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Abstract

Hate speech detection has gained increasing at-
tention with the growing prevalence of hateful
contents. When a text contains an obvious hate
word or expression, it is fairly easy to detect it.
However, it is challenging to identify implicit
hate speech in nuance or context when there
are insufficient lexical cues. Recently, there are
several attempts to detect implicit hate speech
leveraging pre-trained language models such
as BERT and HateBERT. Fine-tuning on an
implicit hate speech dataset shows satisfactory
performance when evaluated on the test set of
the dataset used for training. However, we em-
pirically confirm that the performance drops at
least 12.5%p in F1 score when tested on the
dataset that is different from the one used for
training. We tackle this cross-dataset under-
performing problem using contrastive learning.
Based on our observation of common underly-
ing implications in various forms of hate posts,
we propose a novel contrastive learning method,
ImpCon, that pulls an implication and its cor-
responding posts close in representation space.
We evaluate the effectiveness of ImpCon by
running cross-dataset evaluation on three im-
plicit hate speech benchmarks. The experimen-
tal results on cross-dataset show that ImpCon
improves at most 9.10% on BERT, and 8.71%
on HateBERT.

1 Introduction

Warning: this paper contains contents that may be
offensive or upsetting.

Hate speech is “any communication that dis-
parages a target group of people based on some
characteristic such as race, color, ethnicity, gender,
sexual orientation, nationality, religion, or other
characteristic” (Nockleby, 2000). Recently, there
are several attempts to detect hate speech or abu-
sive text using lexicon-based methods (Chen et al.,
2012; Gitari et al., 2015; Lee et al., 2018; Wiegand
et al., 2018) or neural-based methods (Gambäck

Text (Input) :
“my world orbits around whites as it should .
laughable moment though .”
Label : Hate
Text (Input) :
“that is part of the white supremacy logic that
native people are less than human . we aren’t .”
Label : Not Hate
Text (Input) :
“send them back to the countries
they came from”
Label : Hate

Table 1: Example input texts and labels (Hate / Not
Hate) from IMPLICIT HATE CORPUS (IHC) (ElSherief
et al., 2021) which is an implicit hate speech dataset.

“my world orbits around 
whites as it should . 

laughable moment though .”

Implicit Hate Speeches

“reverse all engines ! 
make america white again .”

“everything worthwhile 
in a society is 

white supremacy .”

People of color are 
inferior to white people

Shared Implication

Figure 1: Implicit hate speeches and their shared impli-
cation from IMPLICIT HATE CORPUS (IHC).

and Sikdar, 2017; Badjatiya et al., 2017; Park and
Fung, 2017; Zhang et al., 2018; Lee et al., 2019;
Wang et al., 2020). While these approaches work
fairly well when a text contains an explicit hate or
abusive word, they often fail to detect implicit ones.
See Table 1 for examples of implicit hate speech.
Caselli et al. (2020) showed that the pre-trained lan-
guage model struggles to detect implicit abusive-
ness. They suspect that a small amount of training
data with implicit abusiveness is a main reason for
the poor performance. In this vein, ElSherief et al.
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(2021) recently presented an implicit hate speech
benchmark. The models trained on this dataset
outperform other baselines in terms of in-dataset
evaluation performance. In general, the hate speech
detection performance can be over-estimated when
evaluated on its own test set (Arango et al., 2019;
Yin and Zubiaga, 2021). On in-dataset evaluation,
a model is evaluated on the test set of the same
dataset used for training. However, on cross-dataset
evaluation, a model is evaluated on the dataset that
is different from the one used for training. Instead
of in-dataset evaluation, it is better to run a cross-
dataset evaluation to see the generalization ability
of a model (Wiegand et al., 2019). As a preliminary
experiment, we perform the cross-dataset evalua-
tion for the current state-of-the-art models trained
on implicit hate speech datasets. In Section 2.2, we
empirically observe relatively low performance on
cross-dataset evaluation.

Prior research (Gunel et al., 2021) incorporates
contrastive learning into their fine-tuning process,
resulting in better generalization ability in few-shot
learning setup. Motivated by this, we propose con-
trastive learning methods to improve the general-
ization ability of implicit hate detectors on cross-
dataset. Contrastive learning makes positive pairs
to be close together and negative pairs to be apart
in the representation space (Rethmeier and Augen-
stein, 2022). One of the key issues in contrastive
learning is how to choose positive samples. De-
pending on different choices of positive sampling, a
model would learn different invariant features (Tian
et al., 2020). Here, we suggest two positive sam-
pling strategies: 1) Leveraging augmented posts as
positive samples of given posts (AugCon); 2) Lever-
aging implications as positive samples of given
hateful posts (ImpCon). For AugCon, we first gen-
erate augmented posts which are lexically different
but semantically similar with their original posts.
ImpCon leverages implications as positive samples
of hateful posts, since it contains concealed mean-
ing of the hateful posts. In addition, a common
implication is often shared by a group of hateful
posts, as shown in Figure 1. By pulling an impli-
cation and its corresponding hateful posts close in
representation space, the model can learn common
features among a group of hateful posts sharing an
implication.

We evaluate the generalization ability of mod-
els trained using AugCon and ImpCon. We con-
duct cross-dataset evaluation on three implicit hate

BERT
Test

Train IHC SBIC DYNAHATE

IHC 0.777 0.568 0.531
SBIC 0.596 0.838 0.603

DYNAHATE 0.660 0.663 0.788
HateBERT

Test
Train IHC SBIC DYNAHATE

IHC 0.764 0.587 0.547
SBIC 0.587 0.840 0.598

DYNAHATE 0.662 0.668 0.794

Table 2: Cross-dataset and in-dataset evaluation results
of BERT and HateBERT. The column on the left in-
dicates the dataset used for training, while the row on
the top indicates the dataset used for evaluation. Cross-
dataset evaluation results are presented in bold.

speech benchmarks with BERT and HateBERT as
base models. By incorporating AugCon or Im-
pCon in fine-tuning, we can improve the cross-
dataset evaluation performance. While improve-
ment with AugCon is limited to BERT (at most
2.92% improvement), ImpCon brings consistent
improvements across all cross-datasets and mod-
els (at most 9.10% improvement to BERT and
8.71% improvement to HateBERT). The consistent
improvement of ImpCon demonstrates the effec-
tiveness of leveraging implication-post pair on the
generalization ability. Moreover, further analysis
on ImpCon shows that even unseen implication-
post pairs are projected closer on the representa-
tion space (Section 5.1), resulting in consistent
predictions on cross-dataset (Section 5.2). Our
code is available at https://github.com/
youngwook06/ImpCon.

2 Related Work and Preliminary
Experiment

2.1 Hate Speech Detection
With the increase of online media and user con-
tents, hate speech becomes more pervasive on-
line. Considering the massive volume of on-
line posts, it is impractical to manually moder-
ate all posts. Researchers have developed many
hate speech detection models, including lexicon-
based approaches (Chen et al., 2012; Gitari et al.,
2015; Lee et al., 2018; Wiegand et al., 2018)
and neural network models (Gambäck and Sik-
dar, 2017; Badjatiya et al., 2017; Park and Fung,

https://github.com/youngwook06/ImpCon
https://github.com/youngwook06/ImpCon
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2017; Zhang et al., 2018; Lee et al., 2019; Wang
et al., 2020). Also, there are several datasets avail-
able for hate speech detection with different fo-
cuses (Warner and Hirschberg, 2012; Davidson
et al., 2017; Founta et al., 2018; Basile et al., 2019).
For example, Davidson et al. (2017) introduced a
dataset to distinguish hate speech from an offensive
language and Founta et al. (2018) investigated rep-
resentative labels by merging and eliminating some
labels related to abusive tweets. However, many of
these datasets are skewed towards explicit forms
of abusiveness since the data collection strategies
often rely on explicit signals such as hateful lexi-
cons (ElSherief et al., 2021). A model trained on
such dataset often fails to detect implicit hate, even
for the pre-trained language model (Caselli et al.,
2020).

Recently, researchers show their interests in ad-
dressing implicit hate or abusiveness. Han and
Tsvetkov (2020) used a set of probing data for the
robust classifier which better detects disguised tox-
icity. Wiegand et al. (2021) studied subtypes of
implicit abuse and existing datasets. ElSherief et al.
(2021) presented a benchmark with implicit hate
label, annotated target and implication.

2.2 Preliminary Experiment

Several works in hate speech detection have re-
ported a large drop of the fine-tuned model perfor-
mance when evaluated on cross-dataset (Gröndahl
et al., 2018; Arango et al., 2019; Swamy et al.,
2019). We conduct a preliminary experiment to see
if implicit hate speech detection models can still
perform well on cross-datasets that are also skewed
towards implicit hate. We use three implicit hate
datasets (IMPLICIT HATE CORPUS (IHC), SOCIAL

BIAS INFERENCE CORPUS (SBIC) and DYNA-
HATE) following Hartvigsen et al. (2022). Detailed
descriptions of the datasets are presented in Sec-
tion 4.1. We experiment with one of the state-of-
the-art models, BERT (Devlin et al., 2019). We also
experiment with HateBERT (Caselli et al., 2021),
which is pre-trained on abusive corpus and showed
better generalization ability than BERT in their pa-
per. In the cross-dataset evaluation with implicit
hate datasets, we observe the similar generalization
issue. As shown in Table 2, the performance of
both models drops consistently over 12.5%p in F1
score across implicit hate speech datasets. Through
the preliminary experiment, we conclude that im-
plicitly trained models suffer from generalization

issue and combating the issue is needed.

2.3 Contrastive Learning
Recently, contrastive learning has been widely used
to learn representation in various domains and
showed its effectiveness. Many works on con-
trastive learning have proposed diverse choices of
positive sampling.

For example, in the computer vision field, Sim-
CLR (Chen et al., 2020) applies random augmenta-
tion on images and those augmented images from
a same image are considered positive. Khosla et al.
(2020) proposed to use the samples from the same
class for positive sampling. In the natural lan-
guage processing field, CERT (Fang et al., 2020)
augments text with back-translation and considers
augmented texts from the same text as positive.
Also, Giorgi et al. (2021) suggested leveraging tex-
tual segments nearby in the document as positive
samples. Gao et al. (2021) proposed using pairs
from natural language inference datasets for posi-
tive sampling.

Some works on text classification proposed to
apply contrastive learning to fine-tune the model.
Gunel et al. (2021) showed that pulling instances
from the same class closer while fine-tuning im-
proved few-shot learning performance. Suresh and
Ong (2021) extended this approach and showed
that weighting negative samples differently in-
creased performance on fine-grained classification.
Pan et al. (2022) used adversarial examples as pos-
itives and showed outperforming performance over
standard fine-tuning. We suggest using contrastive
learning in the fine-tuning process for generalizable
implicit hate speech detection.

3 Approach

3.1 Overall Training Objective
Generally, hate speech detection models are fine-
tuned in a supervised way using the following cross-
entropy loss Lce:

Lce = − 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)],

(1)
where N is the number of input posts in a batch,
ŷi indicates the model predicted probability of i-
th input xi and yi is the ground-truth label of xi,
respectively. However, since cross-entropy loss
has limitation on making large inter-class margin
or intra-class compactness, fine-tuning using only
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“my world orbits around 
whites as it should . 

laughable moment though .”
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𝑥𝑥𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥𝑖𝑖)

ℎ(𝐼𝐼𝐼𝐼𝐼𝐼 𝑥𝑥𝑖𝑖 )
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𝓛𝓛𝒄𝒄𝒄𝒄

Shared Implication

�𝑦𝑦𝑖𝑖 𝑦𝑦𝑖𝑖

+
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𝓛𝓛𝒄𝒄𝒄𝒄
𝒊𝒊𝒊𝒊𝒊𝒊

“everything 
worthwhile 

in a society is 
white supremacy .”

“reverse all 
engines ! 

make america
white again .”

“my world orbits 
around whites as it 
should . laughable 
moment though .”

People of color are 
inferior to white people

Figure 2: Left: The overview of training a model with Limp
overall (Equation (7)). We present a hateful post and its

implication as an example positive pair for Limp
cl (Equation (6)). Right: ImpCon aims at pulling an implication and

its corresponding hateful posts, resulting in similar representation between a shared implication and its hateful posts
in the representation space. All implication and hateful posts in the figure are from IHC dataset.

cross-entropy loss can result in suboptimal general-
ization (Liu et al., 2016; Zhao et al., 2021).

We propose to combine contrastive loss with
cross-entropy loss to train generalizable implicit
hate speech detector. Contrastive loss pushes the
representation of positive pairs closer and negative
pairs further apart. We denote the positive sample
of xi as xposi (i ≥ 1). Given N training input posts
in a batch, we assume one positive sample per post,
leading to total 2N samples in a batch. When xposi

is the j-th input in a batch, i.e., xposi = xj , we
assume j = i + N if i ≤ N and j = i − N
if i > N . We consider all samples other than
a positive sample as negative samples, excluding
itself. Following Chen et al. (2020), the contrastive
learning loss Lcl can be defined as:

Lcl = −
2N∑
i=1

log
eh(xi)·h(xpos

i )/τ∑2N
k=1 1[k ̸=i]eh(xi)·h(xk)/τ

, (2)

where · denotes dot product operation, h(xi) ∈ RH

is the representation of the encoder for input xi,
and H is the hidden dimension size. In detail, the
last layer representation of [CLS] token is further
normalized and used as h(xi) for input xi. 1[·] is
an indicator function and τ is a scalar temperature
parameter.

Our training objective for fine-tuning is the com-
bination of cross-entropy loss Lce and contrastive

learning loss Lcl:

Loverall = λLce + (1− λ)Lcl, (3)

where λ is a loss scaling hyperparameter.

3.2 Positive Sampling

The strategies of constructing positive samples for
contrastive learning have been studied actively. In
the following, we give detailed description of two
positive sampling strategies for generalizable im-
plicit hate speech detection.

3.2.1 Augmented Post as Positive Samples
It has been shown that unintended biases in a
dataset could lead to the generalization issue of a
model detecting abusiveness (Wiegand et al., 2019).
Due to the lack of lexical cues in implicit hate
speech and its subtlety, we suspect that implicit
hate speech detector could easily overfit to unin-
tended lexical biases in the dataset. To ease such is-
sue, we suggest using augmented post as a positive
sample. Our intuition is that by using augmented
variants of posts, which are lexically different but
semantically similar with original posts, the model
can learn more invariant semantic features.

When we denote augmentation module as
AUG(·), here, we set the positive sample for i-
th input xi as xposi = xj = AUG(xi). For i ≤ N ,
AUG(xi) is the augmented version of xi. For
i > N , AUG(xi) is the original input post (be-



6671

fore augmentation) of xi. Specifically, for augmen-
tation, we leverage synonym substitution follow-
ing Suresh and Ong (2021). However, we note that
any augmentation can be used for AUG(·). The
contrastive learning loss Laug

cl using augmented
post as a positive sample is defined as:

Laug
cl = −

2N∑
i=1

log
eh(xi)·h(AUG(xi))/τ∑2N
k=1 1[k ̸=i]eh(xi)·h(xk)/τ

.

(4)
We refer to this contrastive learning with aug-
mented posts as AugCon. Then, overall objective
for fine-tuning with cross-entropy loss and AugCon
is:

Laug
overall = λLce + (1− λ)Laug

cl . (5)

3.2.2 Implication as Positive Samples

Hate speech conveys a targeted group and disparag-
ing stereotypes and biases regarding the group. At
times, although presented differently, a group of
hateful posts implies similar harmful biases. That
is, people generating hate speech often project one
implication to various lexical forms of posts. In-
spired by the relationship between an implication
and its various lexical forms of hateful posts, we
propose to use an implication of a hateful post as a
positive sample. By pulling a hateful post and its
implication in the training process, an implication
can work as an anchor for its corresponding hateful
posts. This would enable a model to learn the rela-
tionship between a hateful post and its concealed
meaning, leading to more generalizable implicit
hate speech detector.

We assume a module IMP (·), where we set the
positive sample for i-th input xi as xposi = xj =
IMP (xi). For i ≤ N , IMP (xi) means an impli-
cation of xi if xi is a hateful post, otherwise (i.e., if
xi is a non-hateful post) IMP (xi) means an aug-
mented version of xi. For i > N , IMP (xi) means
the original input post of xi (i.e., xi is an implica-
tion or augmented version of IMP (xi)). In detail,
for implication, we use implications that are given
in IHC and SBIC dataset 1. For augmentation, we
use the same augmentation as AugCon. The con-
trastive learning loss Limp

cl using implication as a

1If there exists any hateful post without a given implication
in the dataset, then we use an augmented post instead of an
implication.

positive sample is defined as:

Limp
cl = −

2N∑
i=1

log
eh(xi)·h(IMP (xi))/τ∑2N
k=1 1[k ̸=i]eh(xi)·h(xk)/τ

.

(6)
We refer to this contrastive learning using implica-
tion as ImpCon. Then, overall objective for fine-
tuning with cross-entropy loss and ImpCon is:

Limp
overall = λLce + (1− λ)Limp

cl . (7)

The overview of training a model with Limp
overall is

demonstrated in Figure 2.

4 Experiment

4.1 Datasets
We perform binary classification of detecting hate-
ful language on implicit hate datasets. For cross-
dataset evaluation, we use three implicit hate
speech datasets as Hartvigsen et al. (2022). SO-
CIAL BIAS INFERENCE CORPUS (SBIC) (Sap
et al., 2020) is the dataset with hierarchical an-
notation of social bias including offensiveness, tar-
get, and implied statement. Similarly, IMPLICIT

HATE CORPUS (IHC) (ElSherief et al., 2021) is
the implicit hate speech dataset with target and
implication collected from hate communities and
their followers on Twitter. DYNAHATE (Vidgen
et al., 2021) is the hate speech dataset collected
through human-and-model-in-the-loop process of
deceiving a model.

Since one of our main focus is leveraging impli-
cation for generalizable model, we fine-tune mod-
els on two datasets with implications, IHC and
SBIC. For IHC, we refined the dataset considering
the uniformity across annotation stages, resulting
in all ‘implicit hate’ labeled samples having impli-
cations. For SBIC, we aggregate annotations of
each post. In addition, we merge an implied state-
ment with a target to get an implication following
the set of rules in Marasović et al. (2022).

4.2 Baseline Training Approaches
We experimented with three baseline training ap-
proaches.

• Cross-entropy Loss (CE): we fine-tune a
model with cross-entropy loss (CE), which
is a general approach in hate speech classifi-
cation.

• Cross-entropy Loss (CE) with Data Aug-
mentation: we apply data augmentation to
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IHC → SBIC IHC → DYNAHATE IHC → IHC
Model Objective (Cross-dataset) (Cross-dataset) (In-dataset)
BERT CE 0.568 0.531 0.777
BERT (Aug) CE 0.565 0.538 0.777
BERT CE + SCL 0.560 0.537 0.777
BERT CE + AugCon 0.581 0.546 0.774
BERT CE + ImpCon 0.607 0.579 0.780
BERT CE + AugCon + ImpCon 0.611 0.577 0.779
HateBERT CE 0.587 0.547 0.764
HateBERT (Aug) CE 0.555 0.528 0.763
HateBERT CE + SCL 0.559 0.528 0.767
HateBERT CE + AugCon 0.584 0.545 0.765
HateBERT CE + ImpCon 0.635 0.594 0.774
HateBERT CE + AugCon + ImpCon 0.630 0.591 0.772

Table 3: Cross-dataset and in-dataset evaluation results for the models trained on IHC dataset. We use → to
distinguish the dataset used for training (on the left) and the dataset used for evaluation (on the right). For example,
IHC → SBIC means the setting where a model is trained on IHC and then evaluated on SBIC. Boldfaced values
on cross-dataset evaluation denote the best performance among different training objectives.

SBIC → IHC SBIC → DYNAHATE SBIC → SBIC
Model Objective (Cross-dataset) (Cross-dataset) (In-dataset)
BERT CE 0.596 0.603 0.838
BERT (Aug) CE 0.601 0.604 0.833
BERT CE + SCL 0.594 0.610 0.838
BERT CE + AugCon 0.597 0.612 0.833
BERT CE + ImpCon 0.614 0.612 0.836
BERT CE + AugCon + ImpCon 0.596 0.603 0.838
HateBERT CE 0.587 0.598 0.840
HateBERT (Aug) CE 0.591 0.599 0.844
HateBERT CE + SCL 0.593 0.598 0.843
HateBERT CE + AugCon 0.585 0.595 0.841
HateBERT CE + ImpCon 0.599 0.606 0.848
HateBERT CE + AugCon + ImpCon 0.590 0.603 0.843

Table 4: Cross-dataset and in-dataset evaluation results for the models trained on SBIC dataset. Boldfaced values
on cross-dataset evaluation denote the best performance among different training objectives.

the training data and train a model using
cross-entropy loss. For data augmentation, we
use the same augmentation used in AugCon,
which substitutes 30% of words with their syn-
onyms using WordNet following Suresh and
Ong (2021) 2.

• Cross-entropy Loss (CE) with Supervised
Contrastive Learning: we fine-tune each
model using supervised contrastive learning
(SCL) (Gunel et al., 2021) combined with
cross-entropy loss. In SCL, posts from the
same class are pulled close while others are
pushed apart in the representation space 3.

2We use the nlpaug library (https://nlpaug.
readthedocs.io/en/latest/augmenter/word/
synonym.html) to implement the synonym substitution.

3In detail, given a post (e.g., hateful post), among 2N − 1
input posts and augmented posts except for the given post in a
batch, posts that have the same class (e.g. hate class) as the
given post are selected as positive samples.

4.3 Implementation Details

We use the pre-trained language model BERT-base-
uncased as a base model, since it (and its vari-
ants) has shown state-of-the-art performance in
hate speech detection (Swamy et al., 2019; Mathew
et al., 2021). We also conduct experiments with
HateBERT, which shows better generalization abil-
ity than BERT in the experiment of Caselli et al.
(2021).

We train models for 6 epochs with NVIDIA RTX
3090. For hyperparameter, we search learning rate
from {5e-6, 1e-5, 2e-5, 3e-5, 5e-5}, temperature τ
from {0.1, 0.3, 0.5}, λ from {0.25, 0.5, 0.75} and
choose the best model with validation F1 score. We
run all experiments on 5 seeds (0, 1, 2, 3, 4) and
report the F1 score on the test set.

4.4 Experiment Results

Table 3 and Table 4 shows the cross-dataset eval-
uation results for the models trained on IHC and
SBIC respectively along with in-dataset evalua-

https://nlpaug.readthedocs.io/en/latest/augmenter/word/synonym.html
https://nlpaug.readthedocs.io/en/latest/augmenter/word/synonym.html
https://nlpaug.readthedocs.io/en/latest/augmenter/word/synonym.html
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tion results. We investigate whether AugCon and
ImpCon can improve the cross-dataset evaluation
performance when combined with cross-entropy
loss.

In cross-dataset evaluation, which we mainly
focus on, simply adding augmented posts to the
training set is not effective. Also, leveraging la-
bel information for contrastive learning (SCL) is
less effective than our approaches. These results
could be attributed to coarse-grained label (only
two classes) in our task, which is in line with the
results from Suresh and Ong (2021).

Adding AugCon on BERT increases the perfor-
mance (at most 2.92% improvement) while adding
it on HateBERT shows slight decrease. This indi-
cates limited effectiveness of AugCon, particularly
when adapted to a domain-shifted pre-trained lan-
guage model. However, the models trained with
ImpCon consistently outperform the models trained
only with cross-entropy loss; we obtain at most
9.10% improvement when applied to BERT and
8.71% improvement when applied to HateBERT.
This demonstrates the effectiveness of using Imp-
Con on generalization ability.

We also experimented the combination of Aug-
Con and ImpCon with the same scaling factor be-
tween them. Only one result shows 0.58% perfor-
mance improvement compared to the best perform-
ing ImpCon result. We analyze the possible reason
in Section 5.1. Regarding the relatively low im-
provement on the models trained on SBIC, broader
definition of class (offensiveness) and thus lower
proportion of implication (not all offensive posts
have implications) in offensive-labeled posts would
be a reason.

For in-dataset evaluation, adding AugCon or Im-
pCon or combination of them (i.e., AugCon and
ImpCon) does not compromise the performance.
We note that in-dataset performance can be over-
estimated, and cross-dataset evaluation results is
rather perceived as better evaluation for measuring
generalization ability.

5 Analysis

5.1 Representation Analysis

We focus on investigating the effect of ImpCon on
the representation space. Since ImpCon pulls a
paired post-implication in the representation space,
we analyze the representation of post-implication
pairs quantitatively and qualitatively. Although the
model trained with ImpCon would project post-

Model Objective Sim.

BERT CE 0.27
BERT CE + AugCon 0.15
BERT CE + ImpCon 0.68
BERT CE + AugCon + ImpCon 0.60
HateBERT CE 0.42
HateBERT CE + AugCon 0.17
HateBERT CE + ImpCon 0.67
HateBERT CE + AugCon + ImpCon 0.54

Table 5: Quantitative analysis on the representation
learned by different training objectives. Using each
model fine-tuned with one of the training objectives, we
calculated the averaged cosine similarity between all
post-implication pairs of IHC validation set.

implication pairs of the training set close, it is
unknown whether the model can project unseen
post-implication pairs close. Hence, we conduct
analysis using post-implication pairs in the vali-
dation set, which are unseen while training. We
use the representation of [CLS] token for the fol-
lowing two analyses. For the uniformity between
analyses, we use the same BERT and HateBERT
models trained on IHC training set on a seed.

Quantitative Analysis We compute averaged co-
sine similarity between all post-implication pairs of
IHC validation set. As shown in Table 5, two train-
ing objectives with ImpCon (CE + ImpCon, CE +
AugCon + ImpCon) show higher similarity than oth-
ers. The similarity gains of ImpCon-based training
objectives compared to CE validate that ImpCon
enables a model to project unseen post-implication
pairs close. While CE + ImpCon shows the high-
est cosine similarity (0.6752 on BERT, 0.6731 on
HateBERT), CE + AugCon + ImpCon shows lower
cosine similarity (0.6048 on BERT, 0.5399 on Hate-
BERT). Considering the lowest similarity CE +
AugCon showed, AugCon seems to prevent post-
implication pairs from being pulled close. We con-
jecture that this is one of the reasons why simply
combining AugCon and ImpCon does not yield the
best performance on 3 out of 4 cross-dataset evalu-
ations.

Qualitative Analysis We visualize the learned rep-
resentation of post-implication pairs from the IHC
validation set using t-SNE (van der Maaten and
Hinton, 2008). As shown in Figure 3, the repre-
sentation learned by the training objectives with
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Figure 3: Visualization of implicit hate posts and implications in IHC validation set using t-SNE. We use BERT
model trained on IHC training set with each training objective.
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Figure 4: Visualization of three example implications and their corresponding posts using t-SNE. A triangle-marker
indicates an implication and a circle-marker indicates a post, respectively. Same colored posts (circle-markers)
share the common implication, i.e., triangle-marker colored in the same color. Blue triangle: “Immigrants should be
deported”, red triangle: “White people are superior”, and yellow triangle: “Non-white people are inferior”. We use
BERT model trained on IHC training set with each training objective.

ImpCon (CE + ImpCon, CE + AugCon + ImpCon)
shows that the implications and posts are more
densely clustered in representation space compared
to others, which is in line with our quantitative
analysis.

However, it is necessary to investigate whether
semantically relevant implications and posts are
projected closer than irrelevant ones. As an in-
depth analysis, we carefully select some implica-
tions and visualize them with their correspond-
ing posts (Figure 4). We choose three implica-
tions, where two implications share similar seman-
tic meaning (“White people are superior” and “Non-
white people are inferior”) and the other implica-
tion has different semantic meaning (“Immigrants
should be deported”). We observe that the mod-
els with ImpCon-based training objectives (CE +
ImpCon, CE + AugCon + ImpCon) produce dis-
tinguishable representation between implications
with different meanings (blue points are apart from
red and yellow points). Also, implications (and
their corresponding posts) with similar meaning are
densely clustered (red and yellow points are close
to each other). The results suggest that semanti-
cally relevant implications and posts are projected
closer than irrelevant ones in the representation
space learned by ImpCon. We believe this is one

of the reasons why ImpCon shows improvements
on cross-dataset evaluation.

5.2 Case Study

We have shown that ImpCon forces relevant impli-
cations and posts to be projected closer in the rep-
resentation space, quantitatively and qualitatively.
As a further investigation, we observe whether the
model can predict consistently on relevant posts
that share the same implication.

We conduct a case study with two groups of hate-
ful posts—one group shares the implication “jews
are worthless” and the other group shares “black
folks are animals”—in SBIC validation set. We re-
port prediction results using BERT models trained
on IHC. In Table 6, the model trained with ImpCon
shows consistently correct predictions on posts that
share a same implication. For example, for an im-
plication “jews are worthless”, while BERT trained
with cross-entropy loss succeeds in predicting cor-
rectly on post 1 and 2, it fails to predict correctly
on post 3 even though three posts share a same
implication. However, the model trained with Imp-
Con predicts all corresponding posts as offensive
correctly.
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Implication 1
jews are worthless

Post 1 Post 2 Post 3
“How do you turn “Roses are red, violets “What is the difference

a Christian into a Jew? are blue, I saw the KKK between a jew and a pizza :
Cremate him” beating a Jew.” I don’t like eating pizza”

Label: 1 Label: 1 Label: 1
BERT (CE): 1 BERT (CE): 1 BERT (CE): 0
BERT (CE +ImpCon): 1 BERT (CE +ImpCon): 1 BERT (CE +ImpCon): 1

Implication 2
black folks are animals

Post 1 Post 2 Post 3
“Why are there no “What’s the difference between “I don’t believe in slavery

black furries? Because KFC and the KKK? Nothing.. I support animal rights”
they are already animals.” They both fry animals”
Label: 1 Label: 1 Label: 1
BERT (CE): 1 BERT (CE): 0 BERT (CE): 0
BERT (CE +ImpCon): 1 BERT (CE +ImpCon): 1 BERT (CE +ImpCon): 1

Table 6: Some implications and their corresponding posts from SBIC validation set. We compare predictions of
two BERT models trained on IHC training set with different training objectives (CE and CE + ImpCon). Label 1
denotes there exist offensive contents in the post.
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Figure 5: Confusion matrices for the model predictions
on SBIC validation set. We compare the predictions of
two BERT models trained on IHC training set with (a)
CE and (b) CE + ImpCon.

5.3 Error Analysis

We conduct an error analysis on cross-dataset eval-
uation to facilitate further studies. We provide the
confusion matrices (Figure 5) where the models are
trained on IHC and evaluated on SBIC. While Im-
pCon decreased false negatives and false positives,
there are still considerable amount of errors. It is
notable that 27.39% of predictions are false neg-
atives, which takes a higher proportion than false
positives (Figure 5(b)). We inspect such samples,
and we suspect a target group that rarely appears in
the training set would lead to false negatives. For
example, given a hateful post with rare target group
anorexic folks 4, “What do you call an anorexic
with a yeast infection? A Quarter-Pounder with
Cheese.”, the model trained with CE + ImpCon pre-
dicts it as a non-offensive post. Since hate speeches
on different target groups are based on distinct char-

4Using ‘anorexic’ as a keyword, there is no exact matching
results in IHC training set.

acteristics (stereotypes) of each group, hate speech
on unseen target would limit the generalization abil-
ity of the model. Developing a training approach
that can generalize well to unseen target groups
would be a possible future direction.

6 Conclusions

We study the cross-dataset underperforming prob-
lem in implicit hate speech detection task. Empir-
ically, we confirm that the pre-trained language
models fine-tuned on an implicit hate speech
dataset show relatively low performance on cross-
dataset evaluation. We suggest leveraging con-
trastive learning when fine-tuning implicit hate
speech detector to improve generalization ability.
Particularly, we propose to utilize shared impli-
cation as a positive sample for its corresponding
hateful posts, and introduce an implication-based
contrastive learning method (ImpCon). Extensive
experiments suggest that fine-tuning with ImpCon
leads to better generalization ability, resulting in
consistent performance improvements on all cross-
dataset evaluation with three implicit hate speech
datasets.
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A Visualization by t-SNE (HateBERT)
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Figure 6: Visualization of implicit hate posts and implications in IHC validation set using t-SNE. We use HateBERT
model trained on IHC training set with each training objective.
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Figure 7: Visualization of three example implications and their corresponding posts using t-SNE. A triangle-marker
indicates an implication and a circle-marker indicates a post, respectively. Same colored posts (circle-markers)
share the common implication, i.e., triangle-marker colored in the same color. Blue triangle: “Immigrants should be
deported”, red triangle: “White people are superior”, and yellow triangle: “Non-white people are inferior”. We use
HateBERT model trained on IHC training set with each training objective.

B Error Analysis (HateBERT)
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Figure 8: Confusion matrices for the model predictions on SBIC validation set. We compare the predictions of two
HateBERT models trained on IHC training set with (a) CE and (b) CE + ImpCon.
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