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Abstract

Training large-scale image captioning (IC)
models demands access to a rich and diverse
set of training examples that are expensive to
curate both in terms of time and man-power.
Instead, using alt-text based captions gathered
from the web is a far cheaper alternative for
scaling with the downside being that the data
is noisy. Recent modeling approaches to IC
often fall short in terms of performance in
leveraging these noisy datasets as compared
to datasets with clean annotations. We ad-
dress this problem with a simple yet effective
technique of breaking down the task into two
smaller, more controllable tasks – skeleton pre-
diction and skeleton-based caption generation.
Specifically, we show that sub-selecting con-
tent words as skeletons helps in generating im-
proved and denoised captions when leveraging
rich yet noisy alt-text–based uncurated datasets.
We also show that the predicted English skele-
tons can further cross-lingually be leveraged
to generate non-English captions, by present-
ing experimental results in French, Italian, Ger-
man, Spanish and Hindi. We also show that
skeleton-based prediction allows for better con-
trol of caption properties, such as length, con-
tent, and gender expression, providing a han-
dle to perform human-in-the-loop interpretable
semi-automatic corrections.

1 Introduction

In the last demi-decade, NLP fields have ven-
tured into reaping the benefits of utilizing large
scale raw (uncurated) data from web-crawls. This
trend aligned with new uncurated image-captioning
datasets like Conceptual Captions (Sharma et al.,
2018). While these uncurated datasets are supe-
rior in terms of size and diversity, they are inferior
to well curated datasets (Lin et al., 2014; Wang
et al., 2019b) in terms of noise in the captions. The
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En: custom posters for a wedding .

Hi: यह लेख शीषर्षक के लए छव है 
(Translation: This is the image for the article 
title)

It: persona ha creato un nuovo libro  
(Translation: person created a new book)

En: collection of books on display

Hi: पुस्तक का चयन 
(Translation: selection of books)

It: una raccolta di alcuni libri 
(Translation: a collection of some books)

Baseline Image 
Captioning

Skeleton Prediction

“collection”
“book”

Skeleton Based 
Image Captioning

Proposed Approach

Figure 1: Overview of our approach: (1) skeleton prediction
& (2) skeleton based IC; compared to conventional IC. Output
captions shown in English (En), Hindi (Hi) and Italian (It).

content in the alt-text for the image is often dis-
torted by the intent or context in which the image
is presented. For example, the ground truth alt-text
caption for a house is ‘house for sale’ instead of

‘front view of a house’. This hinders the use of these
large noisy datasets to the fullest extent.

We present a simple two-staged approach by
separating the content selection from caption gen-
eration as illustrated in Figure 1. In contrast to
most IC approaches (Hossain et al., 2018; Sharma
et al., 2020), which hallucinate incorrect content
from noisy training data (i.e ‘custom posters’ and
‘wedding’), our approach first focuses on denoising
the content words (i.e ‘collection’ and ‘book’) that
are further used to generate a relevant caption. We
refer to this sequence of concept words that are key
pieces of information consistent with the image as
a skeleton. Sub-selecting skeleton words that curb
noisiness are automatically extracted from the alt-
text captions. We focus on language-based skele-
tons that are derived from captions (Kuznetsova
et al., 2014; Fang et al., 2015; Dai et al., 2018),
rather than expensive visual-based skeletons de-
rived from image, e.g., scene graphs, (Wang et al.,
2019a; Yang et al., 2019), which are hard to scale.
More concretely, we introduce an intermediate task
of distantly supervised skeleton prediction in the
end to end IC pipeline: The end-to-end task of IC
(fθ : I → C) is broken down into a two-staged
pipeline: skeleton prediction (fθ : I → S) and
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skeleton based captioning (fϕ : I,S → C), where
I is the image, S is the skeleton, and C is the cap-
tion (Kulkarni et al., 2013; Li et al., 2011; Elliott
and Keller, 2013; Fang et al., 2015). We present a
comparison between encoding, decoding and au-
toencoding these skeletons. As such, our skele-
ton prediction solution addresses the semantic gap
problem (Li and Chen, 2018; Yao et al., 2018).

We illustrate the effectiveness of this approach
on uncurated noisy datasets in the following ways.
(1) We demonstrate that sub-selecting content
words with an intermediate skeleton prediction task
denoises content thereby leading to better human
evaluation results on captioning. We also conduct
an extensive analysis on multimodal discourse rela-
tions and find that the reason for this improvement
is the generation of more visible captions (Alikhani
et al., 2020). (2) Scaling large uncurated datasets
to other languages is still a bottleneck. We show
the transferability of learning English skeletons
to improve caption generation in other languages
– English, French, Italian, German, Spanish and
Hindi. (3) The predicted skeletons qualitatively
demonstrate other potential benefits, such as con-
trollability of content, length, and gender via a nat-
ural language–based interpretable interface, which
enables one to additionally interact with the gener-
ation process.

2 Related Work

Content selection from vision: There is a rich
body of work in improving content selection for IC
(Feng et al., 2019), mainly focused on scene graph
based skeletons (Gu et al., 2019; Kim et al., 2019;
Chen et al., 2020a; Yang et al., 2019). However,
these annotations with objects and relations are
expensive, thereby constraining the scaling up to
multiple languages and diverse concepts. Our work
delegates this responsibility of identifying content
to the language modality by using inexpensive off
the shelf tools for weak supervision.
Content selection from language: An orthogo-
nal body of work relies on skeletons derived from
language using hierarchical phrase modeling (Tan
and Chan, 2016; Dai et al., 2018), semantic at-
tention (You et al., 2016), attribute LSTM (Yao
et al., 2017), skeleton based attribute filling (Wang
et al., 2017), adaptively merging topic and visual
information (Liu et al., 2018), multimodal flow
(Li et al., 2019a) and concept guided attention (Li
et al., 2019b). Note that all these prior works uti-

lize human curated gold datasets such as COCO
(Lin et al., 2014) and Flickr30k (Plummer et al.,
2015) with clean coupling between captions and
images. However, scaling them to large and diverse
concepts is expensive. We utilize uncurated silver
standard datasets with the advantages of richness
and diversity at the cost of noisy text. Hence we
show the effectiveness of a dual staged approach
that denoises the captions by skeleton prediction.

Cross-lingual and controllable captions: Past
work on cross-lingual captioning focused on trans-
lation (Barrault et al., 2018), fluency guidance (Lan
et al., 2017), using large datasets (Yoshikawa et al.,
2017) and more recently by pivoting on source lan-
guage captions (Thapliyal and Soricut, 2020; Gu
et al., 2018). We go a step further and pivot on
the predicted English skeleton to improve multi-
lingual captions due to the dearth of similar off
the shelf tools in other languages. We qualitatively
explore controlling length via skeletons which was
explored before via adding length to decoder (Luo
and Shakhnarovich, 2020; Cornia et al., 2019).
Other controllable aspects include stylistic captions
(Guo et al., 2019; Mathews et al., 2018) language
(Tsutsui and Crandall, 2017) which are potential
extensions to our work.

Interpretable Natural language skeletons: De-
spite remarkable advancements of large scale end-
to-end models, recent work identifies spurious cor-
relations in datasets that potentially lead to high
performance (Geva et al., 2019; Tsuchiya, 2018).
To mitigate this, researchers began to dissect in-
termediate components of models with the goal of
interpretability to humans (Wiegreffe and Pinter,
2019; Thorne et al., 2019; Lipton, 2018) as op-
posed to implicit explanation (Xu et al., 2015). Our
work is an instance of explaining captions through
skeleton predictions similar to recent work on ratio-
nalizing answer predictions for question answering
(Latcinnik and Berant, 2020). We view the inter-
mediate skeleton layer as an interpretable model
prediction that helps us study key subtle dataset
attributes, such as gender bias.

3 Our Approach

IC requires paired examples of images and cap-
tions (I, C), where c ∈ C correspond to tokens in a
caption (c1, c2, ..., cm), which are often expensive
to gather. Under this paradigm, end-to-end model
training attempts to perform a match between the
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Figure 2: Model architecture of our skeleton based captioning along with text as side attention mechanism between visual (v)
and textual (w) modalities. The skeleton is present optionally in the encoder, decoder or both based on our three approaches.

semantic concepts present in I and C, starting from
image, region, and object level features and map-
ping them to various cis. In contrast, our approach
uses intermediate skeletons as an effective way to
leverage noisy, uncurated alt-text based captions to
train a model to generate more visually informa-
tive captions. An overview of both the stages is
presented in Fig. 1.

3.1 Distantly Supervised Skeletons

Since gold standard skeleton words are usually not
available, we use distant supervision to get these
labels. We retrieve syntax annotations (POS tags
and word lemmas), using the Google Cloud Natural
Language API 1 of caption texts. We use these an-
notations to experiment with skeleton variants. The
ground-truth skeletons are selected by analyzing
the syntax of the automatically curated web-scaled
captions through combinations of nouns, verbs, ad-
jectives and adverbs in their condensed forms. In
addition, we also ignore tokens with a frequency
of less than 50 in our training data to reduce noise
while selecting the skeleton words. This subselec-
tion of content based on POS tags and downscaling
of vocabulary helps in retaining important words
as skeletons resulting in a label size of 5k. Since
automatic n-gram based metrics cannot be evalu-
ated against noisy ground-truths, manual evalua-
tion is conducted to understand the denoising of
sub-selection.
1. Nouns & Verbs: This includes a sequence of
lemmas of all the nouns and verbs in a caption.
2. Salient Nouns & Verbs: Saliency of nouns and
verbs is determined using tf-idf scores, treating
1https://cloud.google.com/natural-language

each caption as a document. For each caption, the
top 2 highest scoring noun and verb tokens (lemma)
are selected. This examines if saliency contributes
towards effectiveness of the skeleton.
3. Nouns: This includes lemmas of all the nouns.
This helps us untangle the roles of nouns vs verbs
in the effectiveness of the skeleton.
4. Iteratively refined captions: Under this condi-
tion, the output of the baseline Img2Cap model
serves as the ‘skeleton’ for the next skeleton-based
captioning stage. The rationale behind this skeleton
is to compare the utility of sub-selecting skeleton
words based on POS in denoising caption content,
compared to a full caption prediction.

3.2 Model

Baseline (Img2Cap): We adopt an encoder-
decoder (fθ : I → C) IC model based on Trans-
formers (Vaswani et al., 2017) following recent
state-of-the-art approaches (Sharma et al., 2018;
Yu et al., 2019; Changpinyo et al., 2019; Huang
et al., 2019; Cornia et al., 2020). Our model uses
the IC framework introduced in (Changpinyo et al.,
2019). Inspired by the bottom-up and top-down
approach (Anderson et al., 2018), the input image I
is represented as a bag of features, containing one
global and 16 regional, fine-grained feature vectors.
The regional features correspond to the top 16 box
proposals from a Faster-RCNN (Ren et al., 2015)
object detector trained on Visual Genome (Krishna
et al., 2017), with a ResNet101 (He et al., 2016)
that is trained on JFT (Hinton et al., 2015) and
fine-tuned on ImageNet (Russakovsky et al., 2015).
We featurize both global and regional boxes using
Graph-RISE (Juan et al., 2019, 2020). We make

https://cloud.google.com/natural-language
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the following changes to the state of the art model
(Changpinyo et al., 2019), leading to a 9-point im-
provement on the dev CIDEr on CC (1.00 vs. 0.91)
(improved baseline): 1) encode the corners and the
area of the bounding boxes to fuse positional infor-
mation with visual features, (Lu et al., 2019a), and
2) encode each feature vector with a Linear-ReLU-
LayerNorm-Linear instead of Linear embedding
layer, where LayerNorm is layer normalization (Ba
et al., 2016).

Dual Staged Modeling: In this approach, we
introduce an intermediate natural-language inter-
pretable skeleton S between I and C. This S is
composed of a sequence of lemmas, using a sub-
set of content words (s1, s2, ...sn) from c, where
n < m. This reduces the output complexity of
fθ : I → C by simplifying and denoising the noisy
C to S. Hence, the task of IC is decomposed into
the first stage of predicting skeleton concepts and
the second stage of caption generation using the
intermediate skeleton.

Stage 1: Skeleton Prediction (Img2Ske): The
first stage (fθ : I → S) is to predict one of the 4
variants of the skeleton words (from §3.1) from
the images. We experiment with both classification
and generation paradigm that respectively do not
possess and possess linear conditioning of the pre-
dicted skeleton word on the following words. We
observe that the generation based skeleton predic-
tion results in skeleton words that co-occur in a sen-
tence. In contrast, the classification approach pre-
dicts skeleton words relevant to an image like per-
son, man, singer that do not necessarily co-occur
in a caption. This is detailed in §D of Appendix.

To improve co-occurrence of the predicted skele-
ton words, we generate the skeleton words Ŝ au-
toregressively where each word is conditioned on
the previously predicted skeleton word. This con-
ditional dependence models word co-occurrence
more tightly as p(ŝj |I, ŝ<j), making the skeleton a
sequence of words. The model is optimized with
cross-entropy loss, trained using teacher forcing.
An attractive property is that the same architecture
can be used to decode both the skeleton S and the
caption C. Moreover, the output tokens predicted
in this stage are interpretable, and they are used to
condition the second stage of our model.

Stage 2: Skeleton-based Caption Generation:
The second stage of training uses images and skele-
tons to generate captions fϕ : I,S → C. We ex-

Stage 1 Stage 2 ConditioningInput Output Input Output
SkeEnc I S′ I+S′ C′ ĉτ ∼

∏
t Pr(ĉt|ĉ<t, g(zI, Ŝ))

SkeAE I S′ I + S′ S′ + C′ ĉτ ∼
∏

t Pr(ĉtk|[Ŝ; ĉ<t], g(zI; Ŝ))
SkeDec (no Stage 1) I S′ + C′ ĉτ ∼

∏
t Pr(ĉtk|[Ŝ; ĉ<t], zI)

Table 1: The inputs and outputs of the different models.
In iterative refinement, S′ is replaced by C′.

periment with 3 variants of conditioning predicted
skeletons via encoding, decoding and autoencoding
as shown in the model architecture in Fig. 2. The
inputs, outputs and decoder attention conditioning
for each stage are compared in Table 1.

2a. SkeEncoding: The predicted skeleton from
the previous stage is used as input to the encoder.
The image encoding and skeleton embeddings are
fused with a unidirectional attention mechanism,
called text-as-side (notated as g). In other words,
we use the text representation as “side information”
— each transformed image feature unit can attend to
other image feature units (self-attention) and text
(cross-attention), but text cannot attend to image.
As shown in Fig. 2, this model has the dotted box
in the Transformer encoder side, with the textual
query, key, value (Qw, Kw, Vw) and the visual
counterpart attending to textual or visual key and
value (Kv+Kw, Vv+Vw) with a visual query (Qv).
We focus on the text-as-side attention mechanism
as our preliminary results indicate that it leads to
qualitatively better captions than image-text co-
attention (Lu et al., 2019b).

2b. SkeDecoding: The skeleton and caption are
concatenated and predicted by the same decoder.
This is not a two-staged model, as the model is
trained to predict both skeleton and caption auto-
regressively. The model first predicts the skele-
ton words conditioned on the previously generated
skeleton words, and then every token in the de-
coded caption attends to the entire predicted skele-
ton as well as the tokens of the caption decoded
until that time step. The dotted box in Transformer
decoder of Fig. 2 depicts this approach.

2c. SkeAE: To bring both the above models to-
gether, we simultaneously encode and decode the
predicted skeleton. This brings the benefits of bidi-
rectional attention on the input features (image and
predicted skeleton words) and autoregressive at-
tention on the re-predicted skeleton words while
generating the caption. In this case, both the dot-
ted boxes on encoder and decoder sides in Fig. 2
are active. The encoding mechanism follows the
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g function and the decoder prepends the caption
generation task with the predicted skeleton.

4 Experiments and Results

Hyperparameters: Our transformer model uses
6 encoder and 6 decoder layers (unless specified
otherwise), with 8 heads for multiheaded attention.
Captions are subword-tokenized with a vocab size
of 8,300. The models are optimized with Adam
and an initial learning rate of 3.2e−5. We use mini-
batches of size 128, and train for 1M steps. The to-
ken embedding and filter sizes are both 512. We ex-
perimented with several values for both frequency
thresholding for skeleton words at 20, 50, 100 and
k at 2, 4, 8, 16 for top-k selection for multilabel
classification model. We manually selected the val-
ues that optimize the model performance based on
manual examination as conducting human evalua-
tions with more hyperparameters is very expensive
especially with unreliable automatic metrics.

4.1 Datasets

Conceptual Captions (CC): CC (Sharma et al.,
2018) is a large-scale dataset of 3.3M image-
caption pairs covering a large variety of processed
alt-texts from the web. The focus of this work is
on denoising noisy captioning datasets (web-scale,
not human verified). Hence our experiments are fo-
cused on CC, which is a step closer to having large
and diverse alt-texts from the web at the cost of
being noisy. In contrast, other popular datasets like
COCO (size 120K) (Lin et al., 2014) and Multi30k
(Elliott et al., 2016) are hand-annotated by humans
and contain high quality images/captions. As a re-
source, CC is useful both for measuring progress
on large-scale automatic captioning (Sharma et al.,
2018; Changpinyo et al., 2019; Alikhani et al.,
2020; Thapliyal and Soricut, 2020), as well as pre-
training data for a variety of vision-and-language
tasks (Lu et al., 2019b; Chen et al., 2020c; Tan and
Bansal, 2019; Su et al., 2020; Li et al., 2020).

Pre-processing: CC might contain a long tail of
spelling errors and other typos due to the automatic
curation of the data. Therefore, we perform fre-
quency based thresholding of the skeleton words
to abate this noise. We experimented with sev-
eral values for this hyperparameter and selected a
minimum occurrence count as 50 that provides the
desired balance between noise and vocabulary size.

Iterative Refinement Classification Generation
Precision 35.75 23.22 36.66
Recall 24.29 41.31 24.30
F-score 28.92 29.73 29.23

Table 2: Performance of skeleton prediction stage. Note that
for classification and generation, the skeleton type used is
‘nouns & verbs’.

Multilingual CC: To demonstrate the cross lin-
gual transferability of our skeletons, we use auto-
matic caption translations2 for CC, similar to the
approach in (Thapliyal and Soricut, 2020). Note
that the skeletons are learned from, and predicted
in, English (not in the final target language), mak-
ing English skeleton act as an interlingua. Since
multilingual captions are all pivoted on English
skeletons, this nullifies the requirement to 1) collect
large-scale image-caption pairs in various language,
and 2) have access to linguistic tools to analyze cap-
tions in each language. We perform experiments
on 5 languages – French, Italian, German, Spanish
and Hindi – which vary in word orders and token
overlap with the English skeletons.

Conceptual Captions T2 test set: For human
evaluations across all languages, we use T2 test
set used in the Conceptual Captions Challenge3. It
comprises of 1K out of domain images from the
Open Images Dataset (Kuznetsova et al., 2020).

4.2 Automatic Evaluation

Skeleton Prediction: The goal of this stage is
to extract key skeleton words from the image. We
compute precision, recall and F-score as shown in
Table 2. With the same labels (skeleton: nouns
& verbs), both classification and generation ap-
proaches have similar F-scores. However, preci-
sion is higher for generation and recall is higher
for classification based predictions. Based on both
qualitative observations and human judgements,
we note that generation approach was better, which
shows that a higher precision is favorable in com-
parison to recall for this stage. The label size (of
skeletons) in Table 2 is approximately 5K.
Skeleton-based Caption Generation: We report
multilingual IC performance of baseline and our
dual-stage models using CIDEr in Table 3 (English)
and Table 4 (multilingual). Automatic metrics for
captioning are based on surface n-grams, and are
not suitable to evaluate when the ground truth cap-

2We use the Google Cloud Translate API.
3http://www.conceptualcaptions.com/

http://www.conceptualcaptions.com/
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Model CIDEr
Baseline (SOTA model) 0.91 (Changpinyo et al., 2019)
Impr. Img2Cap 1.00
Impr. Img2Cap (large) 0.99

Skeleton-based Skeleton Type
Nouns & Verbs Nouns only Sal. Nouns & Verbs

SkeEncoding 0.99 0.97 0.94
SkeDecoding 0.99 0.99 0.96
SkeAE 0.99 0.96 0.94

Table 3: Automatic metrics to compare various skeleton
forms. Img2Cap is the baseline (large version refers to 12
encoder and decoder layers). Note that these results use
generation-based skeleton prediction.

tions themselves are noisy. In addition, we find that
CIDEr is misleading (Alikhani et al., 2020; Sharma
et al., 2018; Seo et al., 2020) and does not correlate
with human evaluations (§4.3). All the 4 proposed
skeleton variants are evaluated systematically for
automatic metrics, as shown in the last column
of Table 3. However, since the automatic scores
are compared against a gold standard of noisy cap-
tions, they are not reliable. Hence we conducted
manual evaluation to select the best performing
skeleton variant. Out of the 4 skeleton variants,
nouns and verbs performed better in denoising and
hence we demonstrated results for this variant for
the remainder of the paper. We conducted further
experimentation on nouns and verbs on the three
models of dual staged captioning, controllability
and cross-lingual transferability.

Multilingual captioning: Note that the skele-
tons are always in English, trained using annota-
tions over the original English CC dataset. Cross-
lingual results on val data of Multilingual CC are
presented in Table 4. In addition to the data nois-
iness, a reason for slightly lower performance for
non-English captions is probably noisy translation
artifacts. For example, corresponding caption in
the Hindi dataset for English caption ‘She is gaz-
ing at the fall colors’ is ‘vh Egrt� r\go\ kF aor
d�K rhF h{’ (translation: She is looking at the
falling colors.) Translation errors (such as ‘fall’
colors to ‘falling’ colors) introduce noise in the
non-English datasets. Figure 3 presents an exam-
ple of output multilingual captions for the baseline
and our SkeAE approach.

Unpaired Image Captioning: A natural exten-
sion to our approach is for the caption generator
to rely purely on predicted skeleton, and not use
image features. This is a harder problem, but elimi-
nates altogether, the need for image-caption pairs
because the second stage (skeleton to caption) can
be trained on a large text-only corpus. In this direc-
tion, within the scope of CC dataset, we investigate

Language Baseline SkeEncoding SkeDecoding SkeAE
French 0.91 0.90 0.89 0.90
Italian 0.90 0.88 0.86 0.87
German 0.74 0.72 0.72 0.73
Spanish 0.92 0.91 0.89 0.91
Hindi 0.85 0.83 0.82 0.82

Table 4: CIDEr scores for skeleton (form: Nouns & Verbs,
prediction approach: generation) conditioned caption genera-
tion for multiple languages.

Model Enc Input CIDEr
PredSke + Img (Paired) 0.99
PredSke (Unpaired) 0.91
GtSke + Img (Paired Headroom) 4.62
GtSke (Unpaired Headroom) 4.48

Table 5: Ablations on val data for unpaired captioning.

Approach Skeleton Wins Losses Gains
SkeEncoding Nouns & Verbs 39.34 28.33 +11.0
SkeAE Nouns & Verbs 39.34 32.63 +6.7
SkeDecoding Nouns & Verbs 34.83 34.53 +0.3
SkeEncoding Iterative Refinement 19.62 20.52 -1.1

Table 6: Human evaluation scores of different approaches
and skeletons on English (vs the Img2Cap baseline).

1) with and without using image features in the sec-
ond stage, 2) using ground truth skeleton (GTSke)
to get an estimate of the upper bound on unpaired
captioning 3) comparing the upper bound to the
predicted skeleton (PredSke). These results are
presented in Table 5. When image features are ig-
nored, CIDEr drops by only 8 points when only
predicted skeletons are used for caption generation
compared to the baseline. This initial result shows
that skeletons are a promising direction towards
unpaired captioning.

4.3 Human Evaluations

Automatic metrics often have been found not to
correlate well with human scores (Kilickaya et al.,
2017; Alikhani et al., 2020) and do not fare well
when ground truth text is noisy. So we conduct ex-
tensive human evaluations where captions for each
image are evaluated both in relative preferences
and absolute scale (Thapliyal and Soricut, 2020).
As mentioned above, we use the T2 test set of 1000
images, each rated by 3 distinct annotators. The
interface of this evaluation is displayed in Figure
4. While comparing two models side-by-side, they
are randomly assigned ‘A’ or ‘B’ in the interface
for each image to avoid any rater bias.

Relative Ratings: For each image we ask the
raters to choose the most relevant caption. Com-
paring Caption A to Caption B, raters can select
relative options as shown in the third column in
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Image Model English French Italian German Spanish Hindi

Baseline

spring is in 
the air

fleurs les plus chères du 
monde
(meaning: most expensive 
flowers in the world)

un campo di tulipani in 
primavera
(meaning: a field of tulips in 
spring)

Frühling ist in der Luft
(meaning: spring is in the 
air)

La primavera está en el aire
(meaning: spring is in the air)

वसंत हवा में है
(meaning: spring is in 
the air)

SkeAE
pred skeleton: 
‘tulip field’

pink tulips 
in a field

tulipes roses dans les jardins
(meaning: pink tulips in the 
garden)

genere biologico in un campo
(meaning: biological genus in 
a field)

ein Feld von rosa Tulpen
(meaning: a field of pink 
tulips)

tulipán en un mar de tulipanes
(meaning: tulip in a sea of 
tulips)

गुलाबी ट्यूलप का एक 
क्षेत्र
(meaning: a field of 
pink tulips)

Figure 3: Captions generated by baseline and our dual staged approach in 6 languages and their corresponding translations.

Caption A: 

a city from the 
trails

Caption B: 

a view of the 
mountains

    A is much better than B

    A is better than B

    A is slightly better than B

    A is about the same as B

    B is slightly better than A

    B is better than A

    B is much better than A

Image Captions Please compare Caption A 
to Caption B

Please select individual ratings 
for each cation

How does Caption A describe 
the image?

     Excellent
     Good
     Acceptable
     Bad
     Not enough information

How does Caption B describe 
the image?

     Excellent
     Good
     Acceptable
     Bad
     Not enough information

Figure 4: Human evaluation interface: We ask raters to: 1)
compare the two captions (relative), 2) give ratings for each
caption (absolute). Human annotators are asked to indicate
the better caption relevant to the image.

Language Wins Losses Gains
French 31.43 29.53 +1.9
Italian 26.13 24.93 +1.2
German 35.23 33.93 +1.3
Spanish 34.03 34.33 -0.3
Hindi 33.13 28.63 +4.5

Table 7: Human evaluation results for skeleton (form: nouns
& verbs, prediction approach: generation with SKeEnc) con-
ditioned caption generation for multiple languages.

Figure 4. Wins are the percentage of images where
at least 2 out of 3 annotators voted for caption gen-
erated with our approach. Losses are percentage of
images where at least 2 out of 3 annotators voted
for caption generated with Img2Cap approach. We
compute gains in this side by side relative evalua-
tion as Gainsrelative = Wins - Losses.

Absolute Ratings: We also gather absolute rat-
ing for each of the 2 captions per image. Each
caption is rated as acceptable if at least 2 out of
3 annotators rate it as acceptable, good or ex-
cellent. Gainsabsolute = Acceptour_approach −
Acceptbaseline. We use them only to validate the
ratings such that, for example, an “Excellent” rated
caption is not annotated as inferior to a “Bad” rated
caption for the same image. These ratings are col-
lected to double check the results of the relative
rating as well.

These scores are presented in Table 8. The top
part of the table indicate the absolute ratings in
terms of Good and OK performance for multilin-

gual captions. The second part of the table show the
same scores when baseline model is compared with
the corresponding model and skeleton combination.
Each model i.e baseline and the proposed model
in each row are rated individually (not relative to
one another). The last two columns indicate the
performance shift of the corresponding proposed
model with respect to the baseline in each of the
Good and OK categories.

Results: Table 6 presents the human ratings for
English captions using different skeletons. From
this, we observe the following:

(a) Dual Staging helps: Our dual staged mod-
els with skeletons (SkeEnc, SkeDec, SkeAE) show
gains compared to the improved baseline Img2Cap
model. Most notably, it shows that the ‘Nouns
& Verbs’ skeletons significantly improves SkeEn-
coding model attaining the most significant gain,
followed by SkeAE and then SkeDecoding.

(b) Subselecting content words helps: Using the
same dual staged SkeEnc model without subse-
lecting content words in the form of iterative re-
finement does not show any improvement in perfor-
mance, supporting the hypothesis that sub-selecting
content skeleton from noisy captions improves the
overall caption quality.

(c) Cross-lingual skeleton transfer: Table 7
presents our human evaluation scores for captions
in other target languages. We observe gains from
the skeleton-based approach for 4 out of 5 lan-
guages, and only a slight loss for the fifth language
i.e., Spanish, showing the effectiveness of cross-
lingual transferability of the skeleton words. Our
speculation for this is probably due to the dialect
differences. The translation model that we used
for Spanish is a mix of Spain Spanish and Latin
American Spanish, with Latin American Spanish
dominating. The evaluation was done by raters
from Spain. The dialects are sufficiently different
that it would impact the absolute scores.
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Row no. Language Good Baseline Good SkeAE OK Baseline OK SkeAE Gains in Good Gains in OK
1 French 34.63 35.04 61.36 60.66 +0.40 -0.70
2 Italian 35.14 35.44 60.86 62.56 +0.30 +1.70
3 German 43.64 41.04 67.27 68.07 -2.60 0.80
4 Spanish 48.15 46.55 74.37 74.67 -1.60 +0.30
5 Hindi 59.96 66.17 85.99 87.99 +6.21 +2.00
Row no. Model Good Baseline Good Model OK Baseline OK Model Gains in Good Gains in OK
6 Unpaired 57.36 55.06 86.48 84.28 -2.30 -2.20
7 SkeEnc (Iterative Refinement) 63.76 62.36 87.89 87.49 -1.40 -0.40
8 Nouns and Verbs (SkeEnc) 66.47 63.66 89.39 88.89 +2.81 +0.50
9 Nouns and Verbs (SkeAE) 51.55 56.66 79.68 83.18 + 5.01 +3.40

Table 8: Absolute ratings in percentages in Human Evaluations.

Baseline
caption

magic peace harbour 
heaven

view mountain storm 
darkness

house nest valley 
mountain

property image # 
apartment for people in 
a picturesque village

the magic of 
the colours

the peace of the 
glorious 
landscape

the view from 
the mountains

a dark storm in 
the darkness

a house nestled 
in the valley of 
mountains

a view from the water the magic of 
the lakes

the peace of the 
river

the view from 
the mountains

a dark storm 
on the horizon

the house nestled 
in the valley of 
mountains

Figure 5: Controllability: Effect of guiding the information through skeleton. As observed, the caption incorporates information
from the skeleton that is consistent with the image. For example, in the second column of the top row, we see that peace is
incorporated while harbor and heaven are not. The relevant skeleton words in other columns guide the captions accordingly.

Figure 6: Quantitative relationship between the number of
skeleton words and caption length.

4.4 Cross-modal Discourse Coherence

To understand where the improvements quantified
in Table 6 come from, we turn to the notion of dis-
course coherence. Alikhani et al. (2020) introduce
multimodal discourse coherence relationships be-
tween image-caption pairs. For instance, a caption
describing visually recognizable aspects of the im-
age, such as ‘people’ or ‘cake’, is annotated using
a Visible relation; in contrast, a Meta relation cor-
responds to a caption containing details regarding
how/when/where the image was captured, such as
in ‘warm summer afternoon’, while a Story relation
implies that the caption describes some potentially
non-visible context behind the scene depicted in
the image, such as ‘fifth anniversary’.

We hypothesize that our multi-stage approach of
skeleton-based IC results in the generation of more
captions of Visible type, as the intermediate skele-
ton predictor is trained to predict nouns and verbs
from the image. As observed in §4.3, as SkeAE

Counts Human EvalsBaseline Ours Change
Visible 605 640 +5.79% +10.93%
Meta 245 226 -7.76% +13.06%
Story 129 108 -16.28% +10.08%

Table 9: Analysis of multimodal discourse coherence re-
lations for baseline and our model on T2 dataset. The last
column shows the relative human evaluation gains over base-
line caption of each type. Other relations with small counts
are ignored in the above analysis.

model performs better compared to the SkeEncod-
ing and SkeDecoding models, we analyze the down-
stream captions based on SkeAE architecture. To
assess this effect, we train the relation classifier de-
scribed in Sec. 4 of (Alikhani et al., 2020), and ob-
tain discourse relation labels for captions generated
on T2-test images, by both the baseline Img2Cap
and our SkeAE models. Table 9 (Counts columns)
quantifies the shift of relation label distribution to-
wards the Visible coherence relation, confirming
our hypothesis. We also study the breakdown by
coherence relations using the results from our hu-
man evaluations on the English captions. Table 9
(Human Evals column) reports this breakdown, in-
dicating that, of the 11.01% gains on human evals
from Table 6, the shift from non-Visible to Visi-
ble discourse captions is associated with clear in-
creases in preference from the human raters. This
is attributable to the fact that human raters are more
likely to prefer captions that are in a Visible rela-
tion with the image, and therefore the shift towards
generating Visible-type captions can be positively
quantified in terms of human preference.
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Figure 7: Controllability: Effect of varying the number of
words in the skeleton on the generated caption length.

5 Controllability: Qualitative Discussion

The dual-stage modeling using skeelton decompo-
sition can be a double-edged sword: it can be an
information bottleneck, limiting the ability to train
the model in an end-to-end manner; but, it brings
forth the advantage of increased interpretability
and thereby the ability to use the intermediate stage
results to control the final caption. We present
aspects of caption controllability by altering the
skeleton to explore effects on caption length, in-
formativeness, and gender specificity. This section
discusses the utility of this dual staged model for
controllability qualitatively with SkeAE architec-
ture. Automatic intervention at the skeleton level
involves non-trivially selecting related concepts for
each image, and we leave this for follow-up work.
Instead, we present an empirical study only to semi-
automatically control gender specificity in two of
the languages. We plan to conduct experiments
to compare with other models (Zheng et al., 2019;
Chen et al., 2020b) focused on controllability for
follow-up work.
Effect of length of skeletons on captions: For
applications that limit the caption lengths due to
UI restrictions, the ability to control the length is
important. The length of the skeleton correlates
with the number of caption words, as shown in
Figure 6. For 2 or 3 skeleton words, the percent-
age of captions monotonically decreases with the
number of caption words, with the mode at 4-word
captions. Thus, for skeletons of size 2, captions of
length 4 are much more frequent than captions of
length 6 or 8. For longer skeletons, we see that the
mode shifts to the right: with skeletons of size 5,
the caption length peaks between 8 and 10 words.
Fig 7 illustrates this qualitatively.
Effect on gender specificity: Current models of-
ten make embarrassing mistakes when generating
captions that mention gender. The availability of
a skeleton provides a direct handle for human-in-
the-loop correction of such biases, at a pre-caption-
generation stage. This is more robust compared
to caption post-processing, especially for highly
inflected languages. To illustrate this, we compare

the number of times ‘man’ appears in the captions
generated by our baseline versus our dual-stage
model after automatically modifying the skeleton
(replacing ‘man’ to the gender-neutral word ‘per-
son’ in the skeleton). Over the T2 dataset, the
baseline caption generates ‘man’ 13 times, and the
automatic control mechanism via our model re-
duces this by 46% (to 7 occurrences) in English. In
Hindi, the equivalent of ‘man’ (aAdmF) is gener-
ated 10 times, and it is reduced to a gender neutral
word (&yEkt) by 70% (to 3 occurrences).
Effect of guiding information through skeleton:
The skeleton acts as a knob enabling the model
to describe different attributes of the image in the
caption. Figure 5 presents an example of how vary-
ing the skeletons for two different images affect
their captions. The words highlighted in green are
derived from the skeleton and the ones highlighted
in blue are image-related words.

6 Conclusions

Scaling image captioning models practically man-
dates training on noisy and uncurated data avail-
able on web. Our work presents an approach
that denoises learning from such large yet diverse
web-scaled data with alt-text annotations by sub-
selecting content as intermediate skeletons. We
experimentally demonstrate that this approach im-
proves the captions significantly in human evalua-
tions on out-of-domain test data by converting meta
and story like captions to more visually informative
captions. We also demonstrate the transferability
of English skeleton words to improving captions
in five other languages. Additionally, the natural-
language interpretable skeleton layer gives us a
way to better control and perform human-in-the-
loop corrections of model predictions. We believe
that this is a promising direction towards unpaired
IC and also has potential for semi-automatic inter-
ventions to correct or interact with the skeletons to
guide the final captions.

In this work, our main focus is denoising alt-text
captions using skeletons and using them for cross-
lingual captioning. In future, we plan to explore the
effect of denoising in pretraining large multimodal
models (BLIP (Li et al., 2022), UNITER (Chen
et al., 2020d), ViLBERT (Lu et al., 2019c)) as base
architectures by automatically cleaning captions,
similar to how BLIP has an additional classifier to
subselect captions that are not noisy. Appendix H
presents a broader impact of our work.
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A Comparison of SkeEnc and SkeAE on
multilingual captions

We have discussed the human evaluation scores
of the SkeAE model by using nouns and verbs
as skeletons in Table 7 in the main paper. In ad-
dition to this, we also conducted human evalua-
tion to compare the SkeEnc model with the nouns
and verbs skeletons in comparison to the baseline.
We present this in Table 10. While there are im-
provements in 3 languages, the performance is also
hurt in two languages. However, as we see, by
comparing the performances in Table 7 and Table
10, we observe that SkeAE has a clear advantage
when leveraging the English caption to improve
multilingual captions. This clearly indicates that
channelling the prediction of the skeleton words in
conjuction with the caption itself is enabling the
model decoder to attend to the previously predicted
skeleton words in the same decoder.

Language Wins Losses Gains
French 31.93 31.43 +0.50
Italian 33.13 28.32 +4.81
German 29.43 29.72 -0.30
Spanish 30.53 34.43 -3.90
Hindi 29.93 26.03 +3.90

Table 10: Human evaluation results on SkeEnc model for
skeleton (form: nouns & verbs, prediction approach: genera-
tion) conditioned caption generation for multiple languages.

B Comparison of Classification and
Generation based Skeleton Prediction

From a preliminary manual analysis, we observed
that the classification based approach to skeleton
prediction faces the problem of predicting words
that are related but are not likely to co-occur within
the same sentence in the caption. This is described
in detail in points 1a and 1b of §3. To validate this
observation, we conducted human evaluation of the
captions generated from classification and genera-
tion based approaches relative to one another. This
setup is different from the rest of the experiments in
human evaluation in the paper which compare any
given model relative to the baseline model. In con-
trast, this study is to compare the generation and
classification approaches with one another. These
results are presented in Table 11.

The top-8 highest scoring content words are cho-
sen to reduce input noise for the caption generator
while improving the recall of concepts. We experi-
mented with different values for this and selected

8 to be an optimal balance between the content in
the skeleton words and the noise.

Approach Wins Losses Gains
Generation 39.14 30.23 +8.91

Table 11: Human evaluation results of comparison between
the generation and classification based approaches

We observe that the generation based approach
has significant gains of +8.91 over the classification
based approach. Most of the prior literature uses
the classification based approach to predict content
or bag of concepts to assist caption generation. Our
hypothesis is that this classification based model
helps in end-to-end approaches where the loss from
caption generation backpropagates to the classifier
model as well. As opposed to this, our model de-
couples the prediction of the skeleton or concept
words that are further used for caption generation.
Hence we believe that suppressing the words that
do not co-occur is important in the skeleton pre-
diction task and the generation based approach is
addressing this problem.

C Absolute Ratings

Here are some of the observations from these re-
sults:

• Better results of Dual Staged Approach: As
we can see in the last two rows (rows 8 and 9),
our proposed SkeEnc and SkeAE show abso-
lute improvements in both the categories. This
further demonstrates that the proposed dual
staged approach is generating better denoised
captions when trained on noisy uncurated alt-
text–based captions.

• Sub-selecting content words is better: Now
that we saw the improvements with the dual
staged approach, we now investigate whether
sub-selecting content words is important. For
this, we present comparison between rows 7
and 8. Both these models are dual staged with
SkeEnc i.e encoding the predicted skeleton
in the second stage. The only difference is
that row 8 sub-selects all nouns and verbs to
predict the skeletons whereas row 8 includes
all the words from the captions to predict the
skeletons. Row 8 shows better performance
compared to row 7. This means that sub-
selecting content words contribute to the cap-
tion generation in the second stage.
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Please note that we focus on alt-text based cap-
tions, so we experiment on Conceptual Captions
instead of cleaner alternatives such as MSCOCO
and Multi30k. The latter do not include as noisy
captions as they are hand-annotated (refer Section
4.1)

D Img2Ske: Classification based
prediction

Skeleton prediction is posed as a multilabel clas-
sification problem where the prediction of a skele-
ton word si is not conditionally dependent on the
prediction of another skeleton word sj . Our goal
is to evaluate the effectiveness of simple genera-
tion and classification models to predict skeletons,
and naturally generation based approach reduces
redundancies due to conditional dependence of la-
bel/skeleton prediction. The encoder part remains
the same as the baseline followed by optimization
with sigmoid cross entropy between the skeleton
words S and image encoding zI, which is the rep-
resentation of the image from the encoder.

Accuracy, A =
1

N

N∑
i=1

∣∣∣Si ∩ Ŝi

∣∣∣∣∣∣Si ∪ Ŝi

∣∣∣ (1)

The skeleton for the second stage is chosen as the
ordered list of top-8 (experimentally selected) high
scoring words after the softmax layer. However,
conditional independence of skeleton words with
one another ignores the co-occurrences of words
capable of composing a sentence or a final caption.
For instance, classification predictions are com-
posed of words and their synonyms that are highly
correlated like {person, man, singer}. These words
definitely are relevant to an image but do not all
necessarily co-occur in a sentence.

Table 2 presents the precision, recall and f-
scores of the generation and classification based
approaches for skeleton prediction. These metrics,
however are misleading because they do not ac-
count for synonyms or semantic similarity. For
example, ‘food’, ‘meal’, ‘lunch’ and ‘dinner’ are
all distinct labels while computing these metrics,
and predicting one instead of the other get heavily
penalized even though the effect on downstream
caption quality would be minimal. This issue gets
amplified by the fact that with CC that has a rich
vocabulary with words such as electricity ‘pylon’
and ‘tower’ referring to the same concept.

E Performance drop for Spanish

While we have seen improvements in the perfor-
mance on multiple languages in human evaluation
(Table 6), we observed a drop in the preference for
Spanish captions when we use skeletons. Given
the similarity in word order between Spanish and
English in comparison to Hindi, the lower perfor-
mance of Spanish is an interesting result indeed.
Our speculation for this is probably due to the di-
alect differences. The translation model that we
used for Spanish is a mix of ‘Spain Spanish’ and
‘Latin American Spanish’, with Latin American
Spanish dominating. The evaluation was done by
raters from Spain. The dialects are sufficiently dif-
ferent that it would impact the absolute scores.

F Intuition for skeleton words:

The alt-text captions are silver standard and har-
bor a lot of diversity. Hence filtering frequently
occurring words based on a frequency cutoff as the
skeletons helps balance between conditioning on
the frequent words (not noise) and diverse concepts.
Qualitatively, consider an image of a house with
the caption ‘apartment for rent’ and ‘apartment for
sale’. With the frequency based skeleton selection,
the noun word ‘apartment’ is selected as skeleton
ignoring the rest. In this way, we are denoising
alt-text captions to generate captions with visible
concepts.

G Hyperparameters:

This section lists the hyperparameters used for
training our models. We used BERT embeddings
(Devlin et al., 2019) to initialize the words in skele-
tons in the SkeEnc and SkeAE models.

• Learning rate: We experimented with 3.2e−5,
0.5, 1, 1.5 and 2 as the learning rate. The
experiments presented in the paper have the
learning rate of 1. The learning rate is decayed
at 0.95 decay rate with staircase strategy.

• Number of layers: All our models have 6
layers for encoder and decoder. We also con-
ducted an additional experiment to check if
the model complexity of the end-to-end base-
line can improve the performance in compari-
son to our dual staged approach. To evaluate
this, we doubled the number of layers where
the number of transformer encoder and de-
coder layers are 12 each as presented in the
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paper as Impr Img2Cap (large) in Table 3 in
Section 4.2.

• Subtoken Vocabulary: We experimented with
4000 and 8300 sub-token vocabularies. The
experiments in the paper all have 8,300 as
subtoken vocabulary size.

• Batch size: All our experiments include
batchsize of 128 only.

• Number of steps: We train for a maximum of
1 million update steps.

• Maximum Caption Length: In the baseline
and the SkeEnc models, our decoder generates
a maximum words of length 36. In the SkeAE
and SkeDec model, the skeleton words are
prepended to the caption. So we allow the
decoder to generate 72 words in these two
models.

• Warm up and decay steps: The model is
warmed up for 20 epochs and decayed for 25
epochs.

• Embedding size: We use embedding dimen-
sion of 512.

• Beam size: We perform beam search in the
decoder with a beam size of 5.

Here are some of the configuration and modeling
choices for training the models:

• Attention type: Our experiments include at-
tention types of cross-attention and text-as-
side as described along with point 2a in Sec-
tion 3.

• FRCNN Tokens: We use 1601 tokens from
the trained FRCNN.

H Broader Impact

We believe that this work has extensive impact
in scaling captioning models to large and noisy
datasets thereby exploiting web data and reduce
manual annotation efforts. We do not foresee any
immediate concerns ethically directly from our
work. However, while applying this to datasets
crawled from the web, offensive content should
be removed. In general, we envisage researchers
and practitioners to benefit from our approach es-
pecially, when expensive human annotations are
not available. More broadly speaking, we also
strongly believe that our approach laid blocks for
future work on cross-lingually leveraging English
skeletons and automatic translations to generate
captions for various languages. Hence, when com-
bined with unpaired captioning, this can especially
benefit captioning in low resource languages.


