Fig. 2a), we observe clear domain discrepancy
within each sentiment cluster, and the sentiment
cluster is relatively dispersed. Similarly, for the
MoE model (Fig. 2b), we also observe domain dis-
crepancy in the sentiment clusters, showing that
the MoE objective does not improve the encoders’
capability for producing domain-invariant represen-
tation. For the SCL baseline (Fig. 2c), we observe
that the sentiment clusters are more concentrated
and domain discrepancy is significantly reduced,
but there is still some heterogeneity within the pos-
itive and negative review clusters. From Fig. 2d,
we observe that increasing the contrasting features
is able to further reduce domain divergence, which
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is in line with the quantitative analysis of Fig. 3.
We believe this is because SCL+M is trained with
a large number of contrasting examples. By min-
imizing the intra-cluster distance in each batch,
domain divergence within each sentiment cluster is
reduced.

6 Conclusions and Future Work

In this paper, we study the under-explored domain
generalization problem for text classification. We
show that for cross-domain text classification, gen-
eralization performance from multiple source do-
mains can exceed the best performance of one-to-
one domain adaptation, even if the target domain is
unknown during training. To this end, domain gen-
eralization is more practical and easier to deploy
in realistic scenarios. To further improve the per-
formance of cross-domain text classification, we
propose an effective and memory-saving approach
based on supervised contrastive learning for the
domain generalization problem. We conduct exten-
sive experiments in CD, CL, and CLCD settings.
Experimental results have shown that our frame-
work consistently outperforms strong baselines and
the previous state of the art in all three experimental
settings.
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Table 4: Ablation study of few-shot cross-domain senti-
ment classification for B,K,D to E transfer.

Figure 4: Ablation study of the effect of temperature τ .
The reported accuracy is the average of 5 runs.

SCL in Few-Shot Setting. We conduct a few-
shot learning experiment with B,K,D to E transfer.
As shown in Table 4, SCL+M=128 achieves the
most performance gain when the number of train-
ing examples is limited to 60, while conventional
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resembles a way for data augmentation, as the pre-
viously encoded sentences are reused as contrasting
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parameter analysis for the scaling factor τ . We
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B Hyper-Parameters for the Baselines

We mainly conduct hyper-parameter tuning on the
validation set of Multi-domain Sentiment Dataset.
For model training, we tune the learning rates in
{5e-6, 1e-5, 2e-5, 3e-5}, and batch size in {8, 16,
32}. The final learning rate is 1e-5 and scheduled
linearly with training steps. We train our models for
10 epochs for cross-domain (CD), cross-language
(CL), and cross-language cross-domain (CLCD)
experiments. The batch size for CD experiments is
16. In CL experiments, the batch size is 2 with gra-
dient accumulation step of 8 due to GPU memory
constraint. For the experiment for CD sentiment
analysis, the combined training size is 4,800. For
the baseline experiments, we follow the methodol-
ogy of Ye et al. (2020), that is adding a λ-weighted
loss term to the cross-entropy loss. We show our
choices for balancing parameters for losses as fol-
lows:

• Intra-Class Loss The weight for λ is tuned in
{1, 0.5, 0.2, 0.1, 0.05}. We set λ to be 0.2 for
CD experiments and 0.1 for CL experiments.

• MoE (Wright and Augenstein, 2020) We fol-
low the MoE-Avg method in the original pa-
per. For Roberta-large MoE models, we use 4
Nvidia V100 GPUs for training, as this model
requires multiple encoders during training.

• Adversarial Loss Following the practice of
prior works (Wright and Augenstein, 2020;
Guo et al., 2018), the weight for adversarial
training λ is 0.003.

• MMD We implemented a pair-wise MMD do-
main generalization approach with RBF ker-
nel, following the practice of Li et al. (2018).
The weight of MMD loss is tuned in {1.0, 0.5,
0.2, 0.1, 0.05} and set to 0.2.


