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Abstract

Aspect-based sentiment analysis (ABSA) has
drawn more and more attention because of its
extensive applications. However, towards the
sentence carried with more than one aspect,
most existing works generate an aspect-specific
sentence representation for each aspect term
to predict sentiment polarity, which neglects
the sentiment relationship among aspect terms.
Besides, most current ABSA methods focus on
sentences containing only one aspect term or
multiple aspect terms with the same sentiment
polarity, which makes ABSA degenerate into
sentence-level sentiment analysis. In this paper,
to deal with this problem, we construct a hetero-
geneous graph to model inter-aspect relation-
ships and aspect-context relationships simul-
taneously and propose a novel Composition-
based Heterogeneous Graph Multi-channel At-
tention Network (CHGMAN) to encode the
constructed heterogeneous graph. Meanwhile,
we conduct extensive experiments on three
datasets: MAMS-ATSA, Rest14, and Lap-
top14, experimental results show the effective-
ness of our method.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a sen-
timent analysis task, which aims to predict the sen-
timent polarity (e.g., POSITIVE, NEGATIVE, NEU-
TRAL) towards the given aspect term in a sentence.
For example, there are two aspect terms decor and
food in the sentence: The decor is not a special
at all but their amazing food makes up for it, and
these two aspect terms will be assigned with NEG-
ATIVE and POSITIVE sentiment polarities respec-
tively. Since the sentiments expressed by these two
aspect terms are opposite in polarity, it is unreason-
able to assign a sentence-level sentiment polarity.
In this regard, ABSA can provide more detailed
sentimental predictions compared with sentence-
level sentiment analysis.

∗∗Corresponding author

In recent years, neural network-based methods
(Tang et al., 2016; Wang et al., 2016; Ma et al.,
2017; Chen et al., 2017) are used to tackle ABSA
task and achieve promising performance. Subse-
quently, with the rise of contextual embedding, con-
textualized language models, such as BERT (De-
vlin et al., 2019), are introduced into ABSA and
boost performance. Additionally, in order to utilize
the dependency tree information, a lot of graph-
based methods (Zhang et al., 2019; Sun et al., 2019;
Huang and Carley, 2019; Wang et al., 2020) are pro-
posed to tackle this task by encoding both contex-
tual and dependency information simultaneously.
However, most of these methods focus on the
datasets, in which most sentences consist of only
one aspect or multiple aspects with the same senti-
ment polarity. Under these circumstances, aspect-
based sentiment analysis degenerates into sentence-
level sentiment analysis. Existing ABSA methods
based on these datasets can hardly adapt to the situa-
tion, where multiple aspect terms in a sentence with
multiple different sentiment polarities. Thus, the
fine-grained sentiment analysis task derived from
ABSA towards the multi-aspect multi-sentiment sit-
uation, Multi-aspect Multi-sentiment Classification
(MAMSC), is worthy of exploration(Jiang et al.,
2019). MAMSC is more challenging than ABSA,
and each sentence contains at least two aspects with
different sentiment polarities in MAMSC.

Besides, most existing methods neglect to con-
sider inter-aspect relationships when predicting sen-
timent polarity. Especially in MAMSC, the main
challenge is that the sentiment polarities of some
aspects in a given sentence can not be judged solely
relied on the context and may be guided by the sen-
timents of other aspects. Inter-aspect relationships
will play an essential role in identifying sentiment
polarity in this case. Though InterGCN (Liang
et al., 2020) claims to have considered inter-aspect
relationships, what it considered is merely the dis-
tance relationship among aspects and neglecting
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the semantic relationship between every two as-
pects, which is essential when indicating the re-
lationship between two aspects. Furthermore, In-
terGCN ignores the heterogeneity of aspect terms
and context words and the different importance of
surrounding nodes when aggregating information.

To sum up, ABSA faces the following chal-
lenges: (1) do not pay special attention to the multi-
aspect multi-sentiment situation; (2) do not incor-
porate semantic relationships among aspects into
predicting sentiment polarity; (3) do not introduce
heterogeneity and attention mechanism when using
graph-based models to predict sentiment polarity.

To deal with the challenges mentioned above, we
first construct a heterogeneous graph with distinct
node and edge types to represent inter-aspect rela-
tionships, aspect-context relationships, and node
heterogeneity simultaneously in a concrete way.
Unlike InterGCN, we treat aspect terms and con-
text words as different types of nodes, and mean-
while, the edges in our heterogeneous graph are
attributed. We utilize dependency tags as the at-
tributes of aspect-context edges. The shortest de-
pendency path between each two aspect terms is the
representation of each inter-aspect edge attribute,
which signifies the semantic relationship between
these two aspect terms. Then we propose a novel
model called Composition-based Heterogeneous
Graph Multi-channel Attention Network (CHG-
MAN) to capture important information conveyed
by constructed heterogeneous graph. Our proposed
CHGMAN equipped with a multi-channel atten-
tion mechanism can take edge features, node types,
and node features into account concurrently and
aggregate composition information of nodes and
node types in terms of importance, which is con-
ducive to capturing the information expressed by
our heterogeneous graph and making the correct
predictions. The main contributions of this paper
can be summarized as follows:

Heterogeneous Graph: to the best of our knowl-
edge, this is the first attempt to model multi-aspect
multi-sentiment classification with heterogeneous
graph networks to capture both inter-aspect rela-
tionships and context-aspect relationships.

Multi-channel Attention: we propose a novel
model Composition-based Heterogeneous Graph
Multi-channel Attention Network (CHGMAN) to
incorporate inter-aspect relationship information,
node and node type information simultaneously for
predicting sentiment polarity.

Extensive Experiments: we conduct exten-
sive experiments over multi-aspect multi-sentiment
datasets: MAMS-ATSA, Rest14, and Laptop14,
and the results show the effectiveness of our
method. 1

2 Related Work

2.1 Graph-based Models

Recently, graph neural networks (GNNs) have been
introduced into ABSA and achieved promising per-
formance. ASGCN (Zhang et al., 2019) employs
graph convolutional network (GCN) to capture de-
pendency syntactical information. CDT (Sun et al.,
2019) incorporates GCN and BiLSTM over the
dependency information and contextual informa-
tion of the sentence. InterGCN (Liang et al., 2020)
exploits GCN to extract both aspect-focused and
inter-aspect information for specific aspects, but
it only considers distance relations among aspect
terms. RGAT (Wang et al., 2020) designs a graph
attention networks (GAT) derivative to utilize de-
pendency tag information by taking them as gates
to control information flow. However, all these
models do not utilize inter-aspect semantic rela-
tionships and neglect the different roles of aspect
terms and context words.

2.2 Multi-aspect Multi-sentiment

There exist several works that tend to model inter-
aspect relationships to boost the performance of
ABSA. IARM (Majumder et al., 2018) utilizes
memory networks to incorporate the neighboring
aspects-related information to predict the sentiment
polarity of the given aspect term. InterGCN models
inter-aspect distance relationships to help predict
sentiment polarity in the presence of other aspects.
SDGCN (Zhao et al., 2020) utilizes GCNs to cap-
ture sentiment dependencies between aspects. Be-
sides, MIAD (Hazarika et al., 2018), STAGE (Ma
et al., 2019) and Joint+PERT (Zhou et al., 2020)
also tend to model relationships among aspects by
using LSTM based model and attention mechanism.
CapsNet (Jiang et al., 2019) releases a new dataset
dedicated to the multi-aspect multi-sentiment situa-
tion and proposes a model to employ capsule net-
work and capture the intricate relationship between
aspect terms and context words. Nonetheless, all
of these existing works do not take edge informa-
tion, such as dependency syntactic and semantic

1The code is available at https://github.com/hankniu01/ch
gman

https://github.com/hankniu01/chgman
https://github.com/hankniu01/chgman
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Figure 1: The overall architecture of our proposed method (left). The heterogeneous graph construction and
composed dependency tags is shown in right.

relationship among aspects into consideration, and
heterogeneity between aspect terms and context
words is also ignored.

3 Methodology

Multi-aspect multi-sentiment classification can
be formulated as follows: given a sentence S
with n words {w1, w2, ..., wn} and a given as-
pect term set A = {A1, A2, ..., Aκ} containing κ
aspect terms. And Ak = {wa

φ, w
a
φ+1, ..., w

a
φ+τ}

with τ ∈ [1, n − φ] is a sub-string of sentence S,
which denotes one element of the given aspect term
set A. The annotation a represents aspect. This
task aims at predicting the sentiment polarity y
{POSITIVE, NEUTRAL, NEGATIVE} expressed on
each aspect term included in the given aspect term
set A of the sentence S. As shown in Figure 1(left),
our proposed methods consist of three blocks: (1)
Encoding Block; (2) Heterogeneous Graph Con-
struction Block; (3) Prediction Block. In Section
3.1 to 3.3, we detail each block.

3.1 Encoding Block

As shown in Figure 1(left), we encode context
words, aspect terms, and composed dependency
tags, preparing for constructing heterogeneous
graphs.

3.1.1 Contextual Encoder
For a given input sentence S = {w1, w2, ..., wn}
with a aspect term set A = {A1, A2, ..., Aκ} ,
we first employ pre-trained BERT (Devlin et al.,
2019) as the contextual encoder to obtain hid-
den contextual representation H of the given sen-
tence S. The embeddings of context words Hw =
{h1, h2, ..., hnw} and aspect term embeddings HA

= {hA1 , hA2 , ..., hAκ} are derived from H . Here,
nw is the number of context words in the input
sentence S. Specifically, the embedding of a spe-
cific aspect termAk is hAk

= {haφ, haφ+1, ..., h
a
φ+τ},

which is the collection of all the embeddings of
words belonging to Ak.

3.1.2 Composed Dependency Tags
Additionally, we design composed dependency tags
to fully utilize dependency relation tag informa-
tion based on the aspect-oriented dependency tree
(Wang et al., 2020). Concretely, as shown in Figure
1(right), the form of composed dependency tag rep-
resentation is rAk,i = dep1 : dep2 : ... : depm : m,
where m represents the hops between aspect term
node Ak and neighbor node i, and depm represents
the original dependency tag between two nodes
generated by the Biaffine Parser (Dozat and Man-
ning, 2017). Then, we employ a trainable embed-
ding lookup table as a dependency embedding layer.
We feed a set of composed dependency tagsRtag =
{rAk,1, rAk,2, ..., rAk,M} into dependency embed-
ding layer to initialize composed dependency tag
representations Etag = {eAk,1, eAk,2, ..., eAk,M},
where M is the number of dependency relation
tags. We have different sets of composed depen-
dency tags and their representations for different
aspect terms.

3.2 Heterogeneous Graph Construction Block

In this section, we construct a heterogeneous graph
to encode inter-aspect relationships and aspect-
context relationships effectively.

3.2.1 Shortest Dependency Path
To discover the semantic relationship between as-
pect terms, we extract the shortest dependency path
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(SDP) between aspect terms to represent the rela-
tionship. SDP can indicate semantic relationships
effectively between two words and ignore irrele-
vant information, which has been widely used in
relation extraction (Bunescu and Mooney, 2005).
All tokens on SDP between aspect terms Aξ and
Aη are represented as SDPξη. Furthermore, the
features of all tokens belonging to SDPξη are ex-
tracted from H derived from pre-trained BERT
through selection operating. The selection operat-
ing is based on the index of the token belonging to
SDP in the sentence. The SDPξη representation
HSDP

ξη =
∑

[hSDP
1 , hSDP

2 , ..., hSDP
t ], where t is

the number of tokens in the SDP.

3.2.2 Heterogeneous Graph Construction
The heterogeneous graph contains two types of
nodes: aspect term node and context node. The
feature of each aspect term node is hAk

, which
is the element of aspect embedding set HA. The
feature of each context node is derived from word
embedding Hw = {h1, h2, ..., hnw}. Besides, there
exist two types of edges in our constructed het-
erogeneous graph: composed dependency edge
and SDP edge. Both of these edges are feature
. The feature of each composed dependency edge
is derived from composed dependency tag represen-
tations Etag = {eAk,1, eAk,2, ..., eAk,M}, and the
feature of each SDP edge between aspect terms Aξ

and Aη is HSDP
ξη . A simple case of heterogeneous

graph construction is shown in Figure 1(right).

3.3 Prediction Block

In the prediction block, we utilize the constructed
heterogeneous graph to make predictions. First,
we propose a Composition-based Heterogeneous
Graph Multi-channel Attention Network (CHG-
MAN) and feed the constructed heterogeneous
graph with its features into CHGMAN. Then, the
output layer receives features of aspect terms out-
put by CHGMAN and predicts sentiment polarities.

3.3.1 Composition-based Heterogeneous
Graph Multi-channel Attention
Network (CHGMAN)

To encode our constructed heterogeneous graph
effectively, we propose a novel multi-channel at-
tention network for heterogeneous graphs, which
concerns the information of edges, nodes, and node
types simultaneously. Figure 2(left) presents the
whole view of CHGMAN. Concretely, the goal of
CHGMAN is to aggregate information from each

neighbor node i to update the representation of the
target node t. And the process can be divided into
three phases: (1) Multi-channel Attention Calcula-
tion, (2) Heterogeneous Massage Passing, and (3)
Composed Aggregation.

Multi-channel Attention Calculation. In first
phase, CHGMAN tend to calculate the attention
score matrices between target node t and each
neighbor node i ∈ N (t). Due to heterogeneity,
based on considering neighbor node features, we
further tend to incorporate the information of node
type and edge feature into our model. Thus, we
design a multi-channel attention mechanism to take
node types and edge features into consideration in
the phase of attention calculation. Concretely, this
phase of CHGMAN is decomposed into three chan-
nels: target-to-neighbor channel, target-to-edge
channel and target-to-type channel to calculate at-
tention score matrices from different sides. Then,
CHGMAN exploits a multi-channel fusion layer
to fuse attention score matrices from each channel
and get a weighted combination of attention score
matrices. Plus, we also employ a multi-head atten-
tion mechanism (Vaswani et al., 2017) to enhance
the representation ability of CHGMAN.

Firstly, we map the feature of target node t into
a query vector Qu

Ak
at u-head attention, and hlt is

the representation of target node t at l-th layer.

Qu
t = LinearQ,u

t

(
hl
t

)
, (1)

where LinearQ,u
t is the linear projection for hlt.

In order to exploit information from neighbor node
features, neighbor node types, and edges features,
we map the feature of them into key vectors for
each channel. Specifically,

Ku
neigh = LinearK,u

neigh

(
hneigh,l
i

)
, (2)

Ku
edge = LinearK,u

edge

(
hedge,l
t,i

)
, (3)

Ku
type = LinearK,u

type

(
htype,l
i

)
, (4)

where LinearK,u
neigh, LinearK,u

edge and

LinearK,u
type are linear projections for each

representations, and hneighi represents the feature
of neighbor node i. Here, neighbor nodes consist
of aspect term nodes and context nodes. Besides,
hedget,i is the representation of edge feature between
the target node t and neighbor node i. There
are two kinds of edges: inter-aspect edges and
aspect-context edges. For inter-aspect edges, we
utilize SDP representation HSDP

ξη as features of
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Figure 2: Overview of the proposed CHGMAN (left). Multi-channel attention calculation (right).

inter-aspect edges, and for aspect-context edges,
we employ composed dependency tag represen-
tations. Additionally, the type representation
of neighbor node i is htypei , and there exist two
kinds of type representations corresponding to
context node and aspect term node. We introduce a
trainable embedding lookup table to initialize type
representations.

Next, CHGMAN needs to calculate the correla-
tions between query vectors and key vectors by dot
product in each channel. The final multi-channel
attention score Attu(t, i) is computed as follows:

Attu(t, i) = Softmax
∀i∈N (t)

(
αmcf,u
t,i

)
, (5)

αmcf,u
t,i =Mcf

(
αneigh,u
t,i , αedge,u

t,i , αtype,u
t,i

)
= Φc

([
αneigh,u
t,i , αedge,u

t,i , αtype,u
t,i

])
= Φc

([
(Qu

t )
⊤Ku

neigh√
d

,
(Qu

t )
⊤Ku

edge√
d

,
(Qu

t )
⊤Ku

edge√
d

])
,

(6)

where [αneigh,u
Ak,i , αedge,u

Ak,i , αtype,u
Ak,i ] is the stacked at-

tention matrices of different channels, and Mcf
denotes a multi-channel fusion layer with param-
eters Φc, which is a learnable parameter to adjust
contributions of input attention matrices automati-
cally. We apply a scaling factor 1√

d
on αu

t,i, which
is beneficial to stabilize model training (Vaswani
et al., 2017), and d is the dimension of hidden state.

Heterogeneous Massage Passing. Parallel to
the computation of multi-channel attention, CHG-
MAN also passes information from neighbor nodes
to the given target node. Taking into account the
heterogeneity of nodes, we would like to incor-
porate the representations of node types attached
with node features into the message passing pro-
cess. Specifically, for target node t and its neighbor

nodes i ∈ N (t), the multi-heads message is calcu-
late as follows:

Msguneigh(t, i) = LinearM,u
neigh

(
hneigh,l
i

)
, (7)

Msgutype(t, i) = LinearM,u
type

(
htype,l
i

)
. (8)

To obtain the u-th message head Msguneigh(t, i)
andMsgutype(t, i) from neighbor node features and
the type representations of neighbor nodes, CHG-
MAN employs linear projections LinearM,u

neigh and

LinearM,u
type to project them into message vectors.

Composed Aggregation. After multi-channel
attention calculation and heterogeneous message
passing, CHGMAN needs to aggregate messages
from neighbor nodes to the given target node t.
Firstly, we employ a circular correlation as a com-
position operation (Vashishth et al., 2020; Nickel
et al., 2016) to combine the messages from node
features and node type representations. The opera-
tion is computed as follows:

Msgucorr(t, i) = ψ(Msguneigh(t, i),Msgutype(t, i)) (9)

= F−1
(
F(Msguneigh(t, i))⊙F(Msgutype(t, i))

)
,

where Msgucorr(t, i) is the composed message
representation from neighbor node i, ψ is the cir-
cular correlation operation, and F(·) and F−1(·)
denote the Fast Fourier Transform (FFT) and its
inverse. The F(·) is the complex conjugate of F(·),
and ⊙ denotes the Hadamard product.

Then, we aggregate messages from neighbor
nodes and update the target node representation
The aggregate process at l-th layer is

hl+1
t = ||Uu=1

∑
i∈N (t)

(Attu(t, i) ·Msgucorr(t, i)) . (10)
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Dataset
Positive Neutral Negative MM Statistics

Train Test Train Test Train Test Train Size Train MM Test Size Test MM Total Size Total MM
MAMS-ATSA 3380 400 5042 607 2764 329 11186 11186 1336 1336 12522 12522

Rest14 2164 728 807 196 637 196 3608 2594 1120 835 4728 3429
Laptop14 994 341 870 128 464 169 2328 1396 638 379 2965 1775

Table 1: Statistics of MAMS-ATSA, Rest14, and Laptop14 datasets. (Train|Test|Total) Size and (Train|Test|Total)
MM denote the number of instances and multi-aspect multi-sentiment instances in the training, testing, and overall
(sum of training and testing) datasets, respectively.

We also incorporate multi-heads attention mech-
anism into CHGMAN, and ||Uu=1xu denotes the
concatenation of vectors from x1 to xU . The aggre-
gate process at l-th layer is calculated as follows:

3.3.2 Output Layer
In the end, we obtain the output feature of the given
target aspect term node Ak from CHGMAN as the
final representation hfinal. Then, we feed hfinal
into a fully connected softmax layer and map it to
probabilities over the different sentiment polarities.

P (y = c) = softmax(WPhfinal + bP ), (11)

whereWP and bP are the weight matrix and bias,
respectively. P ∈ RC is the probability distribu-
tion for the sentiment polarity of a specific aspect
term, where C is the set of sentiment classes. The
training objective is to minimize the standard cross-
entropy loss with L2-regularization:

L(Θ) = −
∑

(S,A)∈D

log(y = c) + Λ||Θ||2, (12)

where D is the set of training data, Θ represents
all trainable parameters, and Λ is the coefficient of
the L2-regularization term.

4 Experiments

4.1 Datasets and Experiment Settings

To verify the effectiveness of our proposed model,
we conduct experiments on MAMS-ATSA, Rest14,
and Laptop14. MAMS-ATSA is released by (Jiang
et al., 2019), all sentences in MAMS-ATSA con-
tain multiple aspect terms, and at least two of them
with different sentiment polarities. Also, the start
and end positions of each aspect term in a sentence
are provided. Rest14 and Laptop14 (Pontiki et al.,
2014) have been widely used, but not all sentences
have multiple aspect terms in these two datasets.
Statistics of these datasets are displayed in Table 1,
where (Train|Test|Total) Size and (Train|Test|Total)
MM denote the number of instances and multi-
aspect multi-sentiment instances on the training,
testing, and overall (sum of training and testing)
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Figure 3: Statistics of multiple aspects over MAMS-
ATSA, Rest14, and Laptop14 datasets. The number
on the x-axis indicates the number of aspects in each
instance in the dataset.

datasets, respectively. Each multi-aspect multi-
sentiment instance contains multiple aspects and at
least two aspects with different sentiment polarities.
Additionally, we count the distribution of instances
with the different number of aspects in the three
datasets, which is shown in Figure 3. It can be seen
that in the case of multiple aspects, instances with
two or three aspects account for the majority. And,
in MAMS-ATSA, there is no instance with only
one aspect.

We utilize the last hidden states of the pre-trained
BERT-base model for word representations (Devlin
et al., 2019), the BERT containing 12 hidden layers,
and 768 hidden dimensions for each layer. More-
over, the dimensions of the composed dependency
tag embedding and type embedding are also initial-
ized as 768. The hidden dimension of CHGMAN
is 128. The dropout rate is 0.2. The number of
the epoch is 30. We use Adam optimizer (Kingma
and Ba, 2015) while training with the learning rate
initialized by 0.00005. Our code will be released
later.

4.2 Compared Methods
To evaluate our proposed model CHGMAN, we
compare it with the following a series of base-
lines. TD-LSTM (Tang et al., 2016) utilizes
LSTMs to model bidirectional contextual informa-
tion. ATAE-LSTM (Wang et al., 2016) tends to
combine learned attention embeddings with LSTM.
IAN(Ma et al., 2017) is introduced to learn the
coarse-grained attention for prediction. MIAD
(Hazarika et al., 2018) simultaneously classifies
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Model
MAMS-ATSA Rest14 Laptop14

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

TD-LSTM 74.60♭ - 78.00♮ 66.73♮ 71.83♮ 68.43♮

ATAE-LSTM 77.05♭ - 77.20♯ - 68.70♯ -
IAN 76.60♭ - 78.60♯ - 72.10♯ -

RAM - - 80.23♯ 70.80♯ 74.49♯ 71.35♯

GCAE 77.59♭ - 77.28♯ - 69.14♯ -
IARM 74.48* 73.66* 80.00 - 73.80 -
MIAD - - 79.00 - 72.50 -

ASGCN 44.06* 50.39* 80.77♯ 72.02♯ 75.55♯ 71.05♯

CDT 76.77* 75.77* 82.30♯ 74.02♯ 77.19♯ 72.99♯

Joint+PRET - - 81.96 71.80 73.04 69.16
STAGE - - 80.10 - 73.10 -
BERT 82.22♭ - 85.62♯ 78.28♯ 77.58♯ 72.38♯

§SDGCN - - 83.57 76.47 81.35 78.34
§InterGCN 82.49* 81.95* 85.45* 77.64* 78.06* 73.83*
§CapsNet 83.39♭ - 85.93 - - -
§RGAT 83.16* 82.42* 86.25* 79.95* 78.21 74.07

§CHGMAN (Ours) 85.05 84.29 86.88 81.62 81.52 77.68

Table 2: Overall performance of different methods on MAMS-ATSA, Rest14, and Laptop14. The results indicated
by an asterisk(*) are reproduced by running the released code of the published paper.The results with ♮, ♯ and ♭ are
retrieved from (Liang et al., 2020), (Wang et al., 2020) and (Jiang et al., 2019) respectively. The other results except
for our model are from the results reported by other baseline papers. The results with § are fine-tuned based on
BERT(base).

all aspect terms in a sentence in pace with tempo-
ral dependency processing of corresponding sen-
tences by utilizing LSTM. RAM (Chen et al., 2017)
proposes to learn multi-hop attention on BiLSTM.
GCAE (Xue and Li, 2018) proposes a convolution
network combined with gating mechanisms to con-
trol sentiment flow. IARM (Majumder et al., 2018)
utilizes aspect-aware sentence representation and
memory network to fuse neighboring aspect infor-
mation. CapsNet (Jiang et al., 2019) proposes a
capsule network-based model to capture relation-
ships between aspects and contextual words. AS-
GCN (Zhang et al., 2019) combines BiLSTM to
capture contextual information regarding word or-
ders with a multi-layered GCNs. CDT (Sun et al.,
2019) encodes both dependency and contextual in-
formation by utilizing GCNs and BiLSTM. BERT
(Devlin et al., 2019) fine-tunes BERT model to pre-
dict the sentiment polarity. SDGCN (Zhao et al.,
2020) proposes a model based on GCNs to capture
sentiment dependencies among aspects. STAGE
(Ma et al., 2019) develops a two stage paradigm to
model multi-aspects by using attention mechanism.
Joint+PRET (Zhou et al., 2020) proposes a LSTM
based model and converts sentiment classification
to a sequence labeling problem to model relation-
ships among aspects. RGAT (Wang et al., 2020)
feeds reshaped syntactic dependency graph into
RGAT to capture long dependency information.

4.3 Overall Performance

Table 2 shows the overall performance of our model
and compared methods on three datasets, and the
main evaluation matrices are Accuracy and Macro-
averaged F1-score. The results demonstrate our
model outperforms all compared methods except
for the Macro-F1 of SDGCN on Laptop14. The per-
formance of CHGMAN is affected since MM size
in Laptop14 is small relatively (shown in Table
1). Our model exceeds all graph-based methods
on evaluation matrices, indicating our proposed
model is more effective than other graph-based
models. Compared with RGAT, our model takes
inter-aspect relationships into consideration. The
performance gain towards RGAT indicates that
inter-aspect relationships can help predict the sen-
timent polarity of the given aspect. Moreover, in
comparison with InterGCN, CapsNet, and SDGCN,
introducing attention mechanism, inter-aspect re-
lationship, aspect-context relationship, and hetero-
geneity can help our model to distinguish more
helpful information and enhance performance. All
these results denote that exploiting inter-aspect rela-
tionships, aspect-context dependency relationships,
and heterogeneity can improve performance.

4.4 Ablation Study

We conduct an ablation study to further analyze
the effectiveness of our model. The result of the



6834

Model
MAMS-ATSA Rest14 Laptop14

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
CHGMAN 85.05 84.29 86.88 81.62 81.52 77.68

CHGMAN w/o comp 84.37 83.89 86.61 80.45 80.25 76.29
CHGMAN w/o comp&edge 83.53 82.86 86.33 80.19 80.41 75.73
CHGMAN w/o comp&type 84.29 83.34 86.07 79.72 80.09 76.38

CHGMAN w/o hetero 83.69 83.29 86.16 79.03 80.09 76.17

Table 3: Results of ablation study. CHGMAN w/o X denotes the performance of our method after eliminating the
corresponding modules, and Y&Z represents deactivating modules Y and Z simultaneously. Additionally, comp,
edge, type, and hetero indicate circular correlation operation, target-to-edge channel, target-to-type channel, and
adopting homogeneous graphs instead of heterogeneous graphs constructed. These results are fine-tuned based on
BERT(base).

ablation study is shown in Table 3. CHGMAN
w/o comp denotes that CHGMAN removes the
circular correlation operation in the composed ag-
gregation process. The performance of CHGMAN
w/o comp is worse than CHGMAN, which in-
dicates conducting the circular correlation oper-
ation to combine node and its type features in
the aggregation process is effective and conducive
to performance improvement. Furthermore, on
the basis of CHGMAN w/o comp, we removes
the attention channel target-to-edge and target-to-
type respectively, which are written as CHGMAN
w/o comp&edge and CHGMAN w/o comp&type.
The performance of CHGMAN w/o comp&edge
and CHGMAN w/o comp&type are both inferior
than CHGMAN w/o comp, demonstrating adding
two additional channel target-to-edge and target-to-
type to target-to-neighbor is helpful and beneficial
to enhancing the handling ability of heterogeneous
information. The node types consist of contexts
and aspect terms, the performance difference be-
tween CHGMAN w/o comp and CHGMAN w/o
comp&type also shows the significance of iden-
tifying the information of other aspect terms and
contexts in the attention calculation phase, which
is conducive to the utilization of both information
concurrently. In the meantime, edge features are
also essential in the attention calculation phase,
target-to-edge channel can facilitate the usage of
inter-aspect relationships and aspect-context rela-
tionships by putting into consideration the features
on the edge. The performance of Laptop14 is not
clear enough in contrast to the other datasets since
the MM size in Laptop14 is less than the other
two, as seen in Table 1. CHGMAN w/o hetero
indicates that we eliminate the impact of heteroge-
neous graphs constructed and substitute them with
homogeneous graphs with edge features. That is to
say, we disregard inter-aspect relationships and con-
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(c). The attention distribution of target-to-type channel
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Figure 4: The attention distribution visualization of a
specific testing sample.

struct a homogeneous graph for each aspect term,
with just one type of node, but the architecture of
CHGMAN stays unaffected. The performance of
CHGMAN w/o hetero has declined in compar-
ison to CHGMAN, revealing the heterogeneous
graph our constructed is favorable to increasing the
efficacy of CHGMAN for MAMSC.

4.5 Attention Distribution Exploration

To qualitatively illustrate how CHGMAN improves
the performance in MAMSC. We post the atten-
tion distribution visualization of a testing sample,
which is demonstrated in Figure 4. The input sen-
tence is It’s sad that everything about this place
was great (even the service and decor) except for
the steak., there exist three aspect terms: service,
decor and steak, and sentiment polarity labels of
these three aspect terms are POSITIVE, POSITIVE

and NEGATIVE respectively. Figure 4(a) is the
attention distribution of target-to-neighbor, which
shows that for aspect term steak, target-to-neighbor
pays more attention to the context word sad, and
it is helpful to judge the sentiment polarity to a
certain degree. Whereas for service and decor,
target-to-neighbor also notices context words sad
and great, although it is ambiguous. Thus for the
sake of introducing aspect term nodes, target-to-
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Figure 5: The comparison results of different aspect
numbers on MAMS-ATSA and Rest14. The notation
M [N ] on the horizontal axis represent the number of
aspects (M) and the sample size of such a category (N).
These results are fine-tuned based on BERT(base).

neighbor pays more attention to steak to get more
guidance from inter-aspect relationships. As a pow-
erful supplement to target-to-neighbor, the atten-
tion distribution of target-to-edge is displayed in
Figure 4(b). For service and decor, target-to-edge
notices context words great and even, and aspect
term service is misled by sad, thus both of these
aspect terms pay attention to aspect term steak to
seek inter-aspect relationship guidance. In addi-
tion, for the steak, target-to-edge pays attention to
except for the steak, which is helpful to indicate
the NEGATIVE polarity what steak conveys. Figure
4(c) shows the attention distribution of target-to-
type. In this case, for node type, our model tends to
focus more on aspect term node to seek more help
from inter-aspect relationships, which is reasonable.
The attention distribution of overall disentangled
attention is shown in Figure 4(d), which is a com-
bination of these three attention terms. We can
recognize our model focus on those valuable con-
text words such as except when it tends to judge the
sentiment polarity of steak. For service and decor
that are not easy to distinguish, our model can com-
bine the information both from context words and
other aspect terms to make the right judgment.

4.6 Analysis of Multiple Aspects

To further analyze the performance of our model in
the multiple aspects situation, we separate each test
dataset into different subsets according to the num-
ber of aspects in each sentence. Figure 5 demon-
strates the test accuracy of CHGMAN and the com-
parison models RGAT and InterGCN for different
subsets on MAMS-ATSA and Rest14 (For Rest14,
we only consider sentences containing multiple
aspects and at least two aspect terms with differ-
ent sentiment polarities.). Figure 5(a) shows the
analysis of multiple aspects on MAMS-ATSA, and
Figure 5(b) shows Rest14. The horizontal axis rep-
resents the number of aspects, and the number in

square brackets is the sample size of such a cate-
gory in the dataset. The vertical axis represents the
accuracy score. We can observe that CHGMAN is
superior to RGAT and InterGCN on most subsets.
In the case of four aspects, InterGCN slightly out-
performs CHGMAN since Rest14 has fewer multi-
aspect multi-sentiment instances (see MM size in
Table 1), making it hard to fully demonstrate the
effect of the model. Overall, results indicate our
model is adept at capturing inter-aspect relationship
information when there exist multiple aspects.

5 Conclusion

In this paper, we construct a heterogeneous graph
for MAMSC and propose a novel CHGMAN to
tackle the heterogeneous graph. Our model pre-
dicts sentiment polarities by incorporating inter-
aspect relationships, aspect-context relationships,
and node heterogeneity. Moreover, our experi-
ments prove the effectiveness of our method.
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