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Abstract

In this paper, we propose a new paradigm for
paraphrase generation by treating the task as
unsupervised machine translation (UMT) based
on the assumption that there must be pairs of
sentences expressing the same meaning in a
large-scale unlabeled monolingual corpus. The
proposed paradigm first splits a large unlabeled
corpus into multiple clusters, and trains multi-
ple UMT models using pairs of these clusters.
Then based on the paraphrase pairs produced by
these UMT models, a unified surrogate model
can be trained to serve as the final SEQ2SEQ
model to generate paraphrases, which can be
directly used for test in the unsupervised setup,
or be finetuned on labeled datasets in the super-
vised setup. The proposed method offers mer-
its over machine-translation-based paraphrase
generation methods, as it avoids reliance on
bilingual sentence pairs. It also allows human
intervene with the model so that more diverse
paraphrases can be generated using different fil-
tering criteria. Extensive experiments on exist-
ing paraphrase dataset for both the supervised
and unsupervised setups demonstrate the effec-
tiveness the proposed paradigm.

1 Introduction

The goal of paraphrase generation (Prakash et al.,
2016a; Cao et al., 2016; Ma et al., 2018; Wang
et al., 2018) is to generate a sentence semantically
identical to a given input sentence but with varia-
tions in lexicon or syntax. It has been applied to
various downstream NLP tasks such as parsing (Be-
rant and Liang, 2014), question answering (Dong
et al., 2017), summarization (Barzilay, 2004) and
machine translation (Callison-Burch et al., 2006).

Building a strong paraphrase generation system
usually requires massive amounts of high-quality
annotated paraphrase pairs, but existing labeled
datasets (Lin et al., 2014; Fader et al., 2013; Lan
et al., 2017) are either of small sizes or restricted in
narrow domains. To avoid such a heavy reliance on

labeled datasets, recent works have explored unsu-
pervised methods (Li et al., 2018b; Fu et al., 2019;
Siddique et al., 2020) to generate paraphrase with-
out annotated training data, among which the back-
translation based model is an archetype (Mallinson
et al., 2017; Sokolov and Filimonov, 2020). It
borrows the idea of back-translation (BT) in ma-
chine translation (Sennrich et al., 2016) where the
model first translates a sentence s1 into another
sentence s2 in a different language (e.g., En→Fr),
and then translates s2 back to s1. In this way, the
model is able to generate paraphrases by harness-
ing bilingual datasets, removing the need for label
paraphrase data.

However, BT-based models for paraphrase gen-
eration have the following severe issues: firstly, BT-
based systems rely on external resources, i.e., bilin-
gual datasets, making them hard to be applied to
languages whose bilingual datasets are hard to ob-
tain. Secondly, translation errors, such as duplicate
words (Holtzman et al., 2020), missing words (Lu-
ong et al., 2015) and polysemous words (Rios Gon-
zales et al., 2017), will accumulate during the for-
ward and backward translations, resulting in infe-
rior performances. Thirdly, machine translation
models work like blackboxs, making it hard for
humans to intervene with the model and control the
generation process.

In this work, we propose to address these prob-
lems based on the assumption that there must be
pairs of sentences expressing the same meaning
in a large-scale unlabeled corpus. Inspired by
unsupervised machine translation (UMT) models,
which align semantic spaces of two languages us-
ing monolingual data, we propose a pipeline system
to generate paraphrases following two stages: (1)
splitting a large-scale monolingual corpus into mul-
tiple clusters/sub-datasets, on which UMT models
are trained based on pairs of these sub-datasets; and
(2) training a unified surrogate model based on the
paraphrase pairs produced by the trained multiple
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UMT models, where we can design filtering func-
tions to remove the pairs with undesired properties.
The unified surrogate model can be then directly
used for paraphrase generation in the unsupervised
setup, or be finetuned on labeled datasets in the
supervised setup.

The proposed framework provides the following
merits over existing BT-based methods: (1) it is
purely based on a large-scale monolingual corpus,
which removes the reliance on bilingual datasets;
(2) the trained unified model is able to generate
paraphrases end-to-end, which avoids the issue of
error accumulation that exists in vanilla BT-based
models; and (3) human interventions can take place
in the filtering step, which gives finer-grained con-
trols over the generated paraphrases.

We conduct extensive experiments on a wide
range of paraphrase datasets to evaluate the effec-
tiveness of the proposed framework, and we are
able to observe performance boosts against strong
baselines in both supervised and unsupervised se-
tups.

2 Related Work

Paraphrase Generation Methods for paraphrase
generation usually fall into two categories: super-
vised and unsupervised approaches. Supervised
methods for paraphrase generation rely on anno-
tated paraphrase pairs. Xu et al. (2018); Qian et al.
(2019) employed distinct semantic style embed-
dings to generate diverse paraphrases, and Iyyer
et al. (2018); Li et al. (2019); Chen et al. (2019);
Goyal and Durrett (2020) proposed to use differ-
ent syntactic structure templates. A line of work
(Mallinson et al., 2017; Sokolov and Filimonov,
2020) formalized paraphrase generation as ma-
chine translation. Unsupervised paraphrase genera-
tion is primarily based on reinforcement learning
(RL) generative models (Ranzato et al., 2015; Li
et al., 2016b). RL optimizes certain criteria, e.g.
BLEU, to reward paraphrases with higher quality
(Li et al., 2018b; Siddique et al., 2020). Bowman
et al. (2016); Yang et al. (2019) trained a varia-
tional auto-encoder (VAE) (Kingma and Welling,
2013) to generate paraphrases. Other unsupervised
methods for paraphrase generation include VAE
(VQ-VAE) (Roy and Grangier, 2019), latent bag-
of-words alignment (Fu et al., 2019) and simulated
annealing (Liu et al., 2019a). Adapting large-scale
pretraining (Devlin et al., 2018; Radford et al.,
2018; Liu et al., 2019b; Clark et al., 2020; Sun et al.,

2021b) to paraphrase generation has been recently
investigated (Witteveen and Andrews, 2019; Hegde
and Patil, 2020; Niu et al., 2020; Meng et al., 2021)
and has shown promising potentials to improve
generation quality. Our work is distantly related
to unsupervised text style transfer (Hu et al., 2017;
Mueller et al., 2017; Shen et al., 2017; Li et al.,
2018a; Fu et al., 2018), where the model alters a
specific text attribute of an input sentence (such as
sentiment) while preserving other text attributes.

Regarding soliciting large-scale paraphrase
datasets, Bannard and Callison-Burch (2005) used
statistical machine translation methods obtain para-
phrases in parallel text, the technique of which
is scaled up by Ganitkevitch et al. (2013) to pro-
duce the Paraphrase Database (PPDB). Wieting
et al. (2017) translate the non-English side of par-
allel text to obtain paraphrase pairs. Wieting and
Gimpel (2017) collected paraphrase dataset with
million of pairs via machine translation. Hu et al.
(2019a,b) produced paraphrases from a bilingual
corpus based on the techniques of negative con-
straints and inference sampling.

Unsupervised Machine Translation Unsuper-
vised Machine Translation(UMT) has been an ac-
tive research direction in NLP (Ravi and Knight,
2011). Pioneering work for unsupervised neural
machine translation used denoising auto-encoders
and back-translation (Sennrich et al., 2016) to itera-
tively refine the generated translation. Artetxe et al.
(2017) proposed to use a shared encoder to encode
source input sentences from different languages.
Lample et al. (2017) additionally used adversarial
and cross-domain training objectives to better iden-
tify different language domains. Yang et al. (2018)
relaxed the strategy of sharing the entire encoder
in Artetxe et al. (2017) by building independent
encoders to maintain unique characteristics of each
language. Another line of work for UMT is to
combine statistical machine translation (SMT) and
NMT. Artetxe et al. (2018); Lample et al. (2018)
built a phrase-level mapping table from the source
language to the target language. Following works
improved UMT by combining SMT and NMT in
different ways, such as warming up an NMT model
with a trained SMT model (Marie and Fujita, 2018;
Artetxe et al., 2019) and using SMT as posterior
regularization (Ren et al., 2019). Other works in-
volve initializing the model using retrieved seman-
tically similar sentence pairs (Wu et al., 2019; Ren
et al., 2020; Sun et al., 2021a), using auxiliary par-
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allel data (Li et al., 2020; Garcia et al., 2020) and
pretraining on large-scale multi-lingual data (Lam-
ple and Conneau, 2019; Song et al., 2019; Liu et al.,
2020; Zhu et al., 2020).

3 Background for Unsupervised Machine
Translation

We use the unsupervised machine translation
(UMT) framework proposed by Lample et al.
(2017) as the backbone. We briefly go though the
model structure in this section. Let Csrc and Ctgt

respectively denote the monolingual dataset for the
source and target language, on which a translation
model M is trained to to generate target sequences
y based on source sequences x, y = M(x). The
model is first initialized by training in a word-by-
word translation manner using a parallel dictionary.
The initial parallel dictionary is thus a word being
translated to itself. Next, the model is iteratively
trained based on a denoising auto-encoding (DAE),
back-training (BT) and adversarial learning (AL).
DAE allows the model to reconstruct the translation
from a noisy input sentence by dropping and swap-
ping words in the original sentence. The training
objective of DAE is given by:

Ll
DAE = Ex∼Cl,x̂∼d(e(N(x),l),l)[∆(x̂, x)] (1)

where l = src or l = tgt specifies the language,
N(x) is a noisy version of x, e and d respectively
means encoding and decoding, and ∆ measures
the difference between the two sequences, which
is the cross-entropy loss in this case. BT encour-
ages the model to reconstruct the input sentence
x from N(y), a corrupted version of the model’s
translation y = M(x). The training objective is
given by:

Ll1→l2
BT = Ex∼Cl1

,x̂∼d(e(N(M(x)),l2),l1)[∆(x̂, x)]

(2)
AL uses a discriminator to distinguish the language
from the encoded latent representations, and by
doing so, the model is able to better map two lan-
guages into the same latent space. The discrimina-
tive training objective is given by:

Ll
Dis = −E(x,l)[log p(l|e(x, l))] (3)

The encoder is trained to fool the discriminator
so that the encoder and the discriminator perform
together in an adversarial style (Goodfellow et al.,
2014):

Ll1→l2
Adv = −E(x1,l1)[log p(l2|e(x1, l1))] (4)

The final training objective is given by:

L = λ1[Ll1
DAE + Ll2

DAE] + λ2[Ll1→l2
BT + Ll2→l1

BT ]

+ λ3[Ll1→l2
Adv + Ll2→l1

Adv ]
(5)

The discriminative loss Ll
Dis is alternatively opti-

mized with L to train the discriminator. We follow
Lample et al. (2017) to implement each of the UMT
models. We used the transformer-large (Vaswani
et al., 2017) as the backbone instead of LSTMs in
Bahdanau et al. (2014).

4 Model

The core idea of the proposed strategy is to use
two subdatasets from a large monolingual corpus
C and train unsupervised NMT models based on
the two subdatasets. The path towards this goal
naturally constitutes two modules: (1) constructing
two subdatasets Csrc and Ctgt from C; and (2)
training the UMT model based on Csrc and Ctgt.

4.1 Dataset Split
The crucial part in the framework is how to build
the two subdatasets, on which the unsupervised
NMT model is trained. To this end, we propose
to (1) first construct candidates {c1, c2, ..., cK} for
Csrc and Ctgt from C based on the clustering mod-
els; and (2) selecting Csrc and Ctgt. Based on Csrc

and Ctgt, UMT models will be trained. We use two
criteria for clustering, LDA (Blei et al., 2003) and
K-means clustering. The number of clusters/topics
K is set to 80.1

LDA Clustering For LDA, we use Gibbs sam-
pling and iterate over the entire corpus 5 times in
total. In the last round, a sentence is assigned to the
topic/cluster which has the largest probability of
generating it. In LDA, each cluster is characterized
as a distribution over the vocabulary. The distance
between two subset cm, cn is the Jensen–Shannon
(JS) divergence between the two distributions over
the vocabulary:

Dis(cm, cn) = KL(cm||cn) + KL(cn||cm)

KL(cm||cn) = −
∑
v∈V

p(v|cm) log
p(v|cm)

p(v|cn)

KL(cn||cm) = −
∑
v∈V

p(v|cn) log
p(v|cn)
p(v|cm)

(6)

Since topics clustered by LDA can be incoherent
(e.g., the clustering of stop words), we ask humans

1Here we use “topic" and “cluster" interchangeably.
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to examine the top words of the topics, and discard
meaningless clusters.

K-means Clustering For K-means, we use the
average of the top layer embeddings from BERT
(Devlin et al., 2018) to represent the sentence. Let
hs denote the sentence representation for the sen-
tence s. We run the hard K-means model on the
corpus, where the distance between a sentence and
the cluster center is the L2 distance between the
two vector representations.

The LDA and K-means methods described above
focus more on the situation that centers of two clus-
ters are far away, but not individual sentences be-
longing to different clusters are different. These
two focuses are correlated, but not exactly the same.
The JS divergence for LDA clusters and L2 dis-
tance for K-means clusters will be updated after
the post-processing stage. LDA and K-means algo-
rithms are performed on part of the the Common-
Crawl corpus containing 10 billion English tokens.

4.2 UMT Training on Csrc and Ctgt

4.2.1 Multiple UMT Models
We can randomly pick one pair of subsets from
{c1, ..., cK} as Csrc and Ctgt, on which a single
UMT model will be trained. The problem with
single UMT model is obvious: each subset in
{c1, c2, ..., cK} potentially represents a specific do-
main. The UMT model trained on the single Csrc

can thus only be able to properly paraphrase sen-
tences from the Csrc domain. To cover the full do-
main, we propose to train K UMT models, denoted
by {M1,M2, ...,MK}, where K is the number of
clusters. Each of the trained UMT models uses a
different c ∈ {c1, c2, ..., cK} as Csrc, paired with
a randomly selected Ctgt.

To paraphrase sentence s, we need to find its
corresponding paraphrase generation model M ∈
{M1,M2, ...,MK}, which takes s as the input and
outputs its paraphrase. We first select the Csrc ∈
{c1, c2, ..., cK} that s belongs to. Next, we pick
that model M trained using Csrc as sources, and
use M to generate the output.

For LDA, Csrc is the topic that generates s with
the largest probability:

Csrc = argmax
c∈{c1,c2,...,cK}

p(s|c) (7)

For the K-means model, Csrc is the cluster whose
center is closest to s:

Csrc = argmin
c∈{c1,c2,...,cK}

||hs − µc||2 (8)

where µc denotes the center of the cluster c.

We follow Lample et al. (2017) to implement
each of the UMT models. We used the transformer
(Vaswani et al., 2017) as the backbone instead of
LSTMs in Bahdanau et al. (2014), where the num-
ber of encoder blocks, decoder blocks, the number
of heads, dmodel and dff are respectively set to 6,
6, 8, 512 and 2,048. For UMT models based on
specific Csrc and Ctgt, both the encoder and the
decoder are trained using Adam (Kingma and Ba,
2014), with the learning rate set to 0.00025, β1 set
to 0.5. We evenly alternate between the encoder-
decoder and the discriminator.

Unifying Ms into a Surrogate Model We need
to maintain K different domain-specific UMT mod-
els, which is both memory costly and computation-
ally intensive, especially for online services. We
thus propose to unify different Ms into a single
surrogate one. For each sentence s in a selected cor-
pus, we first find the cluster Csrc it belongs to using
LDA or K-means described above, and then we use
the model M trained on Csrc to generate the para-
phrase of s. In this way, we are able to collect mas-
sive amounts of pseudo-labeled paraphrase pairs by
treating the original sentence s as the source and
the produced paraphrase as the target. We collected
a total number of 25 million pairs. Human interven-
tions can happen in this stage, where we can design
filtering functions to remove pairs with undesired
properties. Here, human interventions involve (1)
removing pairs with identical source and target; (2)
removing targets two times longer than sources. 16
million pairs remain after filtering.

We train a SEQ2SEQ model (Sutskever et al.,
2014; Vaswani et al., 2017) (referred to as UMT-
Multi) on the remaining pseudo-labeled data, which
is used as the ultimate paraphrase generation model.
We use the Transformer-base (Vaswani et al., 2017)
as the model backbone, where the number of en-
coder blocks, decoder blocks, the number of heads,
dmodel and dff are respectively set to 6, 6, 8, 512
and 2,048. We use Adam (Kingma and Ba, 2014)
with learning rate of 1e-4, β1 = 0.9, β2 = 0.999,
and a warmup step of 4K. Batch size is set to 256.
This model can be directly used in the unsuper-
vised learning setup. An overview of deriving the
UMT-Multi model is shown in Figure 1. Up to now,
UMT-Multi is purely based on unlabeled common-
crawl corpus.
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Figure 1: An overview of deriving the UMT-Multi model. Step 1: First, for each cluster ci, we treat it as Csrc

and find its corresponding cluster Ctgt, and then train a UMT model on (Csrc, Ctgt). The number of total UMT
models is K (in this figure, K = 4). Step 2: For a given input sentence s, we first select the Csrc that s belongs
to, and use the model trained on Csrc to generate the paraphrase of s. This process goes on over the entire corpus,
leading to a pseudo labeled dataset of paraphrase pairs. Step 3: Human intervenes by removing paraphrase pairs
whose inputs and output are the same, and outputs are two times longer than sources. Step 4: Training the single
UMT-Multi model using the dataset after filtering. Step 5 (optional): fine-tuning the UMT-Multi model on the
supervised paraphrase dataset in the supervised setup.

4.3 Supervised Setup

For the supervised setup, where we have pairs
of paraphrases containing sources from a source
domain and paraphrases of sources from a tar-
get domain, we can fine-tune the pretrained UMT-
Multi model on the supervised paraphrase pairs,
where we initialize the model using the UMT-
Multi model, and run additional iterations on the
supervised dataset. The fine-tuned model thus
shares the structure with UMT-Multi. Again, we
use Adam (Kingma and Ba, 2014) for fine-tuning,
with β1 = 0.9, β2 = 0.98. Batch size, learning
rate and the number of iterations are treated as
hyper-parameters and tuned on the dev set. At test
time, beam search (Sutskever et al., 2014; Li et al.,
2016a) is used when decoding.

An additional use of the gold labeled paraphrase
datasets is to help to select Ctgt ∈ {c1, c2, ..., cK}
that best aligns with Csrc, while in the unsuper-
vised setup, we can only randomly pair Csrc and
Ctgt due to the lack of training signals for pairing.
In the most straightforward setup, for each Csrc ∈
{c1, c2, ..., cK}, we can construct K − 1 pairs
(Csrc, c) by treating all c ∈ {c1, c2, ..., cK}, c ̸=
Csrc as Ctgt. Next, we train K − 1 UMT mod-
els based on the pairs, and select the model that
achieves the highest evaluation score on the labeled
dataset. This strategy leads to a total number of
K × (K − 1) models to be trained, which is com-

putationally prohibitive. We propose a simplified
learning model that maps the distance between
Csrc and Ctgt as inputs to output the evaluation
score (here we use iBLEU) on the labeled dataset.
Specifically, we randomly select L pairs, where
L ≪ K × (K − 1). We train L UMT models
on the selected dataset pairs. Using the trained
UMT models, we generate paraphrases for the la-
beled datasets, and obtain corresponding evaluation
scores. Based on the distance between Csrc and
Ctgt, and the evaluation score S(M(src,tgt)), we
train a simple polynomial function F to learn to
map the distance to the evaluation score:

S(M(src,tgt)) = F (Dis(Csrc, Ctgt)) (9)

The function F can be then used to select Ctgt with
highest predicted evaluation score for Csrc.

5 Experiments

5.1 Experiment Setups

We consider both the supervised and unsupervised
setups. There are two differences between the su-
pervised and unsupervised setups: for the super-
vised setup, (1) the training data provides guidance
on pairing Csrc and Ctgt; and (2) the pretrained
model will be used as initialization and later fine-
tuned on the labeled dataset. Datasets that we use
for evaluation include Quora, WikiAnswers (Fader
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et al., 2013), MSCOCO (Lin et al., 2014) and Twit-
ter Liu et al. (2019a).

For the supervised setup, we compare our pro-
posed model to the follow baselines: ResidualL-
STM (Prakash et al., 2016b), VAE-SVG-eq (Gupta
et al., 2018), Pointer (See et al., 2017), Trans-
former (Vaswani et al., 2017) and DNPG (Li et al.,
2019). For the unsupervised setup, we use the fol-
lowing models for comparison: VAE (Bowman
et al., 2016), Lag VAE (He et al., 2019), CGMH
(Miao et al., 2019) and UPSA (Liu et al., 2019a).
Results for VAE, Lag VAE, CGMH and UPSA
on different datasets are copied from Miao et al.
(2019) and Liu et al. (2019a). Results for Residu-
alLSTM, VAE-SVG-eq, Pointer, Transformer on
various datasets are copied from Li et al. (2019).
We leave details of these datasets, baselines and
training in Appendix 7.

We are particularly interested in comparing the
proposed model with bilingual MT based models.
BT is trained end-to-end on WMT’14 En↔Fr.2

A paraphrase pair is obtained by pairing the En-
glish sentence in the original dataset and the trans-
lation of the French sentence. Next we train a
Transformer-large model on paraphrase pairs. The
model is used as initialization to be further fine-
tuned on the labeled dataset. We also use WMT-14
En-Zh for reference purposes. We use BLEU (Pa-
pineni et al., 2002), iBLEU (Sun and Zhou, 2012)
and ROUGE scores (Lin, 2004) for evaluation.

5.2 Results

In-domain Results We first show the in-domain
results in Table 1. We can observe that across all
datasets and under both the supervised and unsu-
pervised setups, the proposed UMT model signif-
icantly outperforms than baselines. As expected,
multiple UMT models perform better than a single
UMT model as the former is more flexible at select-
ing the correct domain Csrc for an input sentence.
We can also observe that the BT model is able to
achieve competitive results, which shows that back-
translation serves as a strong and simple baseline
for paraphrase generation. The BT model trained
on En-Fr consistently outperforms the one trained
on En-Zh, and this is because that En-Zh transla-
tion is a harder task than En-Fr due to the greater
grammars difference between the two languages.

2Wieting et al. (2017); Wieting and Gimpel (2017) sug-
gested little difference among Czech, German, and French as
source languages for back-translation. We use En↔Fr since it
contains more parallel data than other language pairs.

Model iBLEU BLEU R1 R2

Su
pe

rv
is

ed

Quora
ResidualLSTM 12.67 17.57 59.22 32.40
VAE-SVG-eq 15.17 20.04 59.98 33.30
Pointer 16.79 22.65 61.96 36.07
Transformer 16.25 21.73 60.25 33.45
DNPG 18.01 25.03 63.73 37.75
BT(En-Fr) 18.04 25.34 63.82 37.92
BT(En-Zh) 17.67 24.90 63.32 37.38
UMT-Single 17.70 24.97 63.65 37.77
UMT-Multi 18.78 26.49 64.12 38.31

Wikianswers
ResidualLSTM 22.94 27.36 48.52 18.71
VAE-SVG-eq 26.35 32.98 50.93 19.11
Pointer 31.98 39.36 57.19 25.38
Transformer 27.70 33.01 51.85 20.70
DNPG 34.15 41.64 57.32 25.88
BT(En-Fr) 34.55 41.90 57.84 26.44
BT(En-Zh) 33.98 41.04 56.37 25.60
UMT-Single 34.50 41.72 57.58 26.31
UMT-Multi 36.04 42.94 58.71 27.35

U
ns

up
er

vi
se

d

Quora
VAE 8.16 13.96 44.55 22.64
Lag VAE 8.73 15.52 49.20 26.07
CGMH 9.94 15.73 48.73 26.12
UPSA 12.03 18.21 59.51 32.63
BT(En-Fr) 11.98 17.84 59.03 32.11
BT(En-Zh) 11.33 17.02 56.19 31.08
UMT-Single 11.47 17.21 56.35 31.27
UMT-Multi 13.10 18.98 59.90 33.04

Wikianswers
VAE 17.92 24.13 31.87 12.08
Lag VAE 18.38 25.08 35.65 13.21
CGMH 20.05 26.45 43.31 16.53
UPSA 24.84 32.39 54.12 21.45
BT(En-Fr) 23.55 31.10 52.03 20.86
BT(En-Zh) 22.60 30.12 51.29 20.11
UMT-Single 23.01 30.62 51.79 20.35
UMT-Multi 25.90 33.80 54.52 23.48

MSCOCO
VAE 7.48 11.09 31.78 8.66
Lag VAE 7.69 11.63 32.20 8.71
CGMH 7.84 11.45 32.19 8.67
UPSA 9.26 14.16 37.18 11.21
BT(En-Fr) 8.15 13.78 36.30 10.48
BT(En-Zh) 7.80 11.97 32.40 9.21
UMT-Single 8.21 13.99 36.52 10.75
UMT-Multi 9.70 15.42 38.51 12.39

Twitter
VAE 2.92 3.46 15.13 3.40
Lag VAE 3.15 3.74 17.20 3.79
CGMH 4.18 5.32 19.96 5.44
UPSA 4.93 6.87 28.34 8.53
BT(En-Fr) 4.32 5.97 26.37 7.59
BT(En-Zh) 4.15 5.40 25.83 7.32
UMT-Single 4.40 6.11 26.89 7.78
UMT-Multi 5.35 7.80 29.74 9.88

Table 1: In-domain performances of different models
for both supervised and unsupervised setups.

Domain-adapted Results We test the model’s
domain adaptation ability on Quora and Wikian-
swers. Table 2 shows the results. We can see that
UMT-multi performs significantly better than base-
lines, including UMT-single, showing the better
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Model iBLEU BLEU R1 R2

Wikianswers→Quora
Pointer 5.04 6.96 41.89 12.77
Transformer+Copy 6.17 8.15 44.89 14.79
DNPG 10.39 16.98 56.01 28.61
BT(En-Fr) 12.14 17.98 59.42 32.44
BT(En-Zh) 11.43 17.21 56.65 31.45
UMT-Single 11.86 17.49 57.01 32.44
UMT-Multi 13.62 19.48 61.04 33.85

Quora→Wikianswers
Pointer 21.87 27.94 53.99 20.85
Transformer+Copy 23.25 29.22 53.33 21.02
DNPG 25.60 35.12 56.17 23.65
BT(En-Fr) 25.77 35.30 56.41 23.78
BT(En-Zh) 24.84 34.19 55.71 22.60
UMT-Single 25.43 34.70 56.10 23.31
UMT-Multi 26.85 36.64 57.45 24.60

Table 2: Domain-adapted performances of different
models. “R1” stands for ROUGE-1 and “R2” stands for
ROUGE-2.

ability of UMT-multi for domain adaptation.

5.3 Human Evaluation
To further validate the performance of the proposed
model, we randomly sample 500 sentences from
Quora test set for human evaluation. The input sen-
tence and its two paraphrases respectively gener-
ated by the UMT model and the BT model (En-Fr)
are assigned to two human annotators at Amazon
Mechanical Turk (AMT), with “> 95% HIT ap-
proval rate”. Annotators are asked to judge which
output is better in terms of three aspects: (1) se-
mantics: whether the two sentences are the same
semantic meaning; (2) diversity: whether the two
sentences are diverse in expressions; and (3) flu-
ency: whether the generated paraphrase is fluent.
Ties are allowed. If the two annotators’ evalua-
tions do not agree with each other, the job will be
assigned to one more annotator, and we take the
majority as the final result.3 Comparing with BT,
the proportions of win, tie and lose for the proposed
UMT-model are respectively 41%, 36%, and 22%,
demonstrating its superiority over BT models.

5.4 Examples
Table 3 presents sampled paraphrases from the
BT and UMT models. From these examples, we
can identify several intrinsic drawbacks of the BT
model that the UMT model can circumvent: (1) for
the first example, the tense from the BT paraphrase
model based on En-Zh translation is incorrect. This
is because the Chinese language expresses tense in

3If the three annotators all disagree, we discard the in-
stance.

a more implicit way. This leads the model to make
mistake in tense when Chinese is translated back
to English. The UMT model does not have this is-
sue; (2) for the second example, BT model directly
copies the input, this is because the En-Fr can per-
fectly map the meaning in two languages with no
expression variations. Due to the blackbox nature
of MT models, it is hard to intervene with the pro-
cess to avoid producing the same copy. Instead,
for the proposed UMT framework, developers can
intervene with the model in both clustering stage
and data filtering stage. (3) For the third example,
the BT model changes the meaning of the origi-
nal sentence, which is due to the mistake made by
the translation model. These mistakes are some-
times inevitable due to the limitation of current MT
models, but can be fixed in the proposed system.

6 Ablation Study

In this section, we perform comprehensive ablation
studies on Wikianswers dataset for understanding
behaviors of the proposed model. And we report
iBLEU score for comparison.

Size of C for UMT Training First, we explore
how the size of C, the CommonCrawl corpus used
for dataset split and UMT training, affects down-
stream performances. Table 4 shows the results,
where the size is respectively 10M, 100M, 1B and
10B. We can observe that with more training data,
the performance significantly improves. This is
because the trained model can better learn to align
sentences between different clusters.

The Number of LDA Topics Table 5 presents
the influence of the number of LDA clusters. The
trend is clear: more topics lead to better perfor-
mances. This is because the model with more top-
ics has a stronger ability of disentangling very sim-
ilar sentences in the original corpus C, and thus
avoids copying. It is worth noting that more topics
means training more UMT models before unifying
them, leading to greater computational intensity.

Pairing Csrc and Ctgt In our main experiments,
we randomly select Ctgt given Csrc. It would be
interesting to see the effects of different cluster
selection strategies. We consider four strategies:
Largest (select Ctgt with the largest distance to
Csrc), Medium (select Ctgt with the medium dis-
tance to Csrc), Smallest (select Ctgt with the small-
est distance to Csrc) and for referring purposes,
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Input BT UMT

Time is the most accurate test of how puberty
is going to progress.

Time is the most accurate test of how puberty
is going to progress. (En-Fr)

How adolescence develops is most accu-
rately test by time.

GM told truck owners about the defect in the
first half of October.

GM owners told truck about the defect in the
first half of October . (En-Fr)

GM informed truck owners of the defect in
the first half of October .

To keep him alive , well , there ’s no reason
to keep him alive .

To keep him alive , well , there ’s no reason
to keep him alive . (En-Fr)

To let him live , well , there ’s no reason to
let him live .

Washington did not have the formal educa-
tion his elder brothers received at Appleby
Grammar School in England, but he did
learn mathematics, trigonometry, and land
surveying .

Washington did not pursue the same formal
education as his older brothers at England’s
Appleby Grammar School, but he did study
geometry, trigonometry, and land surveying
.

Unlike his older brothers, who studied at
England’s Appleby Grammar School, Wash-
ington did not receive formal education but
studied mathematics, trigonometry, and land
surveying .

Table 3: Sampled paraphrases from the BT and UMT models.

Size 10M 100M 1B 10B

Unsupervised. UMT-Multi 15.5 21.1 24.2 25.9

Table 4: The effect of data size of C for training UMT.

# LDA Topic 5 20 50 80

Unsupervised. UMT-Multi 14.9 22.4 24.9 25.9

Table 5: The effect of number of LDA topics.

Supervised (select Ctgt using the supervised strat-
egy proposed). In the real unsupervised setup, the
supervised strategy cannot be readily applied since
we have no access to supervised labels. We list per-
formance for supervised here for referring purpose.

Table 6 shows the results. For both supervised
and unsupervised setups, Supervised performs the
best against the other strategies, especially under
the unsupervised setup. The difference in perfor-
mances between these strategies is greater for the
unsupervised setup than the supervised setup. This
is because supervised training serves to compensate
the performance gap due to the presence of labeled
training data. We find that the random strategy out-
performs both Largest and Smallest. For Largest
, this is because Largest leads to very different
paired clusters, having the risk that some sentences
in Csrc might not have correspondences in Ctgt.
For Smallest, since paired clusters are pretty close,
sentences in Csrc are more likely to have copies in
Ctgt. Largest and Smallest leads to inferior perfor-
mances. random performs comparable to medium.

Clustering Methods We study the effect of dif-
ferent clustering methods, i.e., LDA and K-means.
Table 7 shows the results. As can be seen, for both
supervised and unsupervised setups, the model
trained with LDA consistently performs better than
the model trained with K-means. We think there are

Strategy Unsuper. UMT-Multi Super. UMT-Multi

Random 25.9 35.4
Largest 24.7 35.1
Medium 25.8 35.7
Smallest 25.3 35.5
Supervised 26.3 36.0

Table 6: The effect of different strategies to pair Csrc

and Ctgt.

LDA K-means
Clustering Single Multi Single Multi

Uns. 23.0 25.9 21.9 24.2
Su. 34.5 36.0 32.1 34.2

Table 7: The effect of different clustering methods for
C. “Uns.” means we use the unsupervised setup and
“Su.” represents the supervised setup.

potentially two reasons: (1) the BERT representa-
tions, on which clustering relies, cannot well repre-
sent sentence semantics for clustering (Reimers and
Gurevych, 2019); and (2) the K-means model for
sentence clustering operates at a relatively low level
of semantics (i.e., sentence level), while LDA takes
into the more global document level information.
Due to the entanglement of sentence semantics in
C, it is hard for K-means to separate sentences
apart, or if it can, it takes long until convergence.

7 Conclusion

In this paper, we propose a new framework for
paraphrase generation by treating the task as un-
supervised machine translation (UMT). The pro-
posed framework first splits a large unlabeled cor-
pus into multiple sub-datasets and then trains one
or multiple UMT models based on one or more
pairs of these sub-datasets. Experiments and abla-
tion studies under supervised and unsupervised se-
tups demonstrate the effectiveness of the proposed
framework.
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A Datasets

(1) Quora4: The Quora dataset contains 140K
parallel paraphrases of questions and 260K non-
parallel sentences collected from the question an-
swering website Quora5. We follow the standard
setup in Miao et al. (2019) and use 3K/30K para-
phrase pairs respectively for validation and test.
(2) Wikianswers: The WikiAnswers corpus (Fader
et al., 2013) contains clusters of questions tagged
by WikiAnswers users as paraphrases. It contains a
total number of 2.3M paraphrase pairs. We follow
Liu et al. (2019a) to randomly pick 5K pairs for
validation and 20K for test.6

(3) MSCOCO: The MSCOCO dataset (Lin et al.,
2014) contains over 500K paraphrase pairs for
120K image captions, with each image caption an-
notated by five annotators. We follow the dataset
split and the evaluation protocol in Prakash et al.
(2016b), where only image captions with fewer
than 15 words are considered.
(4) Twitter: The Twitter dataset is collected via
linked tweets through shared URLs (Lan et al.,
2017), which originally contains 50K paraphrase
pairs. We follow the data split in Liu et al. (2019a),
where 10% of the training data is used as validation
and the test set only contains sentence pairs that
are labeled as “paraphrases”.

B Baselines

For the supervised setup, we compare our proposed
model to the follow baselines:
(1) ResidualLSTM: Prakash et al. (2016b) deep-
ened the LSTM network by stacking multiple lay-
ers with residual connection. This deep SEQ2SEQ

model is trained on labeled paraphrase datasets.
(2) VAE-SVG-eq: Gupta et al. (2018) combined
VAEs with LSTMs to generate paraphrases in a
SEQ2SEQ generative style.
(3) Pointer: See et al. (2017) augmented the stan-
dard SEQ2SEQ model by using a pointer, i.e., the
copy mechanism. Word in the input sentence can
be directly copied as the current decoded word.
(4) Transformer: Vaswani et al. (2017) proposed
the Transformer architecture which is based on the
self-attention mechanism.
(5) DNPG: Li et al. (2019) proposed a Transformer-

4https://www.kaggle.com/c/
quora-question-pairs

5https://www.quora.com/
6Note that the selected data is different from Liu et al.

(2019a) but is comparable in the statistical sense.

based model that learns and generates paraphrases
at different levels of granularity, i.e., from the lexi-
cal to phrasal and then to sentential levels.

For the unsupervised setup, we use the following
models for comparison:
(1) VAE: Bowman et al. (2016) proposed varia-
tional auto-encoders (VAEs) to generate sentences
from a continuous space. By minimizing the re-
construction loss between the input sentence and
the output sentence, VAEs are able to sample para-
phrases from the continuous space.
(2) Lag VAE: To overcome the posterior collapse
issue of VAEs, He et al. (2019) proposed to aggres-
sively optimize the inference network by perform-
ing multiple updates before reverting back to basic
VAE training.
(3) CGMH: Miao et al. (2019) used Metropo-
lis–Hastings sampling to generate paraphrases,
where a word can be deleted, replaced or inserted
into the current sentence based on the sampling
distribution.
(4) UPSA: Liu et al. (2019a) proposed to use simu-
lated annealing to optimize the paraphrase genera-
tion model. The training objective is composed of
three parts: semantic similarity, expression diver-
sity and language fluency.

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
https://www.quora.com/

