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Abstract
Dataset bias in stance detection tasks allows
models to achieve superior performance with-
out using targets (Kaushal et al., 2021). Most
existing debiasing methods are task-agnostic,
which fail to utilize task knowledge to better
discriminate between genuine and bias features.
Motivated by how humans tackle stance de-
tection tasks, we propose to incorporate the
stance reasoning process as task knowledge to
assist in learning genuine features and reducing
reliance on bias features. The full stance rea-
soning process usually involves identifying the
span of the mentioned target and correspond-
ing opinion expressions, such fine-grained an-
notations are hard and expensive to obtain. To
alleviate this, we simplify the stance reasoning
process to relax the granularity of annotations
from token-level to sentence-level, where la-
bels for sub-tasks can be easily inferred from
existing resources. We further implement those
sub-tasks by maximizing mutual information
between the texts and the opinioned targets1.
To evaluate whether stance detection models
truly understand the task from various aspects,
we collect and construct a series of new test
sets. Our proposed model achieves better per-
formance than previous task-agnostic debiasing
methods on most of those new test sets while
maintaining comparable performances to exist-
ing stance detection models.

1 Introduction

The task of stance detection aims to predict the
stance of the text towards the given target. It is
crucial for various downstream tasks including fact
verification, rumor detection, etc. It has a wide ap-
plication in analyzing political opinions and prod-
uct reviews. Existing works usually treat this task
as a text pair classification problem and many de-
sign target-tweet interaction structures (Augenstein
et al., 2016) to learn target-aware stance representa-
tions. However, Kaushal et al. (2021) have shown

1refers to targets that a given tweet expresses opinions on.

Tweet: Hilarity of the day: Hillary said she went 'above 
and beyond' in transparency. Really?
What about the 30k deleted emails? #SemST
Given Target: Hillary Clinton Gold Stance: Against

Target 1: Hillary Clinton
Target 2: Feminist Movement
Target 3: Atheism

✅

❌

❌

Pred. stance: Against
Pred. stance: Against 
Pred. stance: Against 

Figure 1: An example illustrating that BERT model
does not change predictions based on the target.

that those models (Du et al., 2017; Devlin et al.,
2019) can achieve superior performances only us-
ing the tweet. Those end-to-end stance detection
models treat the stance reasoning process as a black
box and are prone to rely on bias features in the
dataset instead of learning the underlying task. For
instance, in Figure 1, the BERT model still pre-
dicts Against even when the target is changed to
an unrelated target like Atheism. Meanwhile, com-
mon stance detection models perform poorly on
out-of-distribution datasets (Kaushal et al., 2021)
and unseen targets, which calls for debiasing stance
detection models to get rid of spurious correlations
in the datasets.

While Kaushal et al. (2021) made the first at-
tempt to reveal dataset bias in stance detection, miti-
gating bias in other natural language understanding
(NLU) tasks has been extensively explored. The
key challenge in debiasing is how to discriminate
between genuine and bias features. One line of
work (Clark et al., 2019; Utama et al., 2020a,b) im-
plicitly hypothesized that features, learnt by small
models or by large models at earlier steps, could
potentially be bias features. In addition, others
(Kaushik et al., 2021; Kaushal et al., 2021; Yang
et al., 2021) tried data augmentation to break spu-
rious correlation in the training data and treated
features learnt on the augmented data as genuine
features. Another line of work (Tu et al., 2020)
adopted multi-task learning with auxiliary tasks,
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Figure 2: (a) An illustration of how humans perform stance reasoning on a given <target, tweet> pair and our
simplified stance reasoning process. (b) We implement the simplified subtasks by maximizing the mutual information
between the tweet and the opinioned target. During training, one positive example and two negative examples are
constructed based on a given <target, tweet> pair for each subtask.

where features shared by multiple tasks are seen as
genuine features. While these methods achieved
superior debiasing performances, most of them ne-
glected to explicitly leverage task knowledge to
help discriminate between genuine and bias fea-
tures.

In contrast, Dua et al. (2020) introduced manual
annotations of intermediate reasoning steps and em-
ployed multi-task learning to combat dataset bias in
question answering. Motivated by how humans per-
form stance reasoning processing in Figure 2, we
follow this line of work and make the first attempt
to incorporate stance reasoning process to mitigate
dataset bias. Specifically, we consider the follow-
ing reasoning steps: (T1) identifying the span of
the mentioned target, (T2) judging the relationship
between the mentioned target and the given target,
and (T3) locating the opinion expression corre-
sponding to the mentioned target. However, due
to the informality of tweet texts, such fine-grained
annotations for those reasoning steps are difficult
and expensive to acquire.

To alleviate this, we seek to simplify the above
reasoning process into two easier sub-tasks: 1)
TMT, classifying whether the given target is
mentioned in the tweet, as a simplification of T1
and T2. 2) STT, determining whether the tweet
expresses any stance towards the given target, as
an easy version of T2 and T3. The simplified sub-
tasks only require sentence-level labels instead of
token-level ones. More importantly, the labels for

these two sub-tasks can be easily inferred without
additional annotations. We enhance these two sub-
tasks by maximizing mutual information between
the tweets and opinioned targets.

To help thoroughly evaluate whether models un-
derstanding the stance detection task, we further
collect and construct 6 new test sets. Those new
test sets will assess whether stance detection mod-
els alter predictions based on the target, whether
they overfit to shortcut features, whether they un-
derstand implicit mention of targets, and whether
they can handle negations in the target part.

To summarize, our contributions are three folds:

• We make the first attempt to incorporate
stance reasoning process to mitigate dataset
bias in stance detection, where the labels for
intermediate steps can be easily acquired with-
out further annotations.

• We construct 6 test sets 2 to facilitate evalu-
ation of whether stance detection models un-
derstand the task from various aspects.

• The proposed approach outperforms existing
debiasing methods on 4/6 new test sets while
maintaining comparable performances to com-
mon stance detection models on in-domain
datasets.

2https://github.com/Surpriseshelf/StanceSSR



6848

2 Approach

In this section, we present the SSR model that em-
ploys simplified stance reasoning process to com-
bat dataset bias in stance detection. We first de-
scribe the basic text encoder that we use to encode
tweet, target and target-tweet pairs. Then, we in-
troduce two intermediate sub-tasks based on our
observation of the stance reasoning process. After
that, we elaborate on why and how we simplify the
introduced two sub-tasks. These sub-tasks are im-
plemented by maximizing the mutual information
between the opinioned target and the tweet. Finally,
we show how we combine these two sub-tasks for
final stance predictions.

2.1 Text Encoder

We use BERTbase as the text encoder. Given a text
sequence D = {x1, x2, . . . , xi, . . . , x|d|},
where |d| is the number of words in
D, we transform its format to Xd =
{[CLS], x1, x2, . . . , xi, . . . , x|d|, [SEP]} to be
compatible with the input of BERT. We use the
hidden vector of [CLS] from the last transformer
layer as the text representation for Xs. Thus, given
a target-tweet pair, we could encode the tweet,
target, and target-tweet pair as hd, ht and hpair
respectively.

2.2 Simplified Stance Reasoning Process

To deliberate the stance of a tweet towards the given
target, one may identify the mention of the given
target in the tweet, extract the span of correspond-
ing opinions towards the given target in the tweets
and capture the interactions between the target and
opinions. However, due to the informal form of
texts used on social network platforms, such inter-
mediate annotations are difficult and expensive to
acquire at scale for existing stance benchmarks. As
a result, it is impractical to train stance detection
model with these intermediate opinion and entity
extraction, and opinion understanding sub-tasks.

To tackle these challenges, we seek to simplify
those intermediate sub-tasks into easier ones that
require only sentence-level instead of token-level
annotations. Specifically, we consider the follow-
ing two binary classification sub-tasks3:

• TMT: whether a target T is mentioned in a
tweet D. It is designed to make the model

3We describe details of the acquisition of labels for these
tasks in Appendix A.4

aware of the (both explicit and implicit) ex-
istence of target in tweet. This can be seen
a simplified version of boundary detection of
the target in the tweet. Intuitively, this could
help restrain stance detection models from as-
signing stance to non-mentioned entities.

• STT: whether a tweet D expresses stance
towards a target T . It requires the model to
distinguish between the None stance and other
stances.

These two sub-tasks cannot be solved by only us-
ing the tweets, thus preventing stance detection
models from relying on spurious features in tweets.
For instance, in Figure 2, the TMT sub-task will
discourage stance models from predicting Against
when the target is Feminist Movement as it does not
appear in the tweet.

2.3 Mutual Information Maximization
Our key intuition behind introducing intermediate
tasks is to strengthen the interaction between the
opinioned target and the tweet. To achieve this,
we implement two sub-tasks through maximizing
mutual information (MIMax) between the tweets
and opinioned targets. Motivated by (Hjelm et al.,
2018; Tian et al., 2019; Yeh and Chen, 2019), we
estimate the lower bound of mutual information be-
tween two random variables X and Y using Jensen-
Shannon divergence (JS), which is implemented
using the binary cross-entropy (BCE) loss:

MI(X,Y ) ≥ EP [log(g(x, y)]

+
1

2
EN [1− log(g(x, ȳ)]

+
1

2
EN [1− log(g(x̄, y)]

(1)

where EP and EN refer to expectations over pos-
itive and negative samples respectively, and g is
the discriminator function that outputs a real num-
ber modeled by a neural network. And (x, ȳ) and
(x̄, y) are negative samples sampled from the prod-
uct of marginals. The discriminator function g is a
bi-linear function defined as follows:

g(x, y) = xTWy

where W is a learnable scoring parameter.

2.3.1 Sub-task1: TMT
In TMT, as tweets are expected to carry the infor-
mation of their opinioned targets, we choose to
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maximize the averaged MI between the represen-
tation of the tweet and the representation of the
target appearing in the tweet. Specifically, a posi-
tive example is obtained if the target appears in the
tweet. Negative examples, on the other hand, are
constructed by replacing the current target with a
new target that does not appear in the tweet, and by
replacing the current tweet with a new tweet that
does not contain the current target respectively.

Following Equation 1, the objective for the sub-
task TMT is formulated as follows:

LTMT (xt,xd, x̄t, x̄d) = EP [log(g(xt, xd))]

+
1

2
EN [1− log(g(x̄t, xd))]

+
1

2
EN [1− log(g(xt, x̄d))]

(2)

where xd is a tweet and xt is a target that is referred
to in xd, x̄t is another target that is not mentioned
in xd, and x̄d is another tweet that does not mention
xt.

2.3.2 Sub-task2: STT
Different from TMT, STT aims to uncover whether
the tweet expresses any stance towards the given
target. If the target is not mentioned in the tweet or
the tweet does not express any polarized opinion
towards the target, the label for STT will be No.
Specifically, a positive example is obtained if the
target expresses Favor or Against stance towards
the target. Negative examples are constructed by re-
placing the current target with a new target that the
tweet has no opinion on and by replacing the cur-
rent tweet with another tweet that does not express
any stance towards the given target respectively.

Following Equation 2, the objective for the sub-
task TMT is formulated as follows:

LSTT (xt,xd, x̃t, x̃d) = EP [log(g(xt, xd))]

+
1

2
EN [1− log(g(xt, x̃d))]

+
1

2
EN [1− log(g(x̃t, xd))]

(3)

where xt is a target and xd is a tweet that expresses
opinion on xt , x̃t is another target and xd holds
no stance on x̃t, and x̃d is a tweet that does not
expresses opinion on xt.

2.4 Stance Classification
We feed the concatenation of the given <target,
tweet> pair into BERT encoder to learn a target-
aware stance representation hpair. We also feed

Target #Total #Train #Test
Atheism 733 513 220
Climate Change 564 395 169
Feminist Movement 949 664 285
Hillary Clinton 984 689 295
Abortion 933 653 280
All 4163 2914 1249

Table 1: Statistics of SemEval2016 Task 6 Subtask A.

New Test Sets Number
Tweet_only Failed (TOF) 319
PMI 403
Opinion Towards (OT) 425
Donald Trump (DT) 707
Target Replaced (Replaced) 3978
Target Negated (Negated) 1249

Table 2: Statistics of collected and constructed test sets.

the given pair into two sub-task and obtain fea-
ture representation htmt and hstt respectively. We
further concatenate hpair, htmt and hstt as hfinal,
and feed hfinal into a simple feed-forward network
for stance classification:

hsc = hpair ⊕ htmt ⊕ hstt (4)

ys = softmax(Wsc2σ(Wsc1hsc)) (5)

where Wsc2 and Wsc1 are learnable weight matri-
ces.

And the classifier is trained with the following
cross-entropy loss of stance classification:

LSC = − 1

Ns

Ns∑
i=1

No∑
j=1

ŷis(j) log y
i
s(j) (6)

where Ns is the number of training instances and
No is the number of different stance labels.

The final objective for our multiple sub-task
learning method becomes:

Lmsl = LSC + λ1LTMT + λ2LSTT (7)

where λ1 and λ2 are hyper-parameters to control
impacts of two sub-tasks respectively.

3 Experimental Setups

3.1 Datasets

To thoroughly assess whether a model understands
the stance detection task, we collect and construct
a series of test sets to assess the understanding of
the stance detection task from various perspectives.
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3.1.1 In-domain Dataset
We train our model on the dataset from SemEval
2016 Task 6 Sub-task A. The dataset is comprised
of 4163 English tweets and each is assigned with
a target and a manually annotated stance label to-
wards that target. There are a total of five targets in
Sub-task A. The detailed statistics of this dataset
are shown in Table 1. We use the official train/test
split. We randomly select 15% of samples from the
training data as the validation set.

3.1.2 New Test Sets
To test whether the trained stance detection mod-
els overly rely on bias features in the training set,
we collect three subsets where bias features from
the original test set may not hold. Additionally,
we use the data from SemeEval2016 Task 6 sub-
task B as an out-of-domain test set to evaluate the
generalization ability of stance detection models.
Moreover, we also construct two adversarial sets to
test the sensitivity of stance detection models when
changing targets.

In-distribution Hard Set. Those hard sets are
collected from the original test set. 1) Tweet Only
Failed (TOF). This subset is collected from the
original test set where three BERTnt (see Sec.3.3)
models with different seeds all fail. The filtered
subset is to assess whether models could succeed
in cases where only using tweets may not make cor-
rect predictions. 2) PMI. This subset is filtered by
removing instances containing features with the top
200 point-wise mutual information scores of each
stance from the original test set. It could help test
whether models perform well on long-tailed fea-
tures. 3) Opinion Towards (OT). We keep instances
from the original test set with indirect mention and
no mention of targets according to additional an-
notations provided by (Mohammad et al., 2016).
This could be used to diagnose whether given mod-
els are aware of implicit mentions of targets in the
tweet part.

Adversarial Test Sets. Those hard sets are ad-
versarially constructed based on the original test
set. 1) Target Replaced (Replaced). To obtain this
set, we replace the original target with other targets
from the SemEval2016 training dataset. To ensure
that the replaced targets are not mentioned in the
tweet, we utilize ConceptNet (Speer et al., 2017)
to enhance pattern matching. After replacement,
we label the new instances with None. 2) Target
Negated (Negated). It is constructed by negating

the targets and keeping the tweets unchanged. The
stance labels flip accordingly. For entity-like tar-
gets, we add ‘NOT’ in front of the original targets.
For ‘Atheism’, we add the negated target ‘Theism’.
For claim-like targets, we add ‘not’ into the sen-
tence to negate the claim.

Out-of-distribution Hard Set. Donald Trump
(DT). It comes from SemEval2016 task B with an
unseen target ‘Donald Trump’ in task A, which
is used to test the generalization ability of stance
detection models.

3.2 Evaluation Metrics

Similar to previous work, we adopt the macro-
average of F1-score of Favor and Against across
targets as the evaluation metric (see Appendix A.2).
We report the averaged results of 5 random seeds
for all experiments. For details of implementation,
please see Appendix A.3.

3.3 Baselines

Stance Detection Models Methods on Stance de-
tection: 1) BERTwt (wt: with target) and BERTnt

(nt: no target), which are based on BERTbase.
BERTnt only uses the tweet as input while BERTwt

takes the <target, tweet> pair as inputs. 2) TAN (Du
et al., 2017), which is an LSTM based model that
incorporates target-specific attention. We adopt the
BERT version of TAN (Kaushal et al., 2021). 3)
Stancy (Popat et al., 2019), which is a BERT based
model with an additional cosine similarity score be-
tween the tweet representation and the target-tweet
pair representation.

Debiasing Models Apart from sophisticated
stance detection models, we also compare with
recent debiasing methods for natural language in-
ference and fact verification tasks. These methods
are: 1) Product-of-expert (PoE) (Clark et al., 2019),
which combines the learned probabilities of a bias-
only model and a full model using PoE. 2) LMH
(Clark et al., 2019), which explicitly determines
how much to trust the bias in PoE and employs
an entropy-based regularization to encourage the
bias component to be non-uniform. 3) E2E PoE
(Karimi Mahabadi et al., 2020), which proposes
an end-to-end training version of PoE. 4) Conf-
Reg (Utama et al., 2020a), which utilizes signals
from bias models to scale the confidence of models’
predictions.
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Models Original TOF PMI OT
BERTnt 67.84 73.9 50.8 38.15
BERTwt 69.21 85.56 51.66 42.62
TAN 68.44 86.51 59.31 43.88
Stancy 70.3 95.34 59.78 44.67
PoE 68.96 94.06 55.15 41.53
LMH 64.88 82.69 47.46 33.81
E2E-PoE 61.68 84.88 53.93 39.08
Conf-Reg 70.24 90.45 61.26 41.16
SSR (ours) 71.36 96.47 56.08 46.58

Table 3: Results on the SemEval test dataset and three
subsets. The average of FFavor and FAgainst is adopted
as the evaluation metric. For comparison with other
stance detection models on each target, please refer to
Table 6 in Appendix.

4 Results and Analysis

4.1 Main Results

4.1.1 On Original Test Set and its Subsets
As shown in Table 3, while existing stance models
achieve remarkable progress on the original test
set, models that consider targets (BERTwt, Stancy)
only slightly outperform models that do not con-
sider targets (BERTnt, TAN). This indicates that
existing dataset bias allows stance detection model
to achieve good results solely relying on tweets.
While debiasing models tend to down-weight bias
features and samples, useful features for the stance
detection task are inevitably influenced, leading to
the performance drop of PoE, LMH , and E2E-PoE
on original test set. On the contrary, our model
improves BERTwt by 2.15% on the original test
sets, showing that utilization of stance reasoning
sub-tasks could facilitate learning better features
for stance detection.

Though TOF is constructed by selecting samples
from the test test where three BERTnt models with
random seeds fail, a new BERTnt model with an-
other seed still reaches 73.9%. This implies that
failure examples may not transfer across the same
models with different initialization. Nevertheless,
models explicitly considering targets outperform
those not considering the target by a large margin.

By comparing SSR and BERTwt, we find that
over 70% improvement of SSR over BERTwt on
original test sets comes from the PMI subset. This
shows that by considering the simplified stance
reasoning process, SSR is less likely to rely on bias
features.

On OT set, we can see that BERTnt performs
poorly as it does not consider target and thus is not
capable of capturing implicit mention of targets. In

Model DT Replaced Negated
BERTnt 11.42 32 17.59
BERTwt 28.12 47.08 17.38
TAN 27.09 35.55 20.05
Stancy 32.34 49.5 19.67
PoE 19.42 46.7 19.54
LMH 36.76 34.97 25.36
E2E-PoE 33.72 33.01 19.98
Conf-Reg 36.27 34.17 19.51
SSR (ours) 37.66 59.7 17.6

Table 4: Performances of different models on DT, Re-
placed, Negated test sets. Note that, results on DT are
not directly comparable to those reported in (Allaway
et al., 2021; Liang et al., 2022) as they used 4,163 pairs
for training while we only use 2,914 pairs.

contrast, SSR explicitly models whether the target
is mentioned in the tweet and achieves the best
performance.

4.1.2 On New Test Sets
To test whether stance detection models understand
the task instead of solely fitting the dataset, we
present results of several representative stance de-
tection models in Table 4.

On DT set, we note that BERTnt performs the
worst on the out-of-domain dataset. BERTwt and
TAN perform slightly better. Our SSR model per-
forms better than other models, which suggests
that leveraging intermediate tasks could help learn
more transferable features for cross-target gener-
ation. For debiasing methods, PoE and E2E-PoE
work well on in-distribution hard sets while per-
forming worse on out-of-distribution test sets, and
vice versa.

As the Replaced set is to test awareness to
change of the target, BERTwt, Stancy and SSR
that explicitly capture interactions between the tar-
get and the tweet, outperform other models by a
large margin.

On the Negated set, while LMH model achieved
the highest performance of 25.36%, many other
models only tangle around 20%, showing that those
models can not tackle with negations of semantics
in the targets. Our model performs worse on this
set as negated targets and original targets will have
the same labels in both sub-tasks.

4.2 Ablation Study

As shown in Figure 5, both the TMT and STT sub-
tasks contribute to the performance on the original
test set. This indicates that appropriate subtasks
could help learns better features for the main task.
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Models Orig. TOF PMI OT
SSR 71.36 96.47 56.08 46.58

w/o tmt 70.10 91.91 62.21 44.64
w/o stt 70.65 92.47 63.4 47.77

SSR w/o MIMax 70.36 88.88 66.33 45.79
w/o tmt 68.97 93.7 63.58 41.01
w/o stt 68.99 91.08 63.39 45.25

DT Replaced Negated
SSR 37.66 59.7 17.6

w/o tmt 37.61 57.37 19.58
w/o stt 32.64 48.95 18.24

SSR w/o MIMax 26.01 49.35 18.76
w/o tmt 34.83 44.77 20.22
w/o stt 29.5 49.01 18.71

Table 5: Ablation study on the proposed SSR model.
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Figure 3: Overlap of top features of different tasks ac-
cording to mutual information.

Adding MIMax further improves the performances
by 1%.

While on Negated set, both tasks fail to handle
the negation and lead to worse performance. As
the TMT task is capable of understanding implicit
mention of targets in the tweet, it is more useful
than the STT task on OT set. Since TMT and STT
can detect whether the target is changed, they both
contribute to performance gain on the Replaced
set. Generally, MIMax helps the SSR model learns
more genuine stance features and improves per-
formances on the TOF and DT set, where mutual
connections between tweets and opinion targets are
crucial, and either TMT or STT alone is not enough
to capture such connections.

4.3 Analysis
Intermediate reasoning tasks help reduce re-
liance on shortcut features. After obtaining syn-
thetic labels for these two subtasks, we conduct
qualitative analysis to show that subtasks could po-
tentially regularize the features used by the stance
detection task. As mutual information (MI) scores
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Figure 4: Performance of different models w.r.t the
training size.

between features and categories serve as a good
indicator of the importance of features, we first
collect bag-of-words features for N-grams in the
training set and sort those N-grams according to
their MI scores with the labels in corresponding
tasks. In Figure 3, we can see that both subtasks
have less than 60% overlap of the top 1000 features,
which means many important features used by the
stance detection task are not useful for these sub-
tasks. This could be seen as implicitly re-weighting
features used by the stance detection task based
on intermediate stance reasoning subtasks, which
hopefully will promote learning genuine features
instead of bias ones.

SSR requires less data for training. Previously,
(Dua et al., 2020) found that collecting intermediate
annotations for up to 10% training data can improve
the performance of a reading comprehension model
by 4-5%. Here, as annotations of intermediate tasks
could be automatically acquired without human an-
notations, we would explore whether incorporating
intermediate tasks could help reduce the demands
for training data. In Figure 4, we show that when
only 10% of training data is available, our model
outperforms BERTwt model by 3.3% on macro-F1.
In contrast, BERTwt model has to use 60% training
data to reach comparable performance. Thus, utiliz-
ing intermediate stance reasoning tasks could help
reduce the demand of training data and improve
the performance in low-resource stance detection
scenarios.

4.4 Case Study

We compare our model with two BERT baselines
to illustrate the target awareness provided by in-
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Tweet: Hilarity of the day: Hillary said she went 
'above and beyond' in transparency. Really?
What about the 30k deleted emails? #SemST

Target BERTwt BERTnt SSR

Hillary Clinton Against Against Against

Atheism Against Against None

(TMT: Yes, STT: Yes)

(TMT: No, STT: No)
✅✅ ✅

✅❌ ❌

Figure 5: Case study on target-awareness of different
models.

termediate subtasks. In Figure 5, we can see that
when the target is Atheism, which is not mentioned
in the tweet at all, both BERT baselines falsely
predict the stance as Against, which may owe to
the existence of the shortcut word ‘email’. In con-
trast, as the TMT task tells the model that the given
target is not mentioned in the tweet, and the STT
task shows that the tweet has no stance towards the
given target, our model could correctly predict the
stance label as None.

5 Related Work

5.1 Stance Detection

Recently, detection stances in texts from social me-
dia platforms have attracted a lot of attention. Com-
pared to traditional sentiment analysis tasks, stance
detection is more challenging as the given target
may not appear in the text. Inferring the relations
between the given target and the opinioned entity
usually requires rich world knowledge. In this pa-
per, we focus on the single target stance detection
on tweets where each tweet is given one target. Var-
ious methods (Augenstein et al., 2016; Du et al.,
2017; Popat et al., 2019) have been proposed to
model the inter-dependency between the target and
tweet. However, Kaushal et al. (2021) recently
noted that current stance detection models relied
heavily on bias features in existing stance detec-
tion datasets, which makes it necessary to develop
stance detection specific debiasing methods to com-
bat these biases.

In this work, we also study the problem of
dataset bias in stance detection and propose a novel
method incorporating simplified stance reasoning
process. Furthermore, we collect and construct
6 new test sets to facilitate evaluation of whether
stance detection models truly understand the task.

5.2 Debiasing Dataset Bias in NLP

Recently, the community has shown that neural
models can achieve good performances by lever-
aging dataset bias in various natural language un-
derstanding tasks, e.g. NLI (Gururangan et al.,
2018; Poliak et al., 2018), question answering (Mu-
drakarta et al., 2018), VQA (Agrawal et al., 2018),
machine translation, summarization, fact verifica-
tion (Schuster et al., 2019) and sentiment analysis
(Wang and Culotta, 2020, 2021; Kaushal et al.,
2021; Yan et al., 2021; Yang et al., 2021). Such
phenomenon mainly attributes that neural models
tend to utilize superficial features in the dataset
instead of understanding the semantics of underly-
ing tasks, e.g. NLI models usually exploits word
overlap and syntactic patterns, and even only use
features from the hypothesis for final predictions.

To mitigate dataset bias, one line of work (Clark
et al., 2019; Karimi Mahabadi et al., 2020; Utama
et al., 2020a; Ghaddar et al., 2021) implicitly
treated features learned by a smaller model or com-
mon model at earlier stages/layers as potential bias
features and down-weighted these features in the
main model. Another line of work adopted data
augmentation strategies to weaken the spurious cor-
relations between bias features and final labels. Be-
side, Tu et al. (2020) employed a multi-task learn-
ing based-approach by introducing auxiliary tasks
like paraphrase identification to avoid overfitting
to bias features. However, most previous methods
are task-agnostic, which failed to utilize the task
knowledge of the underlying task. To this end, Dua
et al. (2020); Shao et al. (2021) introduced man-
ual annotations of intermediate reasoning steps to
combat dataset biases.

In this work, we make the first attempt to in-
corporate stance reasoning steps to combat dataset
biases in stance detection. Our work differs in
the following ways (1) we introduce two simpli-
fied sub-tasks whose labels can be automatically
inferred instead of manual annotations (2) we nov-
elly implement two sub-tasks via maximizing the
mutual information between the tweet and the opin-
ioned target.

6 Conclusion

In this paper, we propose to utilize the stance rea-
soning process as task knowledge to guide the dis-
crimination between genuine and bias stance fea-
tures. To alleviate demands for token-level interme-
diate annotations, we simplify the stance reasoning
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process where labels for proposed subtasks can be
automatically inferred without additional annota-
tions. To evaluate whether stance detection models
understand the task from various aspects, we col-
lect and construct 6 new test sets. Empirical results
show that our model outperforms task-agnostic de-
biasing methods on 4/6 new test sets while main-
taining comparable performances to existing stance
detection models on in-domain datasets.
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A Appendix

A.1 In-domain Dataset

We train our model on the dataset from SemEval
2016 Task 6 Sub-task A. The dataset is comprised
of 4163 English tweets crawled from Twitter4 and
each is assigned with a target and a manually anno-
tated stance label towards that target. There are a
total of five targets in Sub-task A, which are Athe-
ism (AT), Climate Change is a real Concern (CC),
Feminist Movement (FM), Hillary Clinton (HC),
and Legalization of Abortion (LA).

A.2 Evaluation Metrics

Similar to previous work, we adopt the macro-
average of F1-score of Favor and Against across
targets as the evaluation metric. We report the aver-
aged results of 5 random seeds for all experiments.

Similar to previous work, we adopt the macro-
average of F1-score across targets as the evaluation
metric, which is calculated as:

FFavor =
2PFavorRFavor

PFavor +RFavor
(8)

FAgainst =
2PAgainstRAgainst

PAgainst +RAgainst
(9)

Fmacro =
2(FAgainst + FFavor)

2
(10)

where P and R are precision and recall. Then the
average of FFavor and FAgainst is calculated as the
final metrics Fmacro. Note that the final metrics
do not disregard the None class. By taking the
average F-score for only Favor and Against classes,
we treat None as a class that is not of interest. We
report the averaged results of 5 random seeds for
all experiments.

A.3 Implementation Details

We adopt the uncased version of BERTbase for all
our experiments. We fine-tune BERTbase model
with Adam optimizer. The dropout rate is set to 0.5
for all parameters. The learning rate is chosen from
{1, 2, 3, 4, 5} × 10−5 and batch size for training
is set to 8. We choose λ1 and λ2 from [0.1, 1.0]
with a step size of 0.1. Final choices of all hyper-
parameters are selected according to performance
on the validation set. λ1 and λ2 are set to 0.1 and
0.2 respectively. The learning rate is set to 5×10−5.

4https://www.twitter.com

A.4 Details for label acquisition of sub-tasks

To acquire labels for the TMT task, we seek to ex-
pand the original targets with external resources.
Specifically, we take two structured knowledge
bases, ConceptNet and WikiData. ConceptNet
mainly contains commonsense knowledge, Wiki-
Data mainly contains social knowledge. They com-
plement each other and supply rich target related
knowledge for target understanding. Each of the
targets in the dataset is treated as a key for search-
ing for the most related commonsense knowledge
from them. In this way, we augment each target
with external knowledge base. Then given a tweet,
we use the augmented targets to performance exact
string matching, if any of the augmented targets
locates in the tweet, the TMT label would be Yes.
Otherwise, the TMT label is set to No.

To obtain labels for STT task, given a <target,
tweet> pair and its corresponding stance label, if
the stance is Favor or Against, then the STT label
would be Yes. Otherwise, the STT label is set to
No.

As shown above, the label acquisition for TMT
and STT subtasks are easy and straightforward,
which does not involve additional mannual annota-
tion. Thus, it is practical to incorporate the above
subtasks as parts of the simplified stance reasoning
process.

A.5 Detailed results on original dataset

In Table 6, we compare our model with recent
stance detection models. We can see that our SSR
model performs comparably to existing stance de-
tection models that utilized external stance detec-
tion datasets, lexicons and tweet corpora.

A.6 Additional Analysis

Bias is ubiquitous in multiple tasks on the
same dataset. Similarly, we apply BERTnt and
BERTwt model on the TMT and STT tasks respec-
tively. As shown in in Table 7, BERTnt could
achieve relative performance even when no target
information is utilized for those target-aware tasks,
suggesting the ubiquitous of bias on different tasks
in this dataset. Moreover, We can see that for the
TMT task, the discrepancy between BERTnt and
BERTwt is 8.7%, significantly larger than that of
the STT task and stance detection task. This shows
that TMT requires more interactions between the
target and the tweet, which may account for the bet-
ter performances on OT and Replaced hard sets
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Models AT CC FM HC LA Overall
AT-JSS-Lex (Li and Caragea, 2019) 69.22 59.18 61.49 68.33 68.41 72.33
CKEMN (Du et al., 2020) 62.69 53.52 61.25 64.19 64.19 69.74
MT-DNNSDL (Schiller et al., 2020) - - - - - 70.18
MT-DNNMDL (Schiller et al., 2020) - - - - - 71.81
MoLE (Hardalov et al., 2021) - - - - - 72.08
ASDA (Li and Caragea, 2021) 74.93 - 56.43 67.01 61.60 -
MeLT (Matero et al., 2021) 66 71 63 67 66 -
TAN 69.72 44.32 53.26 55.79 62.75 68.44
Stancy 66.08 54.67 59.91 62.0 58.69 70.3
BERTnt 63.96 48.88 53.97 60.59 60.24 67.84
BERTwt 65.36 44.91 48.25 65.09 54.33 69.21
SSR 63.17 56.88 59.68 62.69 57.33 71.36
SSR(-MIMax) 70.09 54.0 56.68 65.64 62.04 70.36

Table 6: Results on the SemEval dataset. The macro average of FFavor and FAgainst is adopted as the evaluation
metric. The results in bold are the best in corresponding columns. The underlined results are the second best in
corresponding columns.

Task BERTnt BERTwt ∆

TMT 83.39 92.09 8.70
STT 80.97 83.85 2.88
Stance 70.1 72.4 2.3

Table 7: Accuracy of BERTnt and BERTwt on different
tasks.

when adding the TMT task instead of the STT
task. Though two auxiliary sub-tasks have their
own dataset bias to some extent, combing them
with the main task still boosts the performance of
the stance detection on both original and newly
constructed hard sets. This supports our motiva-
tion of leveraging intermediate tasks to learn robust
features for the main task.


