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Abstract

Aspect-based sentiment analysis (ABSA) is a
fine-grained sentiment analysis task, which fo-
cuses on detecting the sentiment polarity to-
wards the aspect in a sentence. However, it is
always sensitive to the multi-aspect challenge,
where features of multiple aspects in a sentence
will affect each other. To mitigate this issue,
we design a novel training framework, called
Contrastive Cross-Channel Data Augmentation
(C3DA), which leverages an in-domain genera-
tor to construct more multi-aspect samples and
then boosts the robustness of ABSA models via
contrastive learning on these generated data. In
practice, given a generative pretrained language
model and some limited ABSA labeled data,
we first employ some parameter-efficient ap-
proaches to perform the in-domain fine-tuning.
Then, the obtained in-domain generator is used
to generate the synthetic sentences from two
channels, i.e., Aspect Augmentation Channel
and Polarity Augmentation Channel, which
generate the sentence condition on a given as-
pect and polarity respectively. Specifically, our
C3DA performs the sentence generation in a
cross-channel manner to obtain more sentences,
and proposes an Entropy-Minimization Filter
to filter low-quality generated samples. Exten-
sive experiments show that our C3DA can out-
perform those baselines without any augmen-
tations by about 1% on accuracy and Macro-
F1. Code and data are released in https:

//github.com/wangbing1416/C3DA.

1 Introduction

Sentiment Analysis (SA) is a typical Natural Lan-
guage Understanding (NLU) task to predict the
sentence-level sentiment polarities (Pang and Lee,
2007; Liu, 2012). However, since a single review
sentence always exists multiple polarities, Aspect-
based Sentiment Analysis (ABSA), a fine-grained

∗Work was done when Bing and Qihuang were interning
at JD Explore Academy.

†Liang Ding is the corresponding author.

sentiment analysis task (Ma et al., 2017; Fan et al.,
2018; Sun et al., 2019; Wang et al., 2020; Li et al.,
2021b; Zhang et al., 2022a), is further introduced
to detect the sentiment polarities towards given as-
pects (entities) in a review sentence. Gathering a
review "while the ambiance and atmosphere were
great, the food and service could have been a lot
better.", the sentiment polarities of "ambiance" and
"atmosphere" are Positive and we get Negative po-
larity for aspects "food" and "service".

It is crucial to capture the aspect-specific contex-
tual features for an ABSA model. Unfortunately,
as shown in the aforementioned example, the multi-
aspect challenge that there are multiple aspects in
a sentence always deteriorates the model’s gener-
alization, especially when the expressed polarities
of multiple aspect words in a sentence are opposite.
Meanwhile, since ABSA is a low-resource task, it
is hard to train a robust model under fewer samples.

Some existing works focused on the multi-aspect
challenge, such as Lu et al. (2011); Hu et al. (2019)
in which novel model structures were designed
to capture aspect-specific sentiment information.
Additionally, Jiang et al. (2019) manually col-
lected a large-scale high-quality multi-aspect multi-
sentiment (MAMS) dataset. Undoubtedly, the data-
centric MAMS is an effective approach to tackle
the multi-aspect problem, but the human-annotated
and non-expandable limitations still hinder the ro-
bust training for ABSA models. Therefore, given
limited labeled data, it is critical to investigate how
to collect more in-domain multi-aspect samples
automatically. On the other hand, capturing the
aspect-specific information from multi-aspect sen-
tences is also necessary for robust ABSA models.

In response to the aforementioned problems,
we propose a novel training framework, namely
Contrastive Cross-Channel Data Augmentation
(C3DA), to generate more in-domain multi-aspect
samples and train robust ABSA models based on
these generated data. Firstly, inspired by successful

https://github.com/wangbing1416/C3DA
https://github.com/wangbing1416/C3DA


6692

generative pretraining models (Raffel et al., 2020;
Lewis et al., 2020), we employ an representative
pretraining models T5 (Raffel et al., 2020) as the
multi-aspect data generator. In practice, due to the
limited ABSA labeled data, it is hard to fine-tuning
the entire T5 model effectively. Thus, we further
introduce some parameter-efficient methods, e.g.
prompt (Lester et al., 2021a), prefix (Li and Liang,
2021) and LoRA (Hu et al., 2022), to tune the T5
generator. In this way, a domain -specific genera-
tor is obtained and we can apply it to collect more
in-domain multi-aspect samples.

To be more specific, there are two channels
to generate expected multi-aspect samples in our
framework, i.e. Aspect Augmentation Channel
(AAC) and Polarity Augmentation Channel (PAC).
In the AAC, the generator is encouraged to gener-
ate the synthetic sentence towards the given sen-
tence and aspect, while in the PAC, the synthetic
sentence towards the given sentence and polarity
is obtained. To further boost the generated sam-
ples, we attempt to collect the multi-aspect sam-
ples in a cross-channel manner. Specifically, in
the first generation, the source sentence is fed to
the double channels and obtain an aspect-specific
sentence and a polarity-inverted sentence respec-
tively. In the second generation, both generated
sentences are injected to the another channel to
get the ultimate sentences. Finally, we propose an
Entropy-Minimization Filter (EMF) to filter some
low-quality generated samples. And a contrastive
training objective that can draw away the different
aspect’s embeddings in a sentence is also leveraged
to alleviate the multi-aspect problem and help train
the final robust ABSA model.

We conduct sufficient experiments on three pop-
ular ABSA datasets, i.e. Restaurant, Laptop (Pon-
tiki et al., 2014) and Twitter (Dong et al., 2014),
to prove that our C3DA framework can boost the
model’s robustness and predictive performance,
and outperform other NLP data augmentation
strategies. Specifically, with the help of our C3DA,
RoBERTa-based models can achieve averaged per-
formance improvement 1.28% and 1.62% in terms
of accuracy and macro-F1 respectively, while the
improvements of BERT-based models are also over
0.87% and 1.10%. Some in-depth discussions and
case studies are also executed. Contributions of
this paper are threefold:

• We recast the vanilla ABSA training scheme
with a data augmentation-based training

framework and a contrastive training objec-
tive to tackle the multi-aspect challenge.

• We design a novel cross-channel data aug-
mentation method based on generative large-
scale pretrained language models to generate
high-quality in-domain multi-aspect samples,
which has great potential to benefit other fine-
grained NLU tasks.

• Extensive experiments on three widely-used
datasets show the effectiveness of our C3DA.

2 Related Work

2.1 Language Models and Parameter Efficient

Large Pre-trained Language Models (PLMs) are
still research cores in various natural language pro-
cessing tasks. The PLMs tend to be variants of
Transformer (Vaswani et al., 2017), and are trained
on massive unlabeled raw sentences under some lin-
guistic unsupervised objectives. According to the
model structure, these Transformer-based PLMs
are roughly divided into (1) Encoder-only LMs
(Devlin et al., 2019; Liu et al., 2019) can be utilized
to capture token-level and sentence-level features,
(2) Decoder-only LMs (Radford et al., 2018, 2019)
tend to design an auto-regressive objective to cater
to text generation tasks and (3) Encoder-Decoder
LMs (Lewis et al., 2020; Raffel et al., 2020) need
two sentences (source and target) to perform condi-
tional generation.

The above PLMs always follow the pre-train +
fine-tune (FT) paradigm to adapt the downstream
tasks, however, tuning a whole model is a tricky
challenge and is not applicable to low-resource
NLP tasks. Therefore, a novel pre-train + prompt-
tune (PT) (Liu et al., 2021c) concept is proposed
to break this challenge, PT-based models can also
be divided into (1) manual discrete prompts de-
sign human-made templates to adapt different pre-
trained objective (Liu et al., 2021a), and (2) soft
prompts inject some learnable pseudo tokens or
matrices to frozen PLMs (Liu et al., 2021d; Lester
et al., 2021b; Li and Liang, 2021; Zhong et al.,
2022b).

2.2 Aspect-based Sentiment Analysis

Aspect-based Sentiment Analysis (ABSA) is a kind
of Text Classification task, that benefits from a bet-
ter aspect-aware text representation. Therefore,
an amount of neural network-based models were
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Figure 1: The overall C3DA framework. In our generator, learnable modules can be optimized in the fine-tuning
stage and will also be frozen in the generation stage, and the PLM encoder-decoder structure is always fixed.

proposed to break the ABSA challenge, for exam-
ple, graph-based models (Sun et al., 2019; Wang
et al., 2020; Li et al., 2021b; Zhong et al., 2022a)
conduct graph convolutional operations on depen-
dency trees to encode the semantic information,
and attention-based models (Ma et al., 2017; Chen
et al., 2017; Fan et al., 2018; Song et al., 2019; Liu
et al., 2021b) focus on interaction between aspect
terms and context tokens, etc.

In recent years, pre-trained language models
changed the situation of ABSA because they are
better text encoders and can capture context fea-
tures. Therefore, researchers explored more views
to improve ABSA performance, except that PLM
is regarded as an encoder to replace the vanilla
Glove + BiLSTM paradigm. For example, Dai et al.
(2021) leverages RoBERTa to re-construct depen-
dency trees, Yan et al. (2021); Li et al. (2021a);
Zhang et al. (2021) try to integrate various ABSA
subtasks into a unified generative framework, and
Zhou et al. (2021); Seoh et al. (2021) combine
ABSA with other NLP tasks, etc.

2.3 Data Augmentation

To improve the scale of training samples, some
Data Augmentation (DA) methods in the NLP
community are proposed (Zhang et al., 2018; Wei

and Zou, 2019; Kobayashi, 2018; Wu et al., 2019;
Anaby-Tavor et al., 2020; Ding et al., 2021; Cao
et al., 2021; Wang et al., 2022; Zhang et al., 2022b).
EDA (Wei and Zou, 2019) transforms source sen-
tences with Synonym Replacement approaches, etc.
CBERT (Wu et al., 2019) introduces a new condi-
tional masked language model task. Meanwhile,
some PLM-based generative augmentation frame-
works (Anaby-Tavor et al., 2020; Wang et al., 2022;
Zhang et al., 2022b) also have been explored. Also,
recent work reveals the complementarity between
PLMs and classical approaches, e.g., back trans-
lation (Liu et al., 2021e) and random initializa-
tion (Zan et al., 2022), to augment both the accu-
racy and generalization.

3 Our C3DA Framework

Task Description of ABSA Given a group of
triplets Ωsrc = {si,ai,pi}Ni=1, a sentence si =
{si1, · · · , siL} and an aspect-span indicator ai ∈
{0, 1}L (1 denotes this token is an aspect, vice
versa) will be fed to a trainable model to obtain a
hidden embedding hi = F(si,ai,Θ) ∈ RL×D,
where N , L and D denote the instance scale,
sentence length and hidden embedding size, and
F(·,Θ) is a prediction model (e.g., BERT (Devlin
et al., 2019)). Then, a ground-truth polarity label
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pi ∈ {0, 1, 2} is utilized to conduct supervised
learning to estimate task-specific parameters Θ.

3.1 Overall Learning Objective
In this section, we introduce the overall process
of our proposed method, and more details will be
further described in Section 3.2 and 3.3, and our
C3DA framework is shown in Figure 1.

Our C3DA framework consists of two steps: (1)
Data Augmentation and (2) Contrastive Training.
We utilize the representative pre-trained T5 model
(Raffel et al., 2020) as our generator in the data aug-
mentation stage1. Given a sentence si, we expect
to generate an another sentence ŝi = G(si; Π) that
expresses the opposite polarity and has a different
aspect from the source sentence, where G(·; Π) is
the T5 generator.

Basically, we conduct the Supervised Classifica-
tion Training (SCT) on source sentences and aug-
mented sentences, the objective is as follows:

LSCT =
1

N

∑N

i=1
ℓCE(hiWs + bs,pi)

+αℓCE(h
p
iWs + bs,pi), (1)

hp
i = F ([si, ŝi],ai,Θ) , (2)

where [·, ·] and ℓCE(·) are the concatenate oper-
ation and a Cross-Entropy loss function, Ws ∈
RD×M and α denote the classification head and a
hyper-parameter, respectively.

To obtain more robust performance, we lever-
age the Contrastive Training (CT) formulated as
the triplet loss (Schultz and Joachims, 2003) as
follows:

RCT =
1

N

∑N

i=1
max{d(hi,h

p
i )−

d(hi,h
n
i ) + ξ, 0}, (3)

where hn
i is the average-pooled sentence represen-

tation of ŝi in the sentence [si, ŝi], ξ is a hyper-
parameter called margin that can control whether
an instance should be trained, and d(·, ·) denotes
a distance measure function. Specially, we apply
a negative cosine similarity to measure the embed-
ding distance d(·, ·).

d(hi,h
p
i ) = −

hih
p
i

∥hi∥ × ∥hp
i ∥

. (4)

1Note that we can employ various generative pretraining
models as the generator. T5 is used in this work, since it is
widely-used and powerful.

Finally, the overall learning objective can be for-
mulated as:

L = LSCT + βRCT , (5)

where β is a controllable hyper-parameter.

3.2 Cross-Channel Data Augmentation

Our motivation is to generate high-quality in-
domain multi-aspect samples. In practice, the cross-
channel data augmentation consists of two steps:
1) tune the pretrained backbone model to adapt our
cross-channel sentence generation; 2) generate sen-
tences with opposite polarity and different aspects.

Pre-Trained Generator We employ pre-trained
encoder-decoder model T5 as our backbone. ABSA
is a low-resource task, therefore, tuning a whole
large language model (e.g., T5) with scarce sam-
ples will cause an over-fitting problem. Inspired
by Lester et al. (2021a); Wang et al. (2022), we
utilize the parameter-efficient strategies to tune
the generation model. In particular, we consider
several efficient tuning methods, including prefix-
tuning (Li and Liang, 2021), prompt-tuning (Lester
et al., 2021a), and LoRA (Hu et al., 2022). We
grid-search the optimal efficient tuning method for
each dataset, detailed comparisons can be found at
Appendix A.

Model Fine-Tuning To make the T5 model ca-
pable of generating new sentences conditioned on
the original sentence and given aspect or polarity,
we first construct the fine-tuning data based on
the ABSA training set. Concretely, we randomly
sample two instances {si} and {sj ,aj ,pj} from
the source triplets Ωsrc. Then, we can tune the
T5 model to generate sj conditioned on [si,aj ] or
[si,pj ]. As aforementioned, parameter-efficient
strategies are used to avoid over-fitting. Taking the
cutting-edge prompt-tuning (Lester et al., 2021a)
as an example, the massive parameters in the gener-
ator should be fixed in this stage, and we only tune
the parameters of prompts.

Sentence Generation The sentence genera-
tion for data augmentation stage consists of
Aspect Augmentation Channel (AAC) and Polarity
Augmentation Channel (PAC).

AAC generates an aspect-specific sentence sai =

G([si, Â],Π)2, where Π is the trainable parameters

2AAC can generate one or more sentences, we take gener-
ating a single sentence as an example.
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Table 1: An example of the concatenation operation.

s I’ve been here 3 times for lunch and it is one of my favorites in the city.
[s, service] I’ve been here 3 times for lunch and it is one of my favorites in the city. < eos > service
[s,Negative] I’ve been here 3 times for lunch and it is one of my favorites in the city. < eos > so bad

of the T5 generator G(·). PAC generates a polarity-
inverted sentence spi = G([si, P̂],Π), where Â

is a random-sampled in-domain aspect and P̂ is
a group of seed spans that have the inverted po-
larity from si, such as so good. Then, these sen-
tences will be fed into the another channel to obtain
spai = G([spi , Â],Π) and sapi = G([sai , P̂],Π) that
can satisfy our motivation. We give an example of
the concatenation operation [s, ·] in Table 1.

Note that for sentence generation, both the gener-
ator backbone and prompts will be frozen. The de-
tailed Cross-Channel Data Augmentation method
is shown in Algorithm 1.

Algorithm 1 Cross-Channel Data Augmentation.

Require: Source triplets Ωsrc = {si,ai,pi}Ni=1; Initial
pre-trained T5 generator with soft prompt G(·,Π0); Pre-
defined aspect set A; Fine-tune iterations τ .

Ensure: Augmented sentences Ωaug = {ŝi}Ni=1.
1: for iter in τ do ▷ Stage I: Model Fine-tuning
2: {si}, {sj ,aj ,pj} ← Sample(Ωsrc)

3: ∇a ← loss
(
sj ,G([si,aj ],Π

iter)
)

4: ∇p ← loss
(
sj ,G([si,pj ] ,Π

iter)
)

5: Πiter+1 ← Train(Πiter,∇a,∇p)

6: end for
7: Π← Πτ

8: for {si,ai,pi} in Ωsrc do
9: ▷ Stage II: Sentence Generation

10: Â← Sample(A)
11: P̂← −pi ▷ −p denotes opposite polarity from p

12: sai ← G
(
[si, Â],Π

)
, spi ← G

(
[si, P̂],Π

)
13: spai ← G

(
[spi , Â],Π

)
, sapi ← G

(
[sai , P̂],Π

)
14: Ωaug ← Ωaug + Filter(sai , s

p
i , s

pa
i , sapi )

15: end for
16: return Ωaug;

3.3 Entropy-Minimization Filtering
Cross-Channel Data Augmentation generates four
sentences for each source sentence, and we can
leverage these sentences to train a prediction model
F(·,Θ). However, it is necessary to filter out some
low-quality samples that carry noisy (or difficult)
information, which can be estimated by language
modeling (Moore and Lewis, 2010) and norm of
word embedding (Liu et al., 2020).

To ensure the certainty of synthetic sentences,
we design an Entropy-Minimization Filter (EMF)
to filter those noisy sentences. We establish a hy-
pothesis that noisy sentences always express an
ambiguous polarity such that our prediction model
gives a more smooth polarity probability distribu-
tion. To be specific, the information entropy of
prediction distribution as Equation 6 is an appro-
priate measure. A sentence with larger prediction
entropy should be filtered, and a hyper-parameter
k can control how many augmented sentences are
selected to participate in training for each sample.

Hi = −Eyi

[
log2 p(yi)

]
= −p(yi) log2 p(yi),

(6)

p(yi) = softmax(hiWs + bs). (7)

4 Experiment

4.1 Experimental Settings and Baselines
We conduct our experiments on three public
datasets, i.e. Restaurant, Laptop from SemEval
2014 ABSA task (Pontiki et al., 2014) and Twit-
ter (Dong et al., 2014). In practice, we run the
experiments over 5 random seeds and report the av-
erage values of accuracy (acc) and Macro-F1 (F1)
to avoid stochasticity.

Two widely-used pretraining models, i.e. BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019), are regarded as our prediction backbone,
and we compare our framework C3DA with the
following four data augmentation methods:

• EDA (Wei and Zou, 2019) is a token-level
transformation method. It follows some pat-
terns such as Synonym Replacement, Random
Insertion, etc. For the ABSA task, we deliber-
ately avoid corrupting the aspect words.

• Back Translation (BT) (Sennrich et al., 2016)
is a sentence-level augmentation method,
which translates a sentence to another lan-
guage and translates it back to the original
language. We follow Fan et al. (2021) that
translates English to French and translates it
back to English.
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Table 2: Empirical results of C3DA and other cutting-edge data augmentation methods. The best scores of each
metric are indicated in bold, and ↑ denotes the improvement over BERT-base and RoBERTa-base baselines.

Model
Restaurant Laptop Twitter

acc F1 acc F1 acc F1

BERT-base 86.31 80.22 79.66 76.11 76.50 75.23
+ EDA (Wei and Zou, 2019) 86.42 79.63 79.59 75.79 76.26 75.16
+ BT (Fan et al., 2021) 86.47 80.29 79.67 76.35 76.63 75.47
+ CBERT (Wu et al., 2019) 86.27 80.00 79.83 76.12 76.44 75.36
+ SCon (Liang et al., 2021) 86.51 80.55 80.23 76.48 - -
+ C3DA (Ours) 86.93↑0.62 81.23↑1.01 80.61↑0.95 77.11↑1.00 77.55↑1.05 76.53↑1.30

RoBERTa-base 86.38 80.29 80.10 76.24 76.63 75.37
+ EDA (Wei and Zou, 2019) 86.43 80.21 80.38 76.59 76.47 75.36
+ BT (Fan et al., 2021) 86.50 80.59 80.22 76.73 76.59 75.47
+ CBERT (Wu et al., 2019) 86.77 80.51 80.54 76.57 76.73 75.37
+ C3DA (Ours) 87.11↑0.73 81.63↑1.34 81.83↑1.73 78.46↑2.22 78.31↑1.38 76.67↑1.30

• CBERT (Wu et al., 2019) fully excavates the
power of mask language model (MLM) ob-
jective to replace some tokens, so it is also a
token-level replacement approach.

• SCon (Liang et al., 2021) design aspect-
invariant/-dependent data augmentation for
ABSA and deploy a supervised contrastive
learning objective. We reproduce it according
to their released code and default best settings.

4.2 More Empirical Details

We implement our experiment by following the
released ABSA Pytorch3 repository and our pre-
trained models, such as bert-base-uncased, roberta-
base and t5-base, are from HuggingFace4. Mean-
while, we utilize a flexible toolkit OpenDelta5 to
adapt various parameter-efficient methods to our
T5 generator.

In the data augmentation stage, we leverage an
Adafactor optimizer. A T5 generator is fine-tuned
for 100 epochs, and batch size is fixed to 16. As
training a prediction model BERT or RoBERTa,
we adapt an Adam optimizer with a learning rate
of 2 × 10−5, and the dropout rate is set to 0.3.
Additionally, we train the final prediction model
for 15 epochs with the batch size as 16.

A single NVIDIA A100 is used to conduct our
all experiments. The model fine-tuning and sen-
tence generation stages will generally spend 2 - 3

3https://github.com/songyouwei/
ABSA-PyTorch

4https://huggingface.co/models
5https://github.com/thunlp/OpenDelta

hours, and it spends about 1 hour to train a predic-
tion model.

4.3 Main Result

Table 2 shows our main experimental results. To
be fair, for each data augmentation method, we
generate 1 synthetic sample per sentence. Overall,
our C3DA framework consistently and significantly
improve the preformance of both BERT-based and
RoBERTa-based models, e.g. the result of Restau-
rant even outperforms the RoBERTa-base baseline
2.22% in term of F1. Moreover, we observe that the
performance order of various data augmentation
methods is C3DA > CBERT > BT > EDA, which
indicates: (1) EDA semantic-regardlessly removes
or inserts tokens, which will inject more noise into
final prediction models, thus leading to the poor per-
formance. (2) Comparing BT and CBERT, BT al-
ways achieves higher F1, and CBERT will get more
advantageous accuracy. Since BT is a sentence-
level method, it focuses on how to transform a
source sentence into a form-different and semantic-
reserved sentence, but neglects the useful aspect
information. On the contrary, CBERT will only
change some tokens, which is a semantic-reversed
and aspect-reserved approach. Table 3 summarizes
the characteristics of some augmentation methods.

Turn to compare two metrics, another finding
is that C3DA has more significant performance in
term of Macro-F1. Proverbially, since Macro-F1 is
a metric to measure the generalization of a model,
the higher improvements on Macro-F1 prove that
our framework can effectively improve the model’s
robustness in this view. Concurrently, the effect

https://github.com/songyouwei/ABSA-PyTorch
https://github.com/songyouwei/ABSA-PyTorch
https://huggingface.co/models
https://github.com/thunlp/OpenDelta
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Figure 3: Sensitivity Analysis of the number of selected sentences k in EMF.

Table 3: A comparison of various data augmentation
methods. Semantic-R. and Aspect-R. denote semantic
reserved methods and aspect reserved methods, and
T.- / S.- discriminates token-level and sentence-level
methods respectively.

Methods Semantic-R. Aspect-R. T.- / S.-

EDA × ✓ T.
BT ✓ × S.

CBERT ✓ ✓ T.
C3DA ✓ ✓ S.

of C3DA is better on Restaurant and Twitter. The
difference between these datasets is that Laptop is
a small dataset, indicating that our C3DA is sensi-
tive to the data scale and C3DA may have better
improvement if there is a larger-scale dataset.

4.4 Ablation Study

The core modules in our framework C3DA are Data
Augmentation (DA), Contrastive Learning (CL),
and Entropy-Minimization Filter (EMF). In this
section, we perform ablation study to investigate
the effect of these modules, and the results are
listed in Table 5. BERT-base is regarded as the
prediction model in this study, and w/o denotes
without some modules.

Firstly, w/o DA & CL removes our data aug-
mentation framework, it is equivalent to a vanilla
BERT-base-only prediction model. As shown in
Table 5, w/o DA & CL always presents poor perfor-

mance, even decrease by about 1% on Laptop’s acc
and F1 and Restaurant’s F1. It proves our C3DA

framework imports more high-quality data items
and is effective to boost the performance. Then,
w/o CL remains augmented sentences and revokes
the contrastive training objective RCL. Overall,
this objective improves the results by about 0.3%
on each dataset, conforming that contrastive learn-
ing can powerfully optimize the aspect-specific fea-
tures. Finally, w/o EMF conducts both supervised
training and contrastive training on all generated
sentences. Intuitively, more samples can consoli-
date the predictive power of a classification model,
but some emotionless and illogical sentences also
carry plenty of noise. As we speculate, w/o EMF
degrades the model’s performance by 0.5% - 1.0%,
the outcome on Restaurant’s accuracy is even worse
than the result without DA & CL. More sensitivity
studies about EMF will be shown in Section 4.5.

Additionally, we also investigate the perfor-
mance of generating sentences with only AAC and
only PAC settings and report their results in Table 5.
We show that both them are beneficial, where only
AAC slightly outperforms that of the only PAC,
demonstrating that the multi-aspect data are more
crucial than the multi-polarity data.

4.5 Sensitivity Analysis

As mentioned above, we employ 4 hyper-
parameters in our C3DA framework, and ξ and k
are more crucial. To investigate the influence of
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Table 4: Case study. The aspect words and corresponding polarities are noted as red color and blue color, respectively.

case the falafal was rather over cooked and dried but the chicken was fine.

Aspect & Polarity
falafal chicken

Positive Neutral Negative Positive Neutral Negative
w/o C3DA 0.098 0.109 0.793 0.643 0.047 0.310
with C3DA 0.071 0.092 0.837 0.698 0.076 0.226

case good food but the service was dreadful!

Aspect & Polarity
food service

Positive Neutral Negative Positive Neutral Negative
w/o C3DA 0.502 0.173 0.325 0.191 0.236 0.573
with C3DA 0.589 0.211 0.200 0.177 0.186 0.637

Table 5: Ablation study of C3DA. The prediction model
is BERT-base in this study.

Model Restaurant Laptop Twitter

acc

C3DA 86.93 80.61 77.08
w/o DA & CL 86.31 79.66 76.50

w/o CL 86.69 80.35 76.87
w/o EMF 86.45 79.84 76.50
only AAC 86.63 80.10 77.16
only PAC 86.44 79.94 77.19

Model F1

C3DA 81.23 77.11 75.76
w/o DA & CL 80.22 76.11 75.23

w/o CL 81.00 76.88 75.63
w/o EMF 80.21 76.45 75.17
only AAC 80.61 76.69 75.93
only PAC 80.24 76.17 75.91

both hyper-parameters, we further conduct sensi-
tivity analysis in this section. Additionally, we fix
α and β to 0.5 and 2.0, respectively. Limited by
space, their sensitivity analysis will be described
and analyzed in Appendix B.

Contrastive Training Margin ξ Margin ξ in
Equation 3 is an important hyper-parameter to con-
trol the model’s distinctive ability to discriminate
negative samples and positive samples. Under a
little margin, the prediction model will indolently
balance d(hi,h

p
i ) and d(hi,h

n
i ) to cause under-

optimization, while a large margin makes a model
converge hard.

To investigate the impact of the margin ξ, we
implement experiments on Restaurant and Laptop,
and range ξ from 0.1 to 0.6. As shown in Figure 2,
our C3DA always gets the best performance when
ξ is 0.3, and as it expands or shrinks, the results

consistently show a downward trend.

Number of Selected Sentences k in EMF As
the description in Section 4.4, k in EMF is a key
hyper-parameter to decide to introduce more use-
ful sentences or more noisy information, we se-
lect k sentences for each source sentence with the
entropy-minimization filter method.

We evaluate C3DA on k ∈ {1, 2, 3, 4} and show
the results in Figure 3. The best performance in-
variably appears in k = 2 or k = 1. Meanwhile,
the performance decreases significantly when the
value of k is 3, 4.

4.6 Case Study

C3DA is a DA-based framework, and our purpose
is to break the multi-aspect challenge. Therefore,
we implement a case study to evaluate whether
C3DA can solve this problem, and more cases with
different DA methods and cases with varying fine-
tuning epochs will be shown in Appendix C.

We select two samples from the Restaurant test
set, and these two sentences all have two aspects
with different sentiment polarities. We will com-
pare the performance of our C3DA on their polarity
prediction distribution. To observe the Table 4,
we summarize that (1) C3DA can consistently and
significantly enhance the prediction model’s robust-
ness, such as the Positive probability of the aspect
food improve about 0.077. Therefore, our frame-
work can correct the polarity prediction when a sen-
tence expresses an ambiguous polarity. (2) When
a sentence is short, the interaction between two
aspects with contradictory polarities will be more
intimate. In this scenario, sentences will express
more ambiguous sentiment and the effectiveness of
our framework will be more significant.
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4.7 Computing Cost Analysis

Our method will prolong each sentence, longer sen-
tences will undoubtedly increase computing costs.
Therefore, we attempt to compare the computing
time of our framework and other augmentation
methods. In the data preparing stage, C3DA will
fine-tune a generator and inference on the training
set, it will spend 2 - 3 hours, and it is a once-for-all
process. In the prediction training stage, we find
that EDA, Back Translation and CBERT do not
change the sentence length, their prediction time
cost 0.98× ∼ 1.05× (without any augmentation
is 1×). By comparison, C3DA spends 1.14× time
cost, which is completely acceptable.

5 Conclusion

In our work, we focus on solving the multi-aspect
problem in the ABSA task. To address this chal-
lenge, we propose a data-centric training frame-
work and design a novel C3DA method to imple-
ment data augmentation. The proposed framework
conduct both supervised training and contrastive
training on augmented samples. The key idea of
C3DA is to generate some sentences that express
the opposite sentiment polarity from the source
sentences. Extensive experiments on widely-used
benchmarks demonstrate that our framework can
effectively improve the prediction model’s robust-
ness and predictive performance. In the future, it
will be interesting to apply our C3DA framework to
improve other fine-grained natural language under-
standing tasks.
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A Various Parameter-Efficient Methods
Result

We adapt three parameter efficient methods for our
T5 generator:

• Prefix-tuning (Li and Liang, 2021) fixes
PLMs parameters, and inject an additional
trainable prefix tokens for each transformer
hidden layer. We set the number of prefix
tokens to default 6.

• Prompt-tuning (Lester et al., 2021b) only
prepends a prompt family to the input embed-
ding layer. The length of the soft tokens is
100 in our experiments.

• Low-Rank Adaptation (LoRA) (Hu et al.,
2022) trains a low-rank matrix to lightweight
the PLMs. To be specific, we fix the hyper-
parameter rank r to 8 and cancel the dropout
operation (dropout = 0).

• Full-tuning fine-tunes all parameters in the
T5 backbone.

• No-tuning directly generates sentences with
a pre-trained T5 model without fine-tuning.
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Figure 4: Convergence Analysis.

A.1 Case Study
More instances from different fine-tuning methods
are listed in Table 6, the domains and polarities
are attached to the source sentences. Under our
observation, we found some phenomena: (1) the
sentences from Full-tuning are always longer, and
Full-tuning habitually outputs the same sentences,
which proves that Full-tuning will cause an over-fit
problem by conjecture. (2) three parameter effi-
cient methods consistently generate multi-aspect
samples, however, it is doubtful whether more as-
pects in a sentence will promote the model’s robust-
ness more significantly. (3) most of the generated
sentences can achieve our motivation (express an
opposite polarity).

A.2 Convergence Analysis
We analyze the fine-tuning loss for those aforemen-
tioned fine-tuning methods (without No-tuning)
with T5ForConditionGeneration.loss
interface in Hugging Face on Restaurant. Figure 4
shows the loss curve, we adapt a percentile filter
with 20 pts to conduct the curve smooth, and the
losses of ultimate convergence are listed in Table 7.
Obviously, Full-tuning will achieve a lower loss,
because all parameters are tuned, and the scale of
parameters is far greater than the number of data
items, it is a precursor of an over-fitting problem.
By comparing three fine-tuning methods, we pre-
fer a method with lower convergence loss, Prefix-
tuning and Prompt-tuning are indistinguishable,
however, LoRA obtains an obvious superiority.

B More Sensitivity Analysis

Objective coefficients α and β are also control-
lable hyper-parameters, so we conduct sensitiv-
ity analysis on them. Our experimental results
are shown in Figure 5 and Figure 6, the predic-
tion model is consistently BERT-base and α ∈
{0.1, 0.3, 0.5, 1, 2}, β ∈ {0.5, 1, 2, 5, 10}. Ac-
cording to the figures, the best performance always
when α = 0.3 or 0.5 and β = 1 or 2.

C More Case Studies

Different DA methods We investigate different
data augmentation frameworks from the view of
the model’s prediction results in Section 4.3. We
will also list an example to compare these DA base-
lines and throw more generated sentences from our
C3DA in Table 8. The example in the upper table
is from Restaurant, and we adapt LoRA to the T5

https://doi.org/10.48550/arXiv.2208.10160
https://doi.org/10.48550/arXiv.2208.10160
https://doi.org/10.48550/arXiv.2208.10160
https://doi.org/10.18653/v1/2021.emnlp-main.551
https://doi.org/10.18653/v1/2021.emnlp-main.551
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Table 6: Case study. The upper table compares results of different data augmentation methods, the bold spans is
changed part; The below table shows some generated sentences with C3DA.

Method Examples [dataset, polarity]

source not only was the food outstanding, but the little ’perks’ were great. [Restaurant, Positive]
No-tuning the kitchen is very well equipped with all the equipment you need to cook up a storm.

Full-Tuning The food is okay and the prices here are mediocre.
Prefix-tuning The kitchen is a little small, but the food is good.

Prompt-tuning The kitchen is a little dated, but the food is good.
LoRA The seats are a bit cramped, but the food was delicious.

source it is easy to start up and does not overheat as much as other laptops. [Laptop, Positive]
No-tuning a laptop that is easy to start up and does not overheat as much as other laptops.

Full-Tuning I also purchased iWork to go with it which has programs for word processing, spreadsheets, and
presentations ( similar to Microsoft Office ).

Prefix-tuning The battery isn’t very strong, but it is very light.
Prompt-tuning but the screen is so dark, and the service center is a little numb.

LoRA The software is very easy to use, the start up is very fast, the graphics are fantastic.
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8 7 . 4
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8 2 . 2
8 3 . 0

0 . 4 0 . 8 1 . 2 1 . 6 2 . 07 8 . 0
7 9 . 0
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8 1 . 0
8 2 . 0
8 3 . 0

0 . 4 0 . 8 1 . 2 1 . 6 2 . 07 5 . 0
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7 6 . 6
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7 8 . 2
7 9 . 0
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L a p t o p L a p t o p

F1

α

Figure 5: Sensitivity Analysis of the objective coefficient α in supervised classification training.

Table 7: Convergence loss. "-T." is short for "-Tuning".

Method Full-T. Prefix-T. Prompt-T. LoRA

Loss 0.05102 0.70009 0.69182 0.46218

generator, and more examples of C3DA below are
from Restaurant and Laptop.

We summarize that EDA deletes "my", trans-
forms "co-workers" to its synonym "workers" and
randomly inserts a comma to an unreasonable posi-
tion. This method adds some corruptions without
any semantic relations, and it is possible to generate
an illogical sample; Compared to EDA, CBERT is
also a token-level method, but a semantic-reserved
sentence is consistently created; Back Translation
is a sentence-level method, and a correct sentence
can be generated. However, it erases the aspect
words for ABSA task. By comparison, our C3DA
not only reserves the origin semantic information
but also introduces some high-quality in-domain
corpus-aware information and adversarial signals.
We also observe that most generated sentences
from C3DA exist two or more aspects, and this
phenomenon is widespread in several datasets.

Cases with Varying Fine-tuning Epochs τ We
also explore the generation results with varying
fine-tuning epochs τ . As shown in Table 9, given
a source sentence “but the staff was so horrible to
us.“, the T5 generator tends to generate an irrelative
sentence when we have not yet fine-tuned it. In the
middle of the fine-tuning stage, the generator is
inclined to retell the source sentences or generate
some irrational sentences. Finally, our generation
model will eventually converge when τ = 80.

D Instance-level Loss Re-weight for
Long-tail Aspects

There is an another problem when we implement
sentence generation, our generated sentences in
one dataset often fit to few aspects, such as food in
Restaurant. To investigate this issue, we show the
aspect information for three public ABSA datasets
in Table 10, and we found that food in Restaurant
actually maintain maximum frequency. Similarly,
service, battery and screen etc. report this long-tail
distribution problem. And most of aspects in Twit-
ter is [UNK], it means that extensive aspect infor-
mation will be unusable, this causes some models
don’t work, especially the attention-based models.

Similar to focal loss (Lin et al., 2017), we adapt
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Figure 6: Sensitivity Analysis of the contrastive training objective coefficient β in our overall objective.

Table 8: Case study. The upper table compares results of different data augmentation methods, the blue spans is
changed part; The below table shows some generated sentences with C3DA.

DA methods examples

source my co-workers had to wait almost an hour for delivery.
EDA workers had to, wait an hour for delivery.
B.T. my colleague waited nearly an hour to deliver it.

CBERT my mother had to wait half an hour for delivery.

C3DA
my co-workers had to wait almost an hour for delivery. but the perks are great, and you

get to enjoy all the perks.

source sentences C3DA generated sentences

if you love seafood, you would love this place! the sauce was good, but the meats were a little fatty.
we had a girls, night dinner here for restaurant week. try the samosas at a reasonable price.
it is easy to start up and does not overheat as much as

other laptops.
but the screen is so dark, and the service center is a

little numb.

Table 9: Case study. Given a source sentence “but the
staff was so horrible to us.“, we can observe the trend
of its augmented sentence with fine-tune epochs τ .

epochs τ sentence
source but the staff was so horrible to us.

0 i cried out for the suffragellah woman.
20 the staff is so horrible to us.
40 the as-is, the service isn’t great.
60 the food is very good.
80 the food was great, the service was excellent.

an instance-level loss re-weight method to our fine-
tuning stage. Inspired by Jain et al. (2016), we
multiple a multiplier to each instance’s objective,
the multiplier is shown in Equation (8).

∆j =
1

1 + Ce−A log(Mj+B)
, (8)

C = (logM − 1)(B + 1)A, (9)

where Mj , M are the number of data points anno-
tated with aspect j, and aspect items, respectively.

Table 10: The aspect words and its frequency statistic of
three public datasets. We only show the top-10 aspect
words (with the T5 tokenizer) and hide some special
tokens such as ’a’, ’i’, etc.

dataset aspect words: frequency

Restaurant
food: 419, [UNK]: 404, service: 204,

wait: 94, menu: 80, dinner: 75, wine: 72,
staff : 68 , pizza: 65, place: 60

Laptop
[UNK]:267, battery: 97, screen: 81, use:

58, life: 56, windows: 55, price: 55,
software: 54 , keyboard: 54, drive: 53

Twitter
[UNK]: 5328, spear: 894, bri: 887, ney:

887, lo: 394, han: 393, lind: 388, say: 388
, in: 370, ry: 360
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