
Proceedings of the 29th International Conference on Computational Linguistics, pages 6151–6164
October 12–17, 2022.

6151

Phrase-Level Localization of Inconsistency Errors in Summarization by
Weak Supervision

Masato Takatsuka Tetsunori Kobayashi Yoshihiko Hayashi
Faculty of Science and Engineering, Waseda University

Waseda-machi 27, Shinjuku, Tokyo 1620042, Japan
takatsuka@pcl.cs.waseda.ac.jp

koba@waseda.jp yshk.hayashi@aoni.waseda.jp

Abstract

Although the fluency of automatically gener-
ated abstractive summaries has improved sig-
nificantly with advanced methods, the incon-
sistency that remains in summarization is rec-
ognized as an issue to be addressed. In this
study, we propose a methodology for localiz-
ing inconsistency errors in summarization. A
synthetic dataset that contains a variety of fac-
tual errors likely to be produced by a common
summarizer is created by applying sentence
fusion, compression, and paraphrasing opera-
tions. In creating the dataset, we automatically
label erroneous phrases and the dependency re-
lations between them as “inconsistent,” which
can contribute to detecting errors more ade-
quately than existing models that rely only on
dependency arc-level labels. Subsequently, this
synthetic dataset is employed as weak supervi-
sion to train a model called SumPhrase, which
jointly localizes errors in a summary and their
corresponding sentences in the source docu-
ment. The empirical results demonstrate that
our SumPhrase model can detect factual errors
in summarization more effectively than exist-
ing weakly supervised methods owing to the
phrase-level labeling. Moreover, the joint iden-
tification of error-corresponding original sen-
tences is proven to be effective in improving
error detection accuracy.

1 Introduction

The quality, particularly the fluency, of automat-
ically generated abstractive summaries has im-
proved significantly (Lewis et al., 2020; Zhang
et al., 2020; Raffel et al., 2020) with methods that
benefit from large-scale pre-trained language mod-
els. However, recent studies (Cao et al., 2018;
Maynez et al., 2020) have pointed out that more
than 30% of the generated summaries are inconsis-
tent with the source documents owing to uninten-
tionally introduced factual errors, which affect the
reliability and usability of summarization systems.

Figure 1: Overview of proposal. A synthetic dataset
is created and used as weak supervision to train the
SumPhrase error localization model.

Existing approaches for evaluating inconsistency
in summarization can be roughly divided into two
categories. One is the unsupervised approach that
relies on an external natural language understand-
ing (NLU) system, such as natural language in-
ference (NLI) (Falke et al., 2019; Mishra et al.,
2021; Laban et al., 2022) or question answering
(QA) (Durmus et al., 2020; Wang et al., 2020;
Scialom et al., 2021) systems, to validate a sum-
mary. Although this approach can benefit from the
ever-progressing NLU technologies, the configura-
tion and performance of an inconsistency detection
system would be inevitably constrained by the un-
derlying systems.

Therefore, we adopt another approach, namely
the weakly supervised approach, which employs a
synthetic dataset that contains automatically gener-
ated errors (Kryscinski et al., 2020; Goyal and Dur-
rett, 2020). The key to the success of this approach
lies in the quality and quantity of the synthetic
dataset. It is necessary for such a dataset to contain
a variety of errors that are likely to be produced
by a common summarization system. However,
as argued by Goyal and Durrett (2021), the error
distributions that are produced by existing methods
are considerably different from those produced by
actual summarization models.



6152

Figure 1 overviews our proposal for the local-
ization of factual inconsistency errors in summa-
rization. We propose to create a synthetic dataset
by applying sentence fusion and compression op-
erations in addition to paraphrasing. Thus, recur-
ring summarization errors are expected to be repro-
duced. The resulting synthetic dataset is then used
as weak supervision to train an error localization
model called SumPhrase. This model jointly local-
izes errors in a summary and their corresponding
sentences in the source document1.

In the dataset creation process, a single sentence
or a pair of sentences is first selected from a source
document. A hypothesis sentence is then gener-
ated from the selected sentence or sentence pair,
which is expected to contain various intrinsic fac-
tual errors. Thereafter, the hypothesis sentence is
labeled at the phrase level, where each label is com-
puted from dependency arc-level labels. Finally,
the dataset for training the SumPhrase model is
created by organizing the phrase-level labeled data.

Furthermore, the detection of factual errors in a
summary can be combined with the identification
of their corresponding sentences in the source doc-
ument. This joint approach not only improves the
usability of the error detection system but also im-
proves the error detection performance in a multi-
task learning setting (Kryscinski et al., 2020).

The contributions of this study are as follows:

• We present an improved method for generat-
ing a dataset by incorporating common means
of summary generation, such as sentence fu-
sion and compression, in addition to para-
phrasing. We empirically investigate the ef-
fectiveness of these types of operations.

• We propose a model that jointly detects errors
in a summary by fully using the phrase-level
labels and identifies their corresponding sen-
tences in the source document.

• We empirically demonstrate that the proposed
method can localize the inconsistencies be-
tween a source document and the summary
more effectively than existing weakly super-
vised methods.

2 Related Work

We review the approaches for inconsistency detec-
tion in summarization by classifying them into the

1The dataset and code are available at https://
github.com/taka2946/sumphrase

following two categories.

2.1 Unsupervised Approach
We classify studies that exploit an external NLU
system/model into this category.

A system that uses an NLI model determines
that a summary is inconsistent if it cannot be en-
tailed from the input document (Falke et al., 2019;
Mishra et al., 2021). This method tends to suf-
fer from a mismatch between the lengths of input
texts: the documents to be summarized are gen-
erally longer than the usual premises collected in
an NLI dataset, which makes inconsistency detec-
tion difficult (Mishra et al., 2021). Laban et al.
(2022) addressed this issue by aggregating entail-
ment scores measured between sentence pairs in
the segments rendered from a source document. In
contrast, a system that relies on a QA model con-
siders a summary to be inconsistent if an external
QA system fails to answer the questions related
to a source document (Durmus et al., 2020; Wang
et al., 2020; Scialom et al., 2021). The adequacy
of a generated question, as well as the performance
of the QA model, may affect the error detection
performance.

2.2 Weakly Supervised Approach
We classify inconsistency detection systems that
rely on supervised learning with artificially devel-
oped datasets into this category. In this approach,
a dataset must reproduce the error distribution of
a common summarizer as effectively as possible.
Systems that use this method can be further clas-
sified according to how they generate errors for a
summary.

Rule-based text transformation systems were de-
veloped to generate errors in (Kryscinski et al.,
2020; Zhao et al., 2020; Zhang et al., 2021; Cao
et al., 2020). For example, in FactCCX (Kryscinski
et al., 2020), errors were generated by replacing an
entity name and negating a sentence. Zeng et al.
(2021) further enhanced the dataset with a data
augmentation technique that applies an adversarial
attack mechanism.

Generative models were employed in (Goyal and
Durrett, 2021, 2020) to generate erroneous texts.
In particular, Goyal and Durrett (2020) proposed
using a sentence with a lower posterior probability
as a potentially erroneous sentence. These gener-
ated sentences were then dependency-parsed, and
the dependency arcs that were only found in the
hypothesis sentence were annotated as erroneous.

https://github.com/taka2946/sumphrase
https://github.com/taka2946/sumphrase


6153

Figure 2: Process for dataset creation. In this example, two source sentences, s1 and s2, are selected, and the
hypothesis sentence is generated by a sentence fusion operation. The selected sentences are considered error-
originating if the hypothesis sentence poses an error. These source sentences are referred to as corresponding
sentences.

We used the generative model approach, assum-
ing that errors should be contained in the sentences
generated with lower probabilities. However, this
study differs from (Goyal and Durrett, 2021) in
that we generate sentences not only by paraphras-
ing operations but also by means of sentence fusion
and compression operations. This decision can be
supported by the insights provided in (Lebanoff
et al., 2019b) and (Lebanoff et al., 2019a). The
former notes that most sentences in the reference
summaries of the CNN/DailyMail dataset (Nalla-
pati et al., 2016) are derived from sentence fusion
and compression operations. The latter argues that
sentence fusion tends to produce factual errors. Fur-
thermore, we propose raising the error detection
level from the dependency-arc level to the phrase
level such that we can detect errors that would be
overlooked by narrowly focused inspection with
dependency-arc level labeling.

We jointly detect errors in summarization and
localize their corresponding parts in the input doc-
ument using multi-task learning, similar to the
method presented in (Kryscinski et al., 2020). How-
ever, unlike their method, our method can localize
more than one corresponding sentence, resolving
the limitation of the method in (Kryscinski et al.,
2020), which associates only single spans in the
input document. This functionality is achieved by
formulating the latter task as a multi-label classifi-
cation problem such that an error in a summary sen-
tence can be associated with multiple correspond-
ing sentences in the source document.

3 Methodology

This section first details the process for creating
a synthetic dataset that intentionally accommo-
dates erroneous sentences. Our proposed model
for jointly detecting errors in a summary and iden-
tifying corresponding sentences in the source docu-
ment is then described.

3.1 Creation of Synthetic Dataset

3.1.1 Overview of the Creation Process
Figure 2 depicts the proposed process for creating
a synthetic dataset that is employed as weak super-
vision. Sentence pairs ((s1, s2) in the example) are
first selected from the document, and then each of
them is fused into a sentence (indicated as hypoth-
esis) by the generation model. The dependency
arcs in the resulting hypothesis sentence are subse-
quently labeled as either “consistent” (blue), “in-
consistent” (red), or unlabeled by comparing them
with the arcs from the top-ranked hypothesis sen-
tence, selected source sentences, and reference sen-
tences. Thereafter, phrase-level labels (intra- or
inter-phrases) are annotated by merging the arc-
level labels. Although Figure 2 exemplifies the
sentence fusion operation as a means of hypothesis-
sentence generation, we also apply the sentence
compression and paraphrasing. However, in the
experiments, instead of actually applying sentence
selection and paraphrasing, we used ready-made
datasets. We performed the phrase-label annota-
tion.



6154

In the following, the dataset is represented as
{D,h, (pi, y

e
i )pi∈h, (pn, pm, ye

nm)pn,pm∈h, (sj , y
s
j )sj∈D},

where D and h denote the input document and
generated hypothesis sentence, respectively.
Moreover, yei denotes the intra-phrase consistency
label for the i-th phrase pi in h, whereas yenm
dictates the inter-phrase consistency label between
pn and pm. Furthermore, ysj is a label that indicates
whether the j-th sentence in D is a corresponding
sentence of h.

3.1.2 Sentence Selection
One or two sentences in the input document D =
[s1, s2, ..., sn] are selected and fed to each genera-
tive model to generate a hypothesis sentence, which
is expected to contain factual errors. A pair of sen-
tences is used for sentence fusion, whereas a single
sentence undergoes compression and paraphrasing.

In the experiments, we used ready-made datasets
instead of the actual sentence selection opera-
tion: the sentence fusion dataset (Lebanoff et al.,
2020b) and sentence compression dataset (Desai
et al., 2020). These datasets were created for
the CNN/DailyMail dataset by pairing a refer-
ence sentence with the corresponding sentences
in a source document that measured the highest
ROUGE scores.

3.1.3 Sentence Fusion
We used the Transformer-based Trans-
LINKING (Lebanoff et al., 2020a) model to
generate a hypothesis sentence. The model
employed in the experiments was pre-trained on
the same sentence fusion dataset used for sentence
selection. As in (Lebanoff et al., 2020a), we adopt
only a hypothesis sentence that shared two or more
words in both of the originating sentences. In the
experiments, we generated hypothesis sentences
with a beam size of 10. The most probable and
improbable sentences were used in the labeling
process.

3.1.4 Sentence Compression
We employed CUPS (Desai et al., 2020) for sen-
tence compression. In the experiments, we used the
pre-trained model provided by the authors of CUPS.
In general, sentence compression removes redun-
dant or unimportant portions from an input sen-
tence; that is, factual errors rarely emerge. There-
fore, we annotated the dependency arcs in the com-
pressed sentence as consistent, provided that they
also existed in the input to this model.

3.1.5 Paraphrasing
Any paraphrasing model can be employed for our
purpose. In the experiments, we used the dataset
made available by (Goyal and Durrett, 2021),
which contains paraphrased versions of the selected
reference sentences in the CNN/DailyMail dataset.
We computed phrase-level labels by referring to
the arc-level labels already provided in this dataset.

3.1.6 Labeling
Each generated hypothesis sentence was analyzed
using the Stanford CoreNLP (Manning et al., 2014)
dependency parser and subsequently underwent the
labeling process. The labeling process first exam-
ines each of the dependency arcs and assigns ei-
ther “consistent” or “inconsistent” labels or leaves
them unlabeled. This arc-level annotation step is
followed by the phrase-level annotation step that
assigns labels to phrases and inter-phrase depen-
dency relations. Note that our labeling process is
inspired by the method proposed in (Goyal and Dur-
rett, 2020), which assumes that the sentence with
the lowest posterior probability may contain more
factual errors than sentences with higher probabili-
ties.

We denote an input sentence2 to the generation
model as x and the set of output sentences sorted
by posterior probabilities as H = [h1, h2, ..., hk].
Furthermore, d(h) denotes a set of dependency
arcs of a sentence h. A reference sentence is rep-
resented by h∗, and ai denotes the i-th arc in the
corresponding set of dependency arcs.

Arc-level labeling: We follow the method pro-
posed in (Goyal and Durrett, 2020). We select
sentence hk with the lowest probability and assign
a label to each arc ai in hk as follows.

ya
i =


“consistent” if ai ∈ d(x) ∪ d(h∗)

“unlabeled” if ai ∈ d(h1) \ d(x) ∪ d(h∗)

“inconsistent” otherwise

(1)

Note that h1, the sentence with the highest proba-
bility, is used as a presumably error-free sentence.

If ai appears in the arc set of the corresponding
original sentence x or that of the reference sentence
h∗, we consider it consistent. If ai appears in d(h1)
but not in x or h∗, we do not assign any labels
to the arc, as it is less reliable to determine it as

2Remember that the sentence x originates from the source
document.



6155

Figure 3: Motivating example for phrase-level labeling.

Figure 4: Example of phrase-level labels. The blue
and red edges denote consistent and inconsistent labels,
respectively, whereas the green edge indicates that the
inter-phrase relation is unlabeled.

error-free. As arc ai not matching either of these
conditions may represent a factual error, we assign
an inconsistent label to the arc.

We remind the reader that for a compressed sen-
tence, we assign the labels as follows.

yai =

{
“consistent” if ai ∈ d(x)

“unlabeled” otherwise
(2)

Note that we did not assign the “inconsistent”
label because a compressed sentence usually does
not pose any factual error.

As in (Goyal and Durrett, 2020), we exclude par-
ticular dependency labels, such as det and case,
from the annotation process, as these do not carry
significant meanings.

Phrase-level labeling: Before describing the
phrase-level labeling process, we explain its mo-
tivation using Figure 3. In this example, the hy-
pothesis sentence contains a factual error because
the agent of the verb “looking forward” is “Karen
Langhart” and not “Erika Langhart.” This error
may be difficult to localize with a model that only
considers arc-level labels. Therefore, we assign
intra-phrase labels as well as inter-phrase labels,
as illustrated in Figure 2, such that factual errors
beyond the word-to-word dependency relations can
be detected. To initiate the phrase-level labeling

process3, we first recognize phrases by applying a
set of heuristic rules that investigate the dependency
structure of a sentence. This procedure recognizes
a sequence of “phrases” covering the input token
sequence without overlaps, where each phrase prin-
cipally represents a base syntactic phrase.

Figure 4 depicts the intra-and inter-phrase labels,
which are computed as follows. If all the depen-
dency arcs that are closed in a phrase are marked
as consistent, the intra-phrase label of the phrase
is “consistent;” if any is marked as inconsistent,
the label is “inconsistent.” An inter-phrase label
is computed similarly, but by looking at each of
the dependency arcs connecting a word in the head
phrase and that in the dependent phrase. Note that
the inter-phrase label is “inconsistent” if either of
the connected phrases is marked inconsistent. In
this example, the phrase “new prosthetic leg” is
labeled as “inconsistent” because the particular de-
pendency arc between “new” and “leg” is labeled
as “inconsistent.”

3.2 SumPhrase: Proposed Model

Figure 5 illustrates the network architecture of the
proposed SumPhrase model. The model consists
of three parts: the detection of intra-phrase errors
(blue), the detection of inter-phrase errors (red),
and the localization of the corresponding sentences
in the source document (green).

Training: The inputs to the model are twofold:
the source document D and hypothesis sentence h.
Tokenized tokens from each input are concatenated
using the [CLS] token as the separator and fed to
the pre-trained encoder, which enables a contextu-
alized representation for each token along with the
special [CLS] token that is expected to represent
the hypothesis sentence. Thereafter, the represen-
tation of each sentence in D and each phrase pi is
generated using the span attention mechanism (Lee
et al., 2017)4. The intra- and inter-phrase detection
parts are trained by referring to the intra-phrase
labels (yei ) and inter-phrase labels (yeij). The proba-
bility of a phrase pi being consistent is computed
as follows, using its representation hpi :

p(yei |pi) = softmax(FFNintra(h
p
i )). (3)

3Refer to Appendix A for details of the phrase-level label-
ing process.

4The effectiveness of the span attention mechanism was
experimentally confirmed, as described in Appendix B.



6156

Figure 5: SumPhrase model. The blue and red frames display the intra-phrase and inter-phrase detection parts,
respectively, and the green frame indicates the corresponding sentence localization part.

Similarly, the inter-phrase consistency probability
is computed as follows:

p(yeij |pi, pj) = softmax(FFNinter([h
p
i ;h

p
j ])). (4)

The probability of sentence si being a correspond-
ing sentence of the hypothesis sentence is calcu-
lated as follows, where hsi and hcls denote the rep-
resentation of si and CLS token, respectively.

p(ysi |si) = softmax(FFNs([h
s
i ;h

cls])) (5)

These logits are subsequently converted into losses
(Lossintra, Lossinter, and Losss) using binary
cross-entropy loss. Finally, the entire loss is de-
fined as follows by incorporating a hyperparame-
ter α that adjusts the impact of the corresponding
sentence localization (Losss), which is, in a sense,
introduced as an auxiliary task in the multi-task
learning setting.

Loss = Lossintra + Lossinter + α ∗ Losss (6)

Inference: The source document D and each sen-
tence h in the target summary are fed to the model
during the inference time. Note that each sentence
in a target summary is dependency-parsed in ad-
vance. The intra- and inter-phrase consistencies are
assessed using the model for phrases and phrase
pairs that were extracted from the summary sen-
tence. We flag a summary sentence as consistent
only if it is predicted to exhibit no errors at any

Source # of data
Paraphrasing (para) 46,925
Sentence fusion (fusion) 72,093
Sentence compression (comp) 47,296
Reference sentences (ref) 107,278

Table 1: Statistics of created synthetic dataset.

level. The corresponding sentences for a hypothesis
sentence were identified using multi-label classifi-
cation. Consequently, the corresponding sentences
of a factual error are localized.

4 Experimental Setup

The CNN/DailyMail dataset (Nallapati et al., 2016)
was used in the experiments.

4.1 Training Dataset
We created a synthetic dataset to train the
SumPhrase model based on the methodology de-
scribed in the previous section. Table 1 lists the
number of data instances classified according to the
provenance of the data. Note that “paraphrasing”
refers to paraphrased data provided by (Goyal and
Durrett, 2021), and “Reference sentences” means
reference summary sentences obtained from the
CNN/DailyMail dataset, which were added to in-
crease the phrases labeled as consistent.

In total, this dataset contains 2,021,592 consis-
tent labels and 191,553 inconsistency labels. More-



6157

Model Training data K2020 (BA) K2020 (F1) Reranking (% correct)
[Sentence level]
FactCC text transformations 72.7 0.706 70.0%
FactCCX text transformations 72.9 0.711 -
SumFC text transformations 80.4 - 78.7%
FactAdv text transformations 73.3 0.701 -
[Arc level]
Electra-DAE text transformations 76.7 - -
Electra-DAE para 72.1 - -
Electra-DAE (ours) para+fusion+comp+ref 82.7 0.754 85.9%
[Phrase level (ours)]
SumPhrase para+fusion+comp+ref 85.3 0.765 86.0%
SumPhrase (-multi) para+fusion+comp+ref 85.2 0.759 84.7%

Table 2: Results of error detection. FactCC, FactCCX (Kryscinski et al., 2020), SumFC (Zhang et al., 2021), and
FactAdv (Zeng et al., 2021) employ sentence-level labeling using rule-based text transformations. The Electra-DAE
models (Goyal and Durrett, 2021) adopt dependency arc-level labeling. Our SumPhrase models uses phrase-level
labeling, where "-multi" dictates the model trained without the auxiliary task of corresponding sentence localization.
Refer to Table 1 for para, fusion, comp, and ref in the Training data column.

over, 186,028 source sentences were marked as one
of the corresponding sentences of a hypothesis sen-
tence, whereas 3,389,275 other sentences were not
labeled as corresponding sentences.

4.2 Training the SumPhrase Model

The Electra-base model (Clark et al., 2020) pre-
trained on 3.3 billion tokens from Wikipedia and
BooksCorpus (the same as the BERT-base) was em-
ployed as the encoder of the SumPhrase model in
the experiments. We trained the SumPhrase model
under the following conditions: number of epochs:
3, batch size: 10, optimizer: AdamW, and initial
learning rate: 3e-5. The α parameter in equation-
(6) was set to 0.5. We saved the checkpoint that
achieved the highest BA on the validation portion
of the K2020 dataset. Appendix C provides addi-
tional details of the experimental setup.

4.3 Test Datasets and Evaluation Metrics

We used two human-annotated datasets in the evalu-
ation, which are known as K2020 (Kryscinski et al.,
2020) and Reranking (Falke et al., 2019).

The K2020 dataset contains 441 consistent sen-
tences and 62 inconsistent sentences. We measured
the balanced accuracy (BA) and Macro-F1 for com-
parisons.

The Reranking dataset includes 373 instances,
each containing a source document and two similar
sentences: one is a consistent summary sentence ex-
tracted by an extractive summarizer, and the other

is a potentially inconsistent summary sentence gen-
erated by an abstractive summarizer. That is, the
reranking task is to correctly (re)rank consistent
summary sentences higher. Thus, the portion of
correctly ranked data instances is used as the eval-
uation metric. We also note that the Reranking
dataset was used to measure the accuracy of the
corresponding sentence localization task that was
incorporated as an auxiliary task.

4.4 Compared Existing Models

We primarily compared our phrase-level mod-
els with dependency-arc-level Electra DAE mod-
els (Goyal and Durrett, 2021), both trained with
the proposed dataset. In addition, we compared
these models with existing sentence-level mod-
els including FactCC/FactCCX (Kryscinski et al.,
2020), SumFC (Zhang et al., 2021), and Fac-
tAdv (Zeng et al., 2021). These models rely on
text-transforming operations to generate erroneous
sentences. Among these models, SumFC achieved
the best results on both K2020 and Reranking5.

5 Results and Discussion

This section discusses the efficacy of the proposed
method by referring to the results. Appendix D
presents and discusses some detection results.

5The performance of this model could be further improved
by training it with our proposed dataset.



6158

5.1 Detection of Sentence Inconsistency
Table 2 lists the results of inconsistency detection,
where existing weakly supervised models that rely
on a synthetic dataset are compared.

These results demonstrate that our SumPhrase
model outperformed the other models in all met-
rics. The insights obtained from the results can be
summarized as follows:

• The automatically generated training data sig-
nificantly improved the detection performance
(from comparisons of the Electra-DAE (ours)
and SumPhrase models with other models).

• The phrase-level labeling was effective (from
comparisons of the SumPhrase models with
the Electra-DAE models).

• The multi-task learning strategy contributed
to improving the performances (from com-
parisons of the SumPhrase model with the
SumPhrase (-multi) model). In principle, the
incrrectly localized corresponding sentences
could affect the inconsistency detection per-
formance6. However, the auxiliary task was
accomplished with high accuracy, as shown in
Table 3, and the multi-task learning strategy
is assessed as adequate.

• Even without multi-task learning, the
SumPhrase model exhibited better perfor-
mances than most models. The exception was
the result on Reranking, which was slightly
inferior to that of Electra-DAE (ours).

5.2 Localization of Corresponding Sentences
We incorporated this task as an auxiliary task, as-
suming it would improve the performance of the
main task. As shown in Table 2, this assumption is
confirmed.

Table 3 summarizes the results of this auxil-
iary task, where BA and Macro F1 are used as
the evaluation metrics. The table shows that our
SumPhrase model achieved better results than the
FactCCX (Kryscinski et al., 2020) and SumFC (tf-
idf) (Zhang et al., 2021) models. The FactCCX
model identifies evident spans in a document for
a summary sentence, readily enabling the local-
ization of the corresponding sentences. For the
SumFC (tf-idf) model, we selected the original sen-
tence that was most similar to a summary sentence

6See the second example presented in Appendix D, where
extrinsic hallucination errors arise.

Model BA F1
FactCCX 95.9 0.945
SumFC (tf-idf) 97.0 0.970
SumPhrase 99.2 0.980

Table 3: Results of corresponding sentence localization.

K2020 Reranking
Training data BA F1 %Correct
fusion 81.1 0.663 83.4%
comp 50.0 0.467 54.9%
para 73.4 0.708 78.4%
fusion+comp 82.5 0.687 84.3%
fusion+para 82.8 0.681 84.4%
fusion+comp+para 83.7 0.700 85.1%
ALL 85.2 0.759 84.7%

Table 4: Results of dataset ablation. “ALL” indicates
the “fusion+comp+para+ref” condition.

by measuring the cosine similarity of the tf-idf vec-
tors.

An intriguing insight appears when we compare
the SumFC results in Tables 2 and 3. Although
the SumFC model achieved almost a level of accu-
racy (97.0 to 99.2 in BA) in this experiment close
to that of our SumPhrase model, there was a sig-
nificant gap in the inconsistency detection accu-
racy (78.7% to 86.0% with Reranking). This result
indicates that the task of inconsistency detection
requires a greater variety of errors in the training
dataset, which cannot be achieved with the sim-
ple rule-based text transformation approach taken
by SumFC and FactCCX, again demonstrating the
superiority of our synthetic dataset.

5.3 Data Ablation

Table 4 presents the main results of the dataset abla-
tion study conducted to investigate the contribution
of each portion of the dataset or their combinations.
Table 7 (Appendix E) provides further details of
the ablation results. The SumPhrase model used
in these experiments was trained with a single-task
learning regime, that is, the SumPhrase (-multi)
model.

The first block of Table 4 compares the results
with the individual data, showing that sentence fu-
sion data is the most promising for achieving good
performances. Even with this dataset portion, our
SumPhrase model achieved better results than the
other models on K2020 (BA) and Reranking. In



6159

contrast, sentence compression data alone is al-
most useless, as it contains only consistent labels
and rarely introduces factual errors7.

Based on the effectiveness of the sentence fu-
sion data, the second block of the table presents
the results obtained by incrementally adding other
dataset portions. Apart from the performance on
Reranking, the initial performance with sentence
fusion data constantly improved with the addition
of data, thereby demonstrating that increasing the
variety of data in training is vital.

Also note that the accuracy of K2020 signifi-
cantly improved by adding reference summary sen-
tences (ALL). This result suggests that the addi-
tion of phrases labeled as “consistent” is effective.
However , a careful reader may, notice that the
ALL model performance on Reranking was slightly
inferior to that of the fusion+comp+para model.
Although a detailed investigation is required, this
could be attributed to the quality of the Rerank-
ing dataset. In particular, positive and negative
examples required in Reranking were generated
using the FAS summarization model (Chen and
Bansal, 2018). We suspect that the quality of these
examples is not high compared with those gen-
erated by humans or SOTA models. Therefore,
the ALL setting, which additionally incorporates
human-generated reference summaries in the train-
ing data, did not yield a better result than the fu-
sion+comp+para setting.

5.4 Limitations of the Present Work

Although the proposed method exhibits excellent
performance, it focuses on intrinsic factual errors.
Extrinsic hallucination errors, readily introduced
with a dataset such as XSum (Narayan et al., 2018;
Maynez et al., 2020), are another acute issue to be
addressed. A manner of detecting extrinsic hallu-
cination errors is to train a model using generated
examples, as proposed by Utama et al. (2022). An
alternative would be to incorporate another source
of information, such as world knowledge, to vali-
date the content of a summary. Before exploring
this method, however, we would identify issues
inherent to our approach using the XSum dataset.

6 Conclusions

We propose a neural model called SumPhrase for
detecting errors in an abstractive summary. The

7Although not present in the table, the ref data exhibited
almost the same results for the same reason.

model was empirically proven to be effective as
it outperformed other weakly supervised models.
This significant performance is primarily attributed
to the dataset on which the model was trained. We
created a synthetic dataset that contains factual
errors likely to be produced by a common summa-
rizer. These errors are labeled at the phrase level,
as opposed to the dependency arc-level labels em-
ployed by existing models. The synthetic training
dataset can also contribute to improving models
that rely on an external NLI or QA system (Laban
et al., 2022; Fabbri et al., 2021). It can also be used
to fine-tune these models or to post-edit errors (Cao
et al., 2020).

The model exhibited improved performance
when jointly trained with the sub-task of localizing
corresponding sentences in a summary sentence.
This functionality may contribute to enhancing the
explainability of an inconsistency error-detection
system. Our method can also contribute to generat-
ing negative samples required to train a summariza-
tion model that relies on contrastive learning (Cao
and Wang, 2021).

Acknowledgements

This work was partially supported by JSPS KAK-
ENHI, Grant Number 22K12723.

References
Meng Cao, Yue Dong, Jiapeng Wu, and Jackie Chi Kit

Cheung. 2020. Factual error correction for abstrac-
tive summarization models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6251–6258,
Online. Association for Computational Linguistics.

Shuyang Cao and Lu Wang. 2021. CLIFF: Contrastive
learning for improving faithfulness and factuality in
abstractive summarization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 6633–6649, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018.
Faithful to the original: Fact aware neural abstractive
summarization. In AAAI Conference on Artificial
Intelligence.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 675–686, Melbourne,
Australia. Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-main.506
https://doi.org/10.18653/v1/2020.emnlp-main.506
https://aclanthology.org/2021.emnlp-main.532
https://aclanthology.org/2021.emnlp-main.532
https://aclanthology.org/2021.emnlp-main.532
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16121
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16121
https://doi.org/10.18653/v1/P18-1063
https://doi.org/10.18653/v1/P18-1063
https://doi.org/10.18653/v1/P18-1063


6160

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Shrey Desai, Jiacheng Xu, and Greg Durrett. 2020.
Compressive summarization with plausibility and
salience modeling. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 6259–6274, Online. As-
sociation for Computational Linguistics.

Esin Durmus, He He, and Mona Diab. 2020. FEQA: A
question answering evaluation framework for faith-
fulness assessment in abstractive summarization. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5055–
5070, Online. Association for Computational Lin-
guistics.

Alexander R Fabbri, Chien-Sheng Wu, Wenhao Liu,
and Caiming Xiong. 2021. Qafacteval: Improved
qa-based factual consistency evaluation for summa-
rization. arXiv preprint arXiv:2112.08542.

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie
Utama, Ido Dagan, and Iryna Gurevych. 2019. Rank-
ing generated summaries by correctness: An interest-
ing but challenging application for natural language
inference. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2214–2220, Florence, Italy. Association for
Computational Linguistics.

Tanya Goyal and Greg Durrett. 2020. Evaluating factu-
ality in generation with dependency-level entailment.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3592–3603, Online.
Association for Computational Linguistics.

Tanya Goyal and Greg Durrett. 2021. Annotating and
modeling fine-grained factuality in summarization.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1449–1462, Online. Association for Computa-
tional Linguistics.

Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9332–9346, Online. Association for Computa-
tional Linguistics.

Philippe Laban, Tobias Schnabel, Paul N. Bennett, and
Marti A. Hearst. 2022. SummaC: Re-visiting NLI-
based models for inconsistency detection in summa-
rization. Transactions of the Association for Compu-
tational Linguistics, 10:163–177.

Logan Lebanoff, Franck Dernoncourt, Doo Soon Kim,
Lidan Wang, Walter Chang, and Fei Liu. 2020a.
Learning to fuse sentences with transformers for sum-
marization. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4136–4142, Online. Association
for Computational Linguistics.

Logan Lebanoff, John Muchovej, Franck Dernoncourt,
Doo Soon Kim, Seokhwan Kim, Walter Chang, and
Fei Liu. 2019a. Analyzing sentence fusion in ab-
stractive summarization. In Proceedings of the 2nd
Workshop on New Frontiers in Summarization, pages
104–110, Hong Kong, China. Association for Com-
putational Linguistics.

Logan Lebanoff, John Muchovej, Franck Dernoncourt,
Doo Soon Kim, Lidan Wang, Walter Chang, and Fei
Liu. 2020b. Understanding points of correspondence
between sentences for abstractive summarization. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics: Student Re-
search Workshop, pages 191–198, Online. Associa-
tion for Computational Linguistics.

Logan Lebanoff, Kaiqiang Song, Franck Dernoncourt,
Doo Soon Kim, Seokhwan Kim, Walter Chang, and
Fei Liu. 2019b. Scoring sentence singletons and pairs
for abstractive summarization. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 2175–2189, Florence, Italy.
Association for Computational Linguistics.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55–60, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

Anshuman Mishra, Dhruvesh Patel, Aparna Vijayaku-
mar, Xiang Lorraine Li, Pavan Kapanipathi, and Kar-
tik Talamadupula. 2021. Looking beyond sentence-

https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2020.emnlp-main.507
https://doi.org/10.18653/v1/2020.emnlp-main.507
https://doi.org/10.18653/v1/2020.acl-main.454
https://doi.org/10.18653/v1/2020.acl-main.454
https://doi.org/10.18653/v1/2020.acl-main.454
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/2020.findings-emnlp.322
https://doi.org/10.18653/v1/2020.findings-emnlp.322
https://doi.org/10.18653/v1/2021.naacl-main.114
https://doi.org/10.18653/v1/2021.naacl-main.114
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.18653/v1/2020.emnlp-main.338
https://doi.org/10.18653/v1/2020.emnlp-main.338
https://doi.org/10.18653/v1/D19-5413
https://doi.org/10.18653/v1/D19-5413
https://doi.org/10.18653/v1/2020.acl-srw.26
https://doi.org/10.18653/v1/2020.acl-srw.26
https://doi.org/10.18653/v1/P19-1209
https://doi.org/10.18653/v1/P19-1209
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2021.naacl-main.104


6161

level natural language inference for question answer-
ing and text summarization. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1322–1336, On-
line. Association for Computational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar Gu’lçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, Jacopo Staiano, Alex Wang,
and Patrick Gallinari. 2021. QuestEval: Summariza-
tion asks for fact-based evaluation. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6594–6604, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Prasetya Utama, Joshua Bambrick, Nafise Moosavi,
and Iryna Gurevych. 2022. Falsesum: Generating
document-level NLI examples for recognizing fac-
tual inconsistency in summarization. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2763–2776,
Seattle, United States. Association for Computational
Linguistics.

Alex Wang, Kyunghyun Cho, and Mike Lewis. 2020.
Asking and answering questions to evaluate the fac-
tual consistency of summaries. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5008–5020, Online. Asso-
ciation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhiyuan Zeng, Jiaze Chen, Weiran Xu, and Lei Li. 2021.
Gradient-based adversarial factual consistency evalu-
ation for abstractive summarization. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4102–4108, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Sen Zhang, Jianwei Niu, and Chuyuan Wei. 2021. Fine-
grained factual consistency assessment for abstrac-
tive summarization models. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 107–116, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Zheng Zhao, Shay B. Cohen, and Bonnie Webber. 2020.
Reducing quantity hallucinations in abstractive sum-
marization. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2237–
2249, Online. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/2021.naacl-main.104
https://doi.org/10.18653/v1/2021.naacl-main.104
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2021.emnlp-main.529
https://aclanthology.org/2021.emnlp-main.529
https://doi.org/10.18653/v1/2022.naacl-main.199
https://doi.org/10.18653/v1/2022.naacl-main.199
https://doi.org/10.18653/v1/2022.naacl-main.199
https://doi.org/10.18653/v1/2020.acl-main.450
https://doi.org/10.18653/v1/2020.acl-main.450
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2021.emnlp-main.337
https://aclanthology.org/2021.emnlp-main.337
https://aclanthology.org/2021.emnlp-main.9
https://aclanthology.org/2021.emnlp-main.9
https://aclanthology.org/2021.emnlp-main.9
https://doi.org/10.18653/v1/2020.findings-emnlp.203
https://doi.org/10.18653/v1/2020.findings-emnlp.203


6162

A Details of Phrase-Level Labeling

The phrase-level labels in a hypothesis sentence
h = {w1, ..., wH} are automatically annotated us-
ing the algorithm detailed in Algorithm 1. The first
half of the algorithm creates “phrases” by inspect-
ing particular dependency labels L = {la1 , ..., laK},
as shown in Table 5. The second half of the algo-
rithm assigns intra- and inter-phrase labels to each
created phrase.

The inputs to the algorithm are a set of de-
pendency labels Y a = {a1, ..., aN} and an =
{wi, wj , l

a
n, y

a
n}. In this case, lan denotes the de-

pendency relation between words wi and wj , and
yan represents the corresponding dependency arc-
level label assigned by the method proposed by
(Goyal and Durrett, 2020).

advmod, amod, aux, compound
det, fixed, flat, goeswith, nummod

reparandum, nmod:poss, nmod:tmod

Table 5: Dependency labels used in phrase creation.

B Effectiveness of Span Attention
Mechanism

Table 6 compares the performances of the
SumPhrase models with and without the span at-
tention mechanism (Lee et al., 2017) on the K2020
dataset. We used the averaged token vectors to rep-
resent phrases for the “without” condition. Given
this result, we preferred the span attention mecha-
nism over conventional average pooling, because
it better captures the meaning of a semantically
significant word.

Model BA F1
SumPhrase 85.2 0.759
SumPhrase (average) 83.8 0.746

Table 6: Effectiveness of span attention.

C Details of Experimental Setup

We used Stanford CoreNLP8 (Manning et al.,
2014) with “EnhancedDependenciesAnnotation” to
dependency-parse hypothesis sentences. As the
encoder for the SumPhrase model, we employed

8https://nlp.stanford.edu/software/stanford-corenlp-
4.1.0.zip

the electra-base-discriminator9, implemented in
the Huggingface Transformers library (Wolf et al.,
2020). All experiments were conducted using an
NVIDIA GeForce GTX TITAN X GPU with 12
GB of memory. The time required to train the
SumPhrase model was approximately 40 h. For
reliability, each number reported from our imple-
mentations in the present study is the average of
three runs with different random seeds.

D Case Study

Figure 6 shows the results of the inconsistency
detection using SumPhrase and FactCCX.

Document #1 shows a case in which the
SumPhrase model correctly detects an inconsistent
sentence and localizes the corresponding sentences.
FactCCX failed to detect the inconsistency in the
summary, although it identifyied the corresponding
spans in the input. This result demonstrates that
inconsistency detection is generally more compli-
cated than sentence alignment.

Document #2 presents a typical case in which
even the SumPhrase model cannot detect the in-
consistency in a summary. This example poses the
issue of extrinsic hallucination errors, which are
difficult to detect using only the proposed method-
ology.

E More on Data Ablation

Table 7 lists the results for other data combinations.
Again, the effectiveness of sentence fusion data
compared with paraphrasing data is shown. Note
that adding reference data to fusion or paraphras-
ing dataset portions degrades the BA, highlighting
the efficacy of the ALL (fusion+comp+para+ref)
combination.

K2020 Reranking
Training data BA F1 %Correct
fusion+comp 82.5 0.687 84.3%
fusion+ref 79.5 0.716 85.2%
para+comp 69.3 0.702 80.3%
para+ref 65.5 0.691 77.7%
ALL 85.2 0.759 84.7%

Table 7: Additional results of dataset ablation.

9https://huggingface.co/google/electra-base-
discriminator



6163

Algorithm 1 Phrase-level labeling

Require: (1) The set of dependency arcs and dependency arc-level labels Y a = {a1, ..., aN}, an =
{wi, wj , l

a
n, y

a
n} from a hypothesis sentence h; (2) a set of dependency labels L = {la1 , ..., laK}.

Ensure: A set of phrase-level labels Y e.
1: ▷ create phrases
2: P ← {{w1}, ..., {wH}}
3: for ai ∈ Y a do
4: if lai ∈ L then
5: pn, pm ← GET_PHRASE(P, ai)
6: if pn ̸= pm then
7: P ← MERGE_PHRASES(P, pn, pm)
8: end if
9: end if

10: end for
11: ▷ assign phrase-level labels by merging arc-level labels
12: Y e ← ∅
13: for ai ∈ Y a do
14: pn, pm ← GET_PHRASE(P, ai)
15: if pn == pm then
16: yen ← GET_LABEL(Y e, {pn})
17: yen ← UPDATE_LABEL(yen, y

a
i )

18: Y e ← UPDATE(Y e, {{pn}, yen})
19: else
20: yenm ← GET_LABEL(Y e, {pn, pm})
21: yenm ← UPDATE_LABEL(yenm, yai )
22: Y e ← UPDATE(Y e, {{pn, pm}, yenm})
23: end if
24: end for
25: for {p, ye} ∈ Y e do
26: if LEN(p) == 2 then
27: yei ← GET_LABEL(Y e, {p[0]})
28: yej ← GET_LABEL(Y e, {p[1]})
29: if yei == inconsistent or yej == inconsistent then
30: Y e ← UPDATE(Y e, {p, inconsistent})
31: end if
32: end if
33: end for

Creating phrases: The algorithm initially assumes that each word in h individually forms a phrase and
passes through the elements ai in Y a. If the dependency relation of arc ai is an element presented in L,
phrases pn and pm are retrieved by GET_PHRASE for the words in this dependency relation. If pn differs
from pm, these phrases are merged using MERGE_PHRASES.

Assigning phrase-level labels: The algorithm passes through elements ai in Y a to accumulate the
phrase-level labels in Y e. First, the phrases of the words in the corresponding dependency relation, that is,
pn and pm, are retrieved by GET_PHRASE. If these phrases denote identical phrases, an intra-phrase
label yen is assigned to pn. Otherwise, the inter-phrase label yenm is assigned to the pair pn and pm. Y e is
updated accordingly. Finally, the inter-phrase label is “inconsistent” if either of the connected phrases is
markedly inconsistent.

The GET _LABEL, UPDATE _LABEL, and UPDATE procedures employed in the algorithm are
summarized as follows:



6164

GET_LABEL: This procedure returns the intra- or inter-phrase label from Y e, depending on the second
argument. None of the labels is returned if the corresponding label is not in Y e.

UPDATE_LABEL: This updates and returns the label of pn in Y e with yai if yai is ranked higher than pn
in the designated priority order: inconsistent > unlabeled > consistent > None.

UPDATE: This procedure updates the set of phrase-level labels ye with the result of UPDATE_LABEL.

Figure 6: Comparison of FactCCX and SumPhrase outputs. The sentence with a blue underline was identified as an
error-corresponding sentence by SumPhrase, whereas the span with a red underline was localized by FactCCX. The
dependency relation between the red phrases was determined as erroneous by SumPhrase.


