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Abstract

The difficulty of generating coherent long texts
lies in the fact that existing models overwhelm-
ingly focus on predicting local words, and can-
not make high level plans on what to generate
or capture the high-level discourse dependen-
cies between chunks of texts. Inspired by hu-
man writing processes, where a list of bullet
points or a catalog is first outlined, and then
each bullet point is expanded to form the whole
article, we propose SOE, a pipelined system
that involves of summarizing, outlining and
elaborating for long text generation: the model
first outlines the summaries for different seg-
ments of long texts, and then elaborates on
each bullet point to generate the correspond-
ing segment. To avoid the labor-intensive pro-
cess of summary soliciting, we propose the re-
construction strategy, which extracts segment
summaries in an unsupervised manner by se-
lecting its most informative part to reconstruct
the segment.

The proposed generation system comes with
the following merits: (1) the summary provides
high-level guidance for text generation and
avoids the local minimum of individual word
predictions; (2) the high-level discourse depen-
dencies are captured in the conditional depen-
dencies between summaries and are preserved
during the summary expansion process and (3)
additionally, we are able to consider signifi-
cantly more contexts by representing contexts
as concise summaries. Extensive experiments
demonstrate that SOE produces long texts with
significantly better quality, along with faster
convergence speed.

1 Introduction

Despite that recent large-scale pretrained language
models (PLMs) (Devlin et al., 2018; Liu et al.,
2019; Yang et al., 2019) are able to produce high-
quality passages that can be hardly recognized by
humans (Zellers et al., 2019), most of the generated
“good” texts are within very limited length, e.g. hun-

dreds of tokens for most cases (Yan et al., 2020),
thus generating coherent long texts remains a chal-
lenge (Radford et al., 2019; Tan et al., 2020). The
difficulty lies in the fact that existing models gen-
erate texts in a word-by-word manner: predicting
each subsequent token given its preceding contexts.
This word-by-word strategy overwhelmingly fo-
cuses on predicting local words, and cannot make
high level plans on what to generate. The strat-
egy results in the fact that long texts generated by
current models are usually repetitive, generic and
self-contradictory (Shen et al., 2019).

To address these issues, the coarse-to-fine gener-
ation strategy is proposed (Fan et al., 2018; Xu
et al., 2018; Yao et al., 2019; Mao et al., 2019). In
coarse-to-fine generation, a list of keywords or a
short prompt is first generated, serving as a sum-
mary of the original text. The prompt is then fed
to a seq2seq model as an input to output the com-
plete text. The coarse-to-fine generation strategy
significantly improves generation over the word-by-
word strategy, but still suffers from the following
shortcomings: (a) limited capacity of the prompt: a
single keyword list or prompt does not have enough
capacity to summarize all the text of long passages,
since long texts are usually consists of several parts,
each of which focuses on a specific aspect or topic
(Zhou et al., 2018; Guan et al., 2019). The us-
age of the coarse-to-fine generation strategy is thus
limited to texts that can be summarized by a sin-
gle prompt (e.g., short stories). This explains why
text length generated by the progressive generation
model is still limited, e.g., the introduced writing
prompts dataset in Fan et al. (2018) has an average
length of stories around 735, and the average length
of prompts is 28; (b) ignorance of high-level dis-
course dependency: the coarse-to-fine generation
strategy does not capture discourse-level dependen-
cies (Li and Jurafsky, 2016), which handle the high-
level information flow and interactions between
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segments of texts. The ignorance of discourse-level
dependencies results in texts lacking for coherence.

Humans write in a hierarchical top-down manner:
before writing a thousand-word-long essay, a hu-
man usually first prepares a list of bullet points or
a catalogue, and then expands them to form the
whole article. The sentence-level coherence be-
tween these bullet points is preserved when the
bullet points are expanded, providing guarantees
that the full text is coherent.

To mimic this top-down manner in human writing,
we propose SOE, a pipelined system that involves
of summarizing, outlining and expanding for long
text generation: the model first outlines the sum-
maries for different segments of long texts, which
actually mimics the process of humans outlining
bullet points; next, the model elaborates on each
bullet point to generate the corresponding segment.
The proposed strategy comes with the following
merits: (a) Since each segment is associated with
its own summary rather than the entire text sharing
a single prompt, the capacity of summaries to re-
construct the full text can be guaranteed; (b) The
conditional generation probability between sum-
maries captures the high-level discourse dependen-
cies, and these dependencies are preserved when
they are expanded to segments. This naturally re-
solves the incapability of modeling discourse-level
dependencies in the coarse-to-fine generation ap-
proach. (c) This model is able to consider signif-
icantly larger amount of contexts by representing
chunks of contexts as concise summaries.

Empirically, we do not readily have summaries for
segments in hand. The model thus needs to learn
to summarize in an unsupervised manner. To this
end, we propose the reconstruction strategy, which
extracts segment summaries by selecting its most
informative part to reconstruct the segment. Exten-
sive experiments demonstrate that SOE produces
long texts with significantly better quality than ex-
isting baselines.

2 Related Work

2.1 Generating Long Texts

There are two trends for generating long text: This
first trend of work tackles the problem from the
model perspective. New model structures (Kitaev
et al., 2020; Child et al., 2019; Dai et al., 2019;
Ye et al., 2019; Guo et al., 2019; Sukhbaatar et al.,

2019; Correia et al., 2019; Beltagy et al., 2020; Za-
heer et al., 2020) are designed to give the model
the ability to congest more contexts given lim-
ited memories or computing power. For example,
Transformer-XL (Dai et al., 2019), a modifier to
Transformers (Vaswani et al., 2017) uses a segment-
level recurrence mechanism to enable learning
long-term dependencies; Child et al. (2019); Cor-
reia et al. (2019); Kitaev et al. (2020); Beltagy et al.
(2020); Zaheer et al. (2020) proposed to sparsify
transformers by focusing only on a fraction of at-
tention connections; Tay et al. (2020) replaced the
dot-product self-attention with learned synthetic
attention weights.

The second trend of researches focus on develop-
ing new generation strategies. Efforts have been
devoted to the idea of planning-then-generation
or coarse-to-fine generation (Sha et al., 2017;
Gehrmann et al., 2018a; Wiseman et al., 2019; Hua
and Wang, 2019; Shen et al., 2020; Fu et al., 2020),
which greatly inspires this work. In coarse-to-fine
generation, a list of keywords or a short sentence
is first generated, providing guidance to generate
the full text. A recent work from Tan et al. (2020)
takes a multi-step strategy, which progressively re-
fines the generated incomplete text until reaching
a specified stage. Similar ideas have also been
applied to text summarization, where Gehrmann
et al. (2018b) proposed a bottom-up method that
first identifies phrases within a document that are
likely included in its summary. Our work is also
inspired by the strategy of hierarchical generation
(Li et al., 2015b), which consider text units with
bigger granularity: Li et al. (2015b) proposed hi-
erarchical LSTMs that arrange tokens, sentences
and paragraphs in a hierarchical structure, with dif-
ferent levels of LSTMs capturing compositionality,
and Shen et al. (2019) used multi-level structures
to learn a VAE model for generating long coherent
text.

2.2 Extractive Summarization

Extractive summarization refers to the problem of
selecting part of the input text as its summary. A
fundamental problem in extractive summarization
is to score constituent texts units (e.g., phrases,
sentences or paragraphs) and select highly-ranked
one(s) as the summary. Haghighi and Vanderwende
(2009) used word frequencies in the input text to
assign scores to words, which are then in turn used
to score sentences. Higher-ranked sentences are
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selected as the summary of the input text. Liu et al.
(2018) presented a two-stage extractive-abstractive
framework, which first coarsely identifies salient
information, followed by a generation model used
to refine it. Neural models have been widely used
for scoring Cao et al. (2015); Ren et al. (2017). Liu
and Lapata (2019) finetuned BERT (Devlin et al.,
2018) to score each sentence for extractive sum-
marization; Zhang et al. (2019) computed token
similarity in each sentence using BERT contextual
embeddings to serve as an automatic evaluation
metric for text generation.

3 Background

Language Modeling refers to the process of
calculating the probability p(y) of a sequence
y = [y1, · · · , yT ], where each yi denotes a con-
stituent token of p(y). The probability can be com-
puted by decomposing the joint distribution p(y)
into a product of conditional distributions over to-
kens:

p(y) =

T∏
t=1

p(yt|y<t) (1)

where y<i = [y1, · · · , yi−1] is the partial sequence
of tokens generated previously. During training,
the model is optimized to minimize the negative
log-likelihood (NLL) −

∑
y∈D log p(y). During

inference, the model decodes a token at each time
step t according to p(yt|y<t) based on the softmax
functions yt ∝ softmax(Woutht) where Wout ∈
Rd×|V | is the output word embedding matrix and
ht is the hidden state at time-step t.

Sequence-to-Sequence (Seq2Seq) Generation
models generate a target sequence y conditioning
on a given source sequence x, which differs from
language models (LMs) in terms of whether or not
conditioning on another input sequence. Similar to
LMs, the probability of the target sequence can be
typically factorized as:

p(y|x) =
T∏
i=1

p(yt|y<t,x) (2)

Seq2seq models are also optimized to minimize
the NLL −

∑
(x,y)∈D log p(y|x). In the rest of this

paper, we unify the notation of p(y) and p(y|x)
by setting x = ∅ for LMs. Different architectures
have been proposed to model p(yt|y<t,x), includ-
ing transformers (Vaswani et al., 2017), LSTMs
(Luong et al., 2015) and CNNs (Dauphin et al.,

Source: 𝐱
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Figure 1: An overview of the proposed method. Given
preceding tokens y<i, we first sequentially generate
summaries sj∼k for each snippet. Next we expand each
summary s to form the full text yj∼k .

2017). At test time, sequences are usually gener-
ated using beam search, or its variants to promote
diversity (Vijayakumar et al., 2016).

4 Model Details for SOE

4.1 Notations

A long sequence of tokens Y = {y1,y2, · · · ,yK}
is first sliced into a series of snippets yis, where K
denotes the number of constituent snippets. Here
we use the bold font y to denote snippets, and
the normal font y to denote tokens. The num-
ber of tokens N within each snippet is a hyper-
parameter. We also use superscript i to denote the
index of a snippet, and subscript l to denote the
index of a token. Each yi consists a sequence of
tokens yi = {yi1, · · · , yini

}, where ni denotes the
length of yi. Our goal is to generate a subset of
Y, denoted by yj∼k = {yj ,yj+1, · · · ,yk} given
its preceding snippets, denoted by p(yj∼k|y<j).
Each snippet yi is associated with a short summary
si = {si1, si2, · · · , simi

}, where sil denotes tokens
and mi is the number of tokens in si.

4.2 Pipeline Overview

Instead of generating all constituent words in Y
one by one, we adopt a hierarchical strategy. The
process of generating yj∼k is decoupled into the
following two stages.

Stage1: Outlining Segment Summaries : we se-
quentially generate the summary si for each snippet
conditioning on the summaries for previous snip-
pets. This mimics the process of catalog generation
when humans write.

Stage2: Expanding Summaries to Texts: we ex-
pand each summary si to the full segment by se-
quentially generating its constituent words.

An overview of the proposed method is shown in
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Figure 1.

4.3 Extracting Golden Summaries

At the training time, we need to learn to generate
summaries. But this is not straightforward because
the golden summary si for the snippet yi is not
readily at hand. Manually soliciting summaries
like Fan et al. (2018) is both costly and slow. We
thus propose to take the idea of unsupervised ex-
tractive summarization, and for each snippet yi, we
extract its summary si unsupervisedly, and use the
extracted si as the golden summary for learning.

We investigate Random, TF-IDF (Ramos, 2003),
TextRank (Mihalcea and Tarau, 2004) and Recon-
struction methods to access the importance of se-
lecting summary sentences, the first three of which
are similar to Liu et al. (2018). More details of
these three methods can be found at A.

Reconstruction A summary should be more in-
formative than non-summary sentences, that is,
a summary should have the most ability to re-
construct the full text. To measure the degree
of a sentence’s reconstruction ability, we use a
seq2seq model to predict the original given text
the summary sentence, the probability of which
is regarded as the reconstruction score. Suppose
there are n sentences in yi (e.g., n = 4), and
yi = {yi,1,yi,2,yi,3,yi,4}, and yi,j denotes the
j-th sentence in yi. The reconstruction score for
yi,j , denoted by Score(yi,j) is given as follows:

Score(yi,j) =
1

|yi|
log p(yi|yi,j) (3)

To obtain p(yi|yi,j), we train another seq2seq
model, where the input is yi,j for each j, and the
output is yi by sequentially predicting tokens in
yi. Given the trained model, we rank all sentences
in yi and use the one with the highest score as the
golden summary si.

4.4 Outlining Segment Summaries

In the summary generation stage, we cannot ob-
serve yj∼k, and our goal is to sequentially generate
sj∼k given y<j :

p(sj∼k|y<i) =
∏

i∈[j,k]

p(si|y<i, s<i) (4)

The generation of summary si can be factorized
into sequentially generating the constituent word

within it:

p(si|y<i, s<i) =
∏

l∈[1,mi]

p(sil|si<l,y
<i, s<i) (5)

This process ends until generating a special end-
of-sequence token <EOS> or reaching a speci-
fied summary length m. We use the Transformer-
base(Vaswani et al., 2017) architecture as the back-
bone. For considering more contexts, we adopt the
segment-level recurrence strategy, similar to Dai
et al. (2019), where the hidden states computed
for far away snippets are fixed and cached to be
reused for the next new snippet. Gradients are not
propagated to these far away snippets for memory
and computation efficiency. This strategy allows
the model to exploit information in history to the
largest extent.

4.5 Expanding Summaries to Texts
Next, we expand each summary si to the full text
for each segment by sequentially generating its
constituent words

p(yi|y<i, si) =
∏

l∈[1,ni]

p(yil |yi
<l, s

i,y<i) (6)

which has the same termination conditions as in
the summarization generation.

4.6 Training and Inference
Training For summary generation, the trans-
former model takes [y<i; s<i] as the input
and is optimized by minimizing the NLL loss
− log p(si|y<i; s<i). Due to the memory limita-
tion, we limit y<i to preceding 384 tokens, and s<i

to 128 tokens at training. It is worth noting that
the 384 tokens of y<i mostly come from the seg-
ment right before, i.e., yi−1, while s<i comes from
multiple preceding segments since the summary is
more concise.

For the summary expanding stage, the transformer
model takes [y<i; si] as input and is optimized by
minimizing the NLL loss − log p(ŷi|y<i; si). The
two models, i.e., the summary generation and the
summary expansion model share parameters, with
a task-specific token appended to the start to no-
tify the model on what to generate, summaries or
segments.

Inference At test time, we first use beam search
with beam size 5 to generate summaries. Given the
generated summary, beam search is used again to
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generate the corresponding segment. We consider
more contexts at test time, where y<i is limited to
1,156 tokens and s<i is limited to 512 tokens.

Additionally, we augment the vanilla beam search
with the strategy of mutual information rerank-
ing (Li et al., 2015a; Fang et al., 2015). The key
point of mutual information is to, instead of merely
handling the uni-directional dependency from the
source to target based on the forward probability
log p(target|source), it models the mutual depen-
dency between the source and target in sequence-
to-sequence generation, i.e., the combination of the
forward probability log p(target|source) and the
backward probability log p(source|target). Specifi-
cally in our case, during summary generation, si is
generated as follows:

si = argmax
si

[log p(si|y<i, s<i)+

log p(si−1|y<i−1, si)]
(7)

where p(si−1|y<i, si) is the backward probability
of predicting the preceding summary si−1 given si.
Since direct decoding from Eq.7 is infeasible, we
follow the practical solution in Li et al. (2015a),
where we first generate an N -best list based on
the forward probability p(si|y<i, s<i),1 and then
rerank the N -best list by combining the forward
probability and the backward probability.

Similar strategy can also be applied to the summary
expanding stage, where yi is obtained as follows:

yi = argmax
yi

[log p(yi|y<i, si)

+ log p(yi−1|yi)]
(8)

The backward probability p(yi−1|yi) predicts the
preceding segment given the current segment.
Again, beam search is combined with reranking
to approximately find the optimal result.

4.7 Slicing Texts based on Coherence Scores
One more thing we need to care about is how to
slice the text into segments. The simplest way is to
slice the full text equally. But this is sub-optimal
since the break point could be in the middle of two
closely related sentences and one segment might
contain multiple aspects.

We thus propose a slicing strategy based on
sentence-level coherent scores. Using the Next

1We simplify p(si−1|y<i−1, si) as p(si−1|si), where we
train a seq2seq model to predict the preceding summary given
the current summary.

WikiText-103 BookCorpus
Model PPL↓ # Para PPL↓ # Para

Base
Vanilla 25.0 130M 29.0 130M
WritingPrompts-Keyword 23.8 135M 28.3 135M
WritingPrompts-Sentence 24.1 135M 28.6 135M
Progressive WritingPrompts 23.3 150M 27.7 150M
SOE 22.2 132M 25.7 132M

Large
Vanilla 20.0 220M 24.8 220M
SOE 17.4 224M 22.5 224M

Table 1: Perplexity of different models on WikiText-103
and BookCorpus. Vanilla stands for our implementation
of Transformer-XL (Dai et al., 2019).

Sentence Prediction (NSP) from BERT (Devlin
et al., 2018), we are able to measure the coherence
score between two consecutive sentences with in-
dex i and i+ 1, denoted by Score(i, i+ 1). Given
a full text y = {y(1), y(2), ..., y(T )}, let T denote
the number sentences in y, and y(i) denote the ith
sentence. Given a fixed value K for the number
sliced segments, y will be sliced into K segments,
i.e., y1,y2, ...,yK , where each yk consists of a
group of consecutive sentences from y. Let Gk

denote the list of indexes of sentence in original y,
where Gk[1] denotes the index of the first sentence
in Gk, Gk[2] denotes the second sentence, etc. Let
Rk = |Gk| denote the number of sentences in Gk.

We wish to maximize the coherence scores between
two consecutive sentences within the same segment
and minimize the score between two consecutive
sentences belonging to different segments, giving
the following objective to optimize:

L =
K∑
k=1

∑
i∈[1,Rk−1]

Score(G(k)[i], G(k)[i+ 1])

−
K−1∑
k=1

Score(G[k][Rk], G[k][1])

(9)
where Score(G[k][Rk], G[k][1]) the coherence
score between the ending sentence of a segment
and the starting sentence of the next segment.
Given Score(i, j), Eq.9 can be readily solved using
linear programming.

5 Experiments

In this section, we present experiment results. For
different methods to generate summaries, we find
that the performance of Reconstruction consistently
outperforms the rest in our preliminary results. We
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MSJ↑ Diversity↑ Adversarial Success↑ S-Level Coherence↑
Model MSJ-2 MSJ-3 MSJ-4 D-1 D-2 Adversarial Success NSP

Base
Vanilla 62.6 41.5 16.9 7.4 19.8 0.037 0.812
WritingPrompts-Keyword 63.0 42.2 17.5 8.9 22.0 0.057 0.836
WritingPrompts-Sentence 63.1 42.2 17.7 8.5 21.0 0.046 0.834
Progressive WritingPrompts 63.9 42.5 18.0 10.7 25.9 0.055 0.854
SOE 64.8 43.9 19.4 16.4 34.3 0.072 0.870
SOE+MI 65.2 44.4 20.0 20.6 40.8 0.103 0.881

Table 2: Results of different models in terms of diversity, adversarial success, MSJ and sentence-level coherence on
the BookCorpus corpora. Vanilla stands for our implementation of Transformer-XL (Dai et al., 2019). “D-n” stands
for “Distinct-n(n = 1, 2)”, and MI stands the results for mutual information reranking.

Model Distinct-1↑ Distinct-2↑

Large
Vanilla 11.7 25.5
SOE 24.1 45.0
SOE+MI 29.3 48.8

Table 3: Results of different models with large volumes
in terms of diversity on the BookCorpus dataset.

thus only report results from Reconstruction in the
section. We will get back to analysis on different
summary generation methods in the ablation study
section.

5.1 Datasets and Evaluation Metrics

We need a corpus of contiguous and long text to test
SOE. We use two word-level datasets, WikiText-
103 (Merity et al., 2016) and the BookCorpus
dataset (Zhu et al., 2015). WikiText-103 contains
103M training words from 28K articles, with an
average length of 3.6K words per article. WikiText-
103 can be used to test the ability of modeling
long-term dependencies. The BookCorpus dataset
is a more suitable dataset for our purpose, with
much longer and more contiguous texts. It con-
tains a total number of roughly 1 billion words
and 74 million sentences from 11k books, with an
average length of 89K words for each book. The
average number of words per sentence is 13. For
both datasets, we predict the last 2,000 tokens at
test time.

We use Perplexity (PPL), Diversity (Distinct-n)
(Li et al., 2016), Adversarial Success (Kannan and
Vinyals, 2017; Li et al., 2017), MS-Jaccard (MSJ)
(Montahaei et al., 2019) and Sentence-Level Co-
herence (Tan et al., 2020) as evaluation metrics.

• Perplexity (PPL) Perplexity measures how
fluent a piece of generated text could be (Dai
et al., 2019). We use PPL as the basic evalua-

tion metric in our experiments.
• Diversity Perplexity cannot measure how di-

verse the generated text is. We thus use the
scaled number of distinct unigrams (Distinct-
1) and bigrams (Distinct-2) to demonstrate the
degree of diversity (Li et al., 2016) for gener-
ated texts.

• Adversarial Success Inspired by adversarial
evaluations (Bowman et al., 2016; Kannan
and Vinyals, 2017; Li et al., 2017), we use the
adversarial success metric, which is defined
as the fraction of a model successfully fooling
a trained evaluator to believe that machine-
generated texts are from humans. The eval-
uator is a binary classification model. At
the training time, it takes as inputs machine-
generated texts and original texts, and are
trained to discriminate them. At test time, ad-
versarial success is the value 1− acc, where
acc denotes the accuracy of the trained eval-
uator predicting machine-generated texts as
machine-generated. Higher values of adver-
sarial success denotes better text quality.

• MS-Jaccard (MSJ) MSJ measures the simi-
larity of the n-gram frequencies between the
generated texts and the golden texts (Monta-
haei et al., 2019). We report MSJ-2, -3 and
-4.

• Sentence-Level Coherence PPL, MSJ and di-
versity scores do not reflect the sentence-level
coherence of generated texts. We adopt the
strategy in Tan et al. (2020) where Next Sen-
tence Prediction (NSP) from pretrained BERT
model (Devlin et al., 2018) is used as a metric
to measure the coherence between each sen-
tence and its next sentence. We report average
NSP scores for all consecutive sentence pairs
within the generated text.



6398

5.2 Baselines
In this paper, we use Transformer-XL (Dai et al.,
2019), WritingPrompts (Fan et al., 2018), and Pro-
gressive WritingPrompts (Tan et al., 2020) as base-
lines. More details of the baseline models can be
found at Appendix B.

For all models, we use Adam (Kingma and Ba,
2014) with learning rate of 1e-4, β1 = 0.9, β2 =
0.999, rate warmup over the first 10,000 steps, and
linear decay of the learning rate. We use a dropout
rate of 0.1 on all layers.

5.3 Results
Table 1 shows the results of perplexity for differ-
ent models on the WikiText-103 and BookCorpus
datasets. On both datasets, SOE achieves the lowest
PPL compared to baselines Transformer-XL (Dai
et al., 2019), WritingPrompts (Fan et al., 2018) and
Progressive (Tan et al., 2020). In particular, for
WikiText-103, we gain a PPL decrease -2.8, -1.6
and -1.1 against our implemented Transformer-XL,
WritingPrompts-Sentence and Progressive, while
having the same or even fewer parameters. Similar
trend can be observed on BookCorpus.

Table 2 and Table 3 show the results for MSJ, diver-
sity, adversarial success and sentence-level coher-
ence scores. As can be seen, WritingPrompt based
models generally outperform the Transformer-XL
model, which adopts the word-by-word generation
strategy. This validates the superiority of two-step
generation strategy over the naive word-by-word
generation strategy for long-text generation. The
progressive WritingPrompt model, which involves
multi-step of generation and expanding, outper-
forms the one-step the WritingPrompt-keyword
and WritingPrompt-sentence model, which is in
accord with our expectation. SOE achieves sig-
nificantly better results compared to Vanilla, Writ-
ingPrompts and Progressive models in terms of
all evaluation metrics, showing that the proposed
method can produce more fluent, coherent and di-
verse texts. The consistent performance boosts on
all metrics demonstrate the importance of model-
ing discourse-level dependencies and necessity of
summary expanding strategy for long-text genera-
tion.

Additionally, we observe additional performance
boosts by mutual information (MI), especially for
diversity and adversarial success. This is in accord
with our expectation: since mutual information is
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Figure 2: PPL on the BookCorpus dataset w.r.t. different
segment lengths.

able to build bidirectional dependencies between
the source and the target, models enhanced with
mutual information can generate better summaries,
and the phenomenon of generic and repetitive gen-
eration can be alleviated (Li et al., 2016), leading
to more diverse results.

6 Ablation Studies

6.1 The Effect of Segment Length

The size of the segment can be neither too big nor
too small: extremely long segments, might con-
tain too many aspects or topics for the summary
to summarize, in which case the model will degen-
erate into the WritingPrompts model (Fan et al.,
2018). For too short segments, the summary can-
not provide high-level guidance. We thus need to
find the sweet spot for the segment length. Figure 2
shows results on the BookCorpus dataset. It is clear
from the figure that too short segments and too long
segments both lead to inferior performances.

6.2 The Effect of Summary Generation
Strategies

It is worthwhile to explore how different summary
extraction methods affect the final performances.
To this end, we conduct experiments on the Book-
Corpus dataset, using different summary extraction
methods, i.e., Random, TextRank, TF-IDF and Re-
construction. Table 4 shows the results. We first
compare the ppl for summary generation, where
the reconstruction model achieves the lowest ppl
and thus produces summaries that are the easiest
to predict given preceding contexts. It is also in-
teresting to see that across all summary genera-
tion strategies, ppl for summarization generation is
significantly larger than text prediction, which is
reasonable since (1) generating summaries for the
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Method Summary PPL↓ Text PPL↓ MJ-4 ↑

Vanilla - 29.0 16.9
Random 40.1 30.2 15.5
TextRank 30.7 26.2 17.8
TF-IDF 33.0 26.9 17.3
Reconstruction 30.4 25.7 19.4

Table 4: Performances of different summary extraction
methods described in Section 4.3. Vanilla is the plain
model that generates tokens one by one without sum-
maries.

upcoming segment requires more generalization
abilities; and (2) there are more diverse options
for what the next segment should talk about than
the local choices for what the next sentence should
talk about. For the final text-generation ppl, recon-
struction achieves the best results, in terms of PPL,
MJ-3 and MJ-4. TextRank and TF-IDF are better
than Vanilla. Interestingly, the strategy of using
random sentences as summaries performs worse
than without summaries, which can be explained
by providing no guidance is better than incorrect
guidance.

6.3 The Effect of Coherence-based Text
Slicing

We replace the coherence-based text slicing strat-
egy with the naive equal slicing strategy, and see
how this will negatively affect the performance. On
the BookCorpus dataset, we observe an increase
of summary generation ppl from 30.4 to 30.9, and
an +0.7 increase of PPL from 25.7 to 26.4 in to-
ken generation, which demonstrates the importance
of slicing text into coherent segments for genera-
tion. But it is also worth-noting that, even with the
native equal slicing strategy, SOE still performs
significantly better than other baseline models.

6.4 Decoupling The Effects of Summaries
The positive effects from summaries are two-fold:
(1) it provides high-level guidance for segment gen-
eration; and (2) with far-away segments being con-
cisely represented by summaries, it gives the model
the ability to consider longer contexts. To quantita-
tively measure the influences from both aspects, we
conduct the following experiments: at test time, for
the computation p(si|y<i; s<i) and p(yi|y<i; si),
the model can only access summaries for segments
that are used as contexts. In other words, only
summaries within the 1,156 tokens of preceding
contexts can be fed as inputs. This is different from
the original version of SOE, in which s can extend
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Figure 3: Convergence speed for different models.

to preceding contexts until the limit of 512 tokens
is reached. We did not retrain the model, but add
this limitation at test time. On the BookCorpus
dataset, this leads to an increase of 0.8 in PPL (25.7
vs 26.5), and a decrease of 0.5 and 0.8 in MJ-3
(43.5 vs 43.9) and MJ-4 (18.6 vs 19.4).

6.5 Simplifying p(si|y<i; s<i)

Here we explore different simplifications for
p(si|y<i; s<i). For p(si|y<i; s<i), the current sum-
mary is generated based on both previous sum-
maries and segment tokens. We can simplify it as
p(si|s<i), where previous segment tokens are not
fed as inputs to predict the summary, which will
significantly decreases computing complexity. On
the BookCorpus dataset, we observe an increase
of PPL in summary generation from 30.4 to 31.2,
which subsequently leads to an +0.9 increase of
PPL from 25.7 to 26.6 in token generation.

6.6 Convergence Speed

At last, we investigate how quickly different mod-
els converge. Results are shown in Figure 3. With
the guidance of extracted summaries, SOE has a
conspicuously faster convergence speed, where at
about 200K training steps it has approximately
reached the best result while the other two models
— Vanilla and WritingPrompts — do not converge
until 1000K training steps. The WritingPrompts
model converges faster than then Vanilla because
of the high-level guidance from prompts.

7 Conclusion

In this paper, we propose a two-step hierarchical
generation strategy for long-text generation: the
model first generates the summary for each seg-
ment conditioning on previous summaries, and
next, each summary is expanded to form the full
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text segment. The proposed strategy provides high-
level guidance for local text generation, and enables
high-level discourse dependencies to be captured.
Extensive experiments demonstrate that SOE pro-
duces long texts with significantly better quality,
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A Methods for Selecting Summary
Sentences

We investigate Random, TF-IDF (Ramos, 2003),
TextRank (Mihalcea and Tarau, 2004) methods to
access the importance of selecting summary sen-
tences.

Random For comparing purposes, we use a ran-
dom sentence as the summary.

TF-IDF We take the sentence with the highest
average TF-IDF score (Ramos, 2003) as the golden
summary si. A word is assigned a score by TF-
IDF that scales proportionally to the number of
times the word appears in the document and is
offset by the number of documents in the corpus
that contain the word, which can be expressed as
Nw · log( Nd

Ndw
), where Nw is the word count, Nd is

the total number of documents and Ndw is the total
number of documents containing the word.

TextRank TextRank (Mihalcea and Tarau, 2004)
is a weighted graph with tokens as nodes and the
similarity between nodes as edges. We use BERT
(Devlin et al., 2018) to compute the similarities
between sentences and then rank them based on the
TextRank algorithm.

B Model Baselines

In this paper, we use Transformer-XL, Writing-
Prompts, and Progressive WritingPrompts as base-
lines.

Transformer-XL Transformers with segment-
level recurrence strategy (Dai et al., 2019) natu-
rally constitutes a baseline. The model sequentially
generates texts in a word-by-word fashion.

WritingPrompts first predicts a list of keywords
or a single prompt, and then generates the full text
given the prompt (Fan et al., 2018). Different from
Fan et al. (2018), where golden prompts for stories
are available, we do not readily have the golden
prompts. We thus use the extractive strategies de-
scribed in Section 4.3, i.e, the TF-IDF method to
pick the keyword list as the prompt (denoted by
WritingPrompts-keyword) and the reconstruction
method to select the highest ranking sentence as
the prompt (denoted by WritingPrompts-sentence).

Progressive WritingPrompts The progressive
strategy proposed in Tan et al. (2020) which in-
volves multiple stages of prompt generation. Each
stage produces a more fine-grained sequence than
the stage that comes before, and is used as the in-
put to generate the prompt for the next stage. We
follow the protocols in Tan et al. (2020) and use the
TF-IDF score to obtain golden prompts for each
stage. The number of stages is set to 4.


