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Abstract
Automated radiology report generation aims to
generate paragraphs that describe fine-grained
visual differences among cases, especially
those between the normal and the diseased.
Existing methods seldom consider the cross-
modal alignment between textual and visual
features and tend to ignore disease tags as an
auxiliary for report generation. To bridge the
gap between textual and visual information,
in this study, we propose a “Jointly learning
framework for automated disease Prediction
and radiology report Generation (JPG)” to im-
prove the quality of reports through the interac-
tion between the main task (report generation)
and two auxiliary tasks (feature alignment and
disease prediction). The feature alignment and
disease prediction help the model learn text-
correlated visual features and record diseases
as keywords so that it can output high-quality
reports. Besides, the improved reports in turn
provide additional harder samples for feature
alignment and disease prediction to learn more
precise visual and textual representations and
improve prediction accuracy. All components
are jointly trained in a manner that helps im-
prove them iteratively and progressively. Exper-
imental results demonstrate the effectiveness
of JPG on the most commonly used IU X-RAY
dataset, showing its superior performance over
multiple state-of-the-art image captioning and
medical report generation methods with regard
to BLEU, METEOR, and ROUGE metrics.

1 Introduction

Writing radiology reports and predicting disease
labels are two essential procedures in clinical prac-
tice. However, manually creating them by radiolo-
gists is laborious and time-consuming (Jing et al.,
2018; Chen et al., 2021b). Therefore, automated
radiology report generation and disease prediction,
which aim to generate formal-format descriptive
texts (Fig. 1 Findings) and clinical conclusive ter-
minologies (Fig. 1 MeSH), have received increas-
ing attention recently (Chen et al., 2020; Miura

Findings:  
The	XXXX examination consists of frontal and	lateral	radiographs	
of	the	chest. The cardiac silhouette is not enlarged. Calcified	gran-
uloma is	again	seen	in	the	right	upper	lobe.	There	has been	apparent	
interval	increase in low density	convexity	at	the	left	cardiophrenic
XXXX.	There	is	no	consolidation,	pleural	effusion	or	pneumothorax.		
MeSH:  
Calcified	Granuloma/lung/upper	lobe/right;	
Density/	cardiophrenic angle/left.

Figure 1: Chest X-ray images and an accompanying
report, including Findings and MeSH labels, from the
IU X-RAY dataset. We marked the aligned visual and
textual features in different colors for better illustration.

et al., 2021; Liu et al., 2021b; Nguyen et al., 2021;
Liu et al., 2021c; You et al., 2021a). In particular,
they not only improve the efficiency of the entire
procedure and liberate people from burdensome
workloads, but also maintain the high quality of
healthcare.

In spite of substantial improvements (Zhang
et al., 2020; Wang et al., 2022; Liu et al., 2021a;
Shao et al., 2021) have been achieved in the au-
tomatic radiology report generation and disease
prediction, several challenges remain unsolved.
Firstly, following traditional image captioning
paradigms (Bhattacharya et al., 2022), current
methods mainly adopt a standard encoder-decoder
framework with convolutional neural networks
(CNNs) encoding radiographs and recurrent neu-
ral networks (e.g., LSTM/GRU) or non-recurrent
neural networks (e.g., Transformer) decoding re-
ports. As a result, visual and textual information
are represented by different encoding methods in
their own specific embedding spaces, so that the
features are misaligned (e.g., the visual represen-
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tation of the regions circled in yellow in Fig. 1 is
significantly different from the textual representa-
tion of “right upper lobe” in Findings). Therefore,
directly applying these visual features to the down-
stream task will lead to low-quality reports (Chen
et al., 2021a,b; Lu et al., 2017).

Furthermore, most existing disease prediction
models (Bhattacharya et al., 2022; Sun et al., 2021;
Gheflati and Rivaz, 2021; Park et al., 2022) at-
tach a single disease label to each image, where
its context (e.g., location, severity, and affected
organs) is seldom considered. Automatically min-
ing context-aware disease labels can thus make it
easier to understand the disease. Finally, current ap-
proaches take only visual information as the input
of the downstream report generation, which ignores
context-aware disease tags as auxiliary textual in-
formation. Intuitively, as high-level conclusive fea-
tures, disease tags can more effectively guide the
text generation and alleviate missing keywords.

To overcome the aforementioned problems, we
propose to integrate radiology report generation
and context-aware disease prediction into an over-
all framework (JPG), where context-aware disease
labels serve as high-level auxiliary information
for facilitating the report with the lesion location.
Specifically, both visual and textual features are
first projected into a shared subspace via a shared
base matrix to learn new visual and textual rep-
resentations. The shared base matrix acts as an
intermediate medium, which enables visual and
textual information to sufficiently interact and fuse
in a manner that relieves misalignment between
the features. As for the second issue, we train a
CNN-RNN architecture to automatically search for
context-aware disease labels. Instead of directly
using the output of the CNN, the aligned visual fea-
tures are applied to initialize the RNN hidden state
for context-aware disease label prediction. Conse-
quently, the model can improve the classification
accuracy and disease label quality. Finally, we
incorporate context-aware disease labels as high-
level auxiliary features together with aligned visual
features into the decoder, so that the comprehensive
disease tags can better guide the report generation.

We highlight the contributions as follows:
• We propose to learn visual and textual repre-

sentations through a shared subspace to relieve the
misalignment across modalities, which can also be
easily transplanted to other multi-modal tasks.
• Instead of directly using single labels in the

disease prediction task, we propose a strategy to
mine context-aware labels to provide a more de-
tailed textual conclusion for lesions in radiographs.
• As far as we know, we are the first to use

predicted disease contextual labels as high-level
auxiliary information for facilitating and guiding
the report generation process. Empirical results
demonstrate that this scheme proposal outperforms
state-of-the-art competitors in terms of the auto-
mated radiology report generation.

2 Related Work

2.1 Image Captioning

Image captioning aims to generate sentences that
describe images, and it has achieved great success
in the cross-modal area (Cornia et al., 2020; Zhou
et al., 2020; Shi et al., 2021). Inspired by encoder-
decoder architectures used in machine translation,
most existing image captioning approaches typ-
ically adopt the CNN-RNN framework (Huang
et al., 2019; Yan et al., 2021; You et al., 2021b),
where a CNN is used to extract visual features from
a given image, and a recurrent or non-recurrent
network is used to generate the caption. To align
visual features with textual features, existing meth-
ods adopt a memory network (Chen et al., 2020,
2021b), a relation/consensus graph (Wang et al.,
2021a; Bhattacharya et al., 2022), a Transformer
network (Ji et al., 2021) or a language model (Sariy-
ildiz et al., 2020; Gupta et al., 2020) to help vi-
sual features learn new semantic representations.
Among those studies, the most related ones (You
et al., 2018; Akbari et al., 2019) directly project vi-
sual features to a textual space and consider textual
features as basis vectors to learn new representa-
tions for visual features. In contrast, in the present
study, we design a shared subspace and a base
matrix as an intermediate medium to learn new rep-
resentations for both visual and textual features,
which can thereby be better aligned.

2.2 Radiology Report Generation

As one of the applications and extensions of image
captioning (Cornia et al., 2020; Zhou et al., 2020;
Shi et al., 2021; Huang et al., 2019; Yan et al., 2021)
(Appendix 2.1) to the medical domain, radiology
report generation aims to annotate radiolographs
with much more detailed professional reports. Ac-
cording to the strategies for aligning radiological
visual and textual features, current methods can be
generally classified into three categories: 1) vari-
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ant attention mechanism-based methods seek to
integrate and fuse visual and textual features via
advanced attention (Jing et al., 2019; Wang et al.,
2018; Liu et al., 2019), among which Jing et al.
(2018) propose a multi-task hierarchical model
with a co-attention mechanism to combine visual
and textual features to generate reports. 2) cross-
modal memory network-based approaches record
the alignment between images and texts through a
shared matrix to facilitate the information interac-
tion across modalities (Yin et al., 2019; Chen et al.,
2020, 2021b; Wang et al., 2021b). 3) graph convo-
lution network-based models aggregate visual and
textual features on pre-trained knowledge graphs or
newly constructed multi-modal networks (Zhang
et al., 2020; Hu et al., 2019). JPG offers a new
way beyond the above studies to generate radiol-
ogy reports, since a shared subspace is provided
to learn new representations for both visual and
textual features in a manner that produces more
accurate descriptions for report generation.

2.3 Medical Image Classification

Existing methods have achieved remarkable suc-
cess at predicting single disease labels for medical
images (Bhattacharya et al., 2022; Sun et al., 2021;
Gheflati and Rivaz, 2021; You et al., 2022). In par-
ticular, informative disease labels have been mined
with context information. For example, Shin et al.
(2016) predicts disease labels by leveraging a vari-
ant of the CNN-RNN framework. Moreover, PP-
KED (Liu et al., 2021b) examines abnormal regions
and assigns disease topic tags to the abnormali-
ties. Differing from the above-mentioned methods,
our JPG adopts a shared base metric for learning
new visual representations and takes it as input for
context-aware disease prediction to improve the flu-
ency of disease labels and classification accuracy.

3 Methodology

Figure 2 exhibits an overview of JPG, which con-
sists of three chief components: (A) shared sub-
space representation learning, (B) context-aware
disease prediction, and (C) radiology report gener-
ation. Hereafter, we will give formal notations of
variables and task definitions concerning JPG, and
introduce each component subsequently in detail.

3.1 Notations and Task Definition

Given an X-ray image I as input, JPG is designed
to automatically generate a sequence of context-

aware disease labels c and a radiology report Y.
Specifically, we divide I into p patches, and apply
pre-trained CNN-based ResNet (He et al., 2016)
as the visual extractor to learn its patch features
as X = {x1, x2, . . . , xp}, where xp ∈ Rdx with dx
representing the dimensionality of patch features.
The target output is the corresponding radiology
report Y = {y1, y2, . . . , yn}, where yn ∈ Rdy is
the word embedding of the n-th generated token,
and n denotes the length of the report. Formally,
the entire task can be defined as two parts according
to Bayes’ theorem as follows:

p(Y, c|X) ∝ p(Y|c,X) · p(c|X), (1)

where the radiology report generation process
p(Y|c,X) can be formalized as a recursive appli-
cation of the chain rule as

p(Y|c,X) =

n∏
i=1

p(yi|y<i, c,X), (2)

where y<i = {y1, . . . , yi−1} represents the previ-
ously generated tokens so far, and n is the total
amount of tokens in target sequence Y.

As described in Eq. 1, jointly learning to align di-
agnostic disease prediction and radiological report
generation can be classified as two subtasks in or-
der. In detail, we first train the model to maximize
the probability of producing context-aware disease
labels for an X-ray image p(c|X), then maximize
the probability of generating a corresponding ra-
diology report p(Y|c,X) conditioned on context-
aware disease labels c and visual features X.

3.2 Visual Extractor
As shown in Fig. 2, given a radiology image I orga-
nized in 2-dimension format as input, we employ
ResNet (He et al., 2016) as a pre-trained visual
extractor. Normally, it first decomposes the image
into regions of equal size, i.e., patches, and then
extracts visual features of each patch from the out-
put of its last convolutional layer. Afterwards, the
extracted patch representations x1, x2, . . . , xp are
concatenated to constitute the source input for all
subsequent modules with the form of visual feature
sequence X ∈ Rp×dx as

{x1, x2, . . . , xp} = fv(I). (3)

Note that any type of pre-trained CNNs, e.g.,
VGG (Simonyan and Zisserman, 2015) or
DenseNet (Huang et al., 2017), can be used for
the purpose.
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Figure 2: Model overview. JPG first captures textual and visual features through word embeddings and a visual
extractor. Those features are then projected onto a shared subspace ((A) as a 3-dimension example) to learn new
representations based on shared basis vectors. Finally, a RNN decoder (B) and a Transformer-based encoder-decoder
architecture (C) are employed to generate context-aware disease labels and radiology reports, respectively.

3.3 Shared Subspace Representation

Considering that visual and textual features are
extracted by different encoding methods (Kim et al.,
2020; Huang et al., 2020), directly applying patch
features generated by the visual extractor as the
input for the downstream text generation task will
lead to non-fluent, low-quality reports with missing
keywords. To solve this problem, as shown in Fig. 2
(A), both visual and textual features are projected
into a shared subspace, and a trainable shared base
matrix is designed to learn new representations for
them. Therefore, textual and visual features can be
fully integrated and interacted to relieve the feature
discontinuity across modalities.

Specifically, we define a shared base matrix B
with m basis vectors as B = {b1,b2, . . . ,bm},
where B ∈ Rm×db with db representing the dimen-
sionality of each basis vector. Besides, based on
the assumption that the dimension of the shared
subspace is ds, visual features X, textual features
Y, and shared base matrix B are projected into the
shared subspace respectively as

x̃i = Wx · xi & X̃ = X ·Wx, (4)

ỹi = Wy · yi & Ỹ = Y ·Wy, (5)

b̃i = Wb · bi & B̃ = B ·Wb, (6)

where Wx ∈ Rdx×ds , Wy ∈ Rdy×ds , and Wb ∈
Rdb×ds are trainable parameters.

To learn new visual and textual representations
given base matrix B, we calculate the consine sim-
ilarity between the previous visual and textual fea-
tures with B as

Sij = x̃Ti · b̃j & Gij = ỹTi · b̃j (7)

where T represents matrix transpose, Sij denotes
the similarity between the i-th visual feature x̃i and
the j-th basis vector representation b̃j . Similarly,
Gij is the similarity between the i-th textual feature
ỹi and b̃j . To prevent inaccurate representation
learning caused by an excessive weight of a certain
item, the similarities are further normalized by

Sij =
exp (Sij)∑m
k=1 exp (Sik)

(8)

Gij =
exp (Gij)∑m
k=1 exp (Gik)

. (9)

Finally, the new visual and textual representa-
tions are obtained as

rxi =
m∑
k=1

Sik · b̃k & ryi =
m∑
k=1

Gik · b̃k (10)

where rxi and ryi are the i-th new visual feature
and textual feature, respectively.

The above process guarantees the full integra-
tion between textual and visual information; that
is, the visual features of a certain patch and its
corresponding descriptive textual features maintain



5993

DATASET IMAGE REPORT PATIENT AVG. LEN.

TRAIN 5,226 2,770 2,770 37.56
VALID 748 395 395 36.78
TEST 1,496 790 790 33.62

Table 1: Basic statistics of IU X-RAY with respect
to its training, validation, and test sets. “AVG. LEN.”
represents the averaged word-based length of reports.

similar representations in the shared subspace. For
example, as shown in Fig. 2, the green solid line
and dotted line represent the visual and textual fea-
tures of left cardiophrenic, respectively, of which
ones with similar representations are gathered in
the 3D shared subspace as illustrated in Fig. 2 (A).

3.4 Context-aware Disease Prediction
Considering that a single disease label cannot fully
account for the context of an X-Ray image, in-
cluding location, severity, and organs affected by
a disease, mining context-aware labels for radio-
graphs and using them to train a classification layer
for disease prediction are proposed hereafter.

Mining and pre-training on single labels. In
accordance with Shin et al. (2016), we find 17 sim-
plest unique disease annotation patterns through
statistical analysis to label the images and retain
40% of the full dataset. GoogLeNet (Szegedy
et al., 2015) is used as the classification layer to
train the model on the retained cases. We addi-
tionally apply mini-batch normalization (Ioffe and
Szegedy, 2015) and random data dropout (Hinton
et al., 2012) to alleviate result deviation caused
by an unbalanced distribution between normal and
pathological cases. Since the majority of disease-
related MeSH terms contain up to 5 words, we con-
strain the GRU decoder to unroll up to 5 timesteps.
Specifically, we initialize the first decoder hidden
state as the output embedding of the classification
layer. The GRU decoder is then trained by minimiz-
ing the negative log likelihood between the output
sequence and the ground-truth:

LLoss = −
N∑
t=1

{ct = st|rx1 , . . . , rxp} (11)

where ct is the token output on the t-th timestep,
st is the t-th reference MeSH term, and N = 5.

Re-training on context-aware labels. The afore-
mentioned classification layer and GRU decoder
are considered as a pre-training procedure to mine

the context for previous primary disease labels in
the whole dataset. And 57 unique context-aware
disease labels on the side of the output of the GRU
decoder are obtained. The context-aware labels
summarize both the context information and textual
semantic information of the image. For example,
the coarse-grained label “calcified granuloma” can
be attached by more informative and detailed con-
text as “calcified granuloma in right upper lobe” or
“small calcified granuloma in left lung base”. This
additional labelling procedure improves the qual-
ity of clinical practice concerning X-ray diagnosis.
As shown in Fig. 2 (B), we re-train the classifica-
tion layer with 57 context-aware labeled cases, and
initialize the GRU hidden state with the output of
the classification layer. Eq. 11 is again used as an
objective function for the re-training process.

3.5 Automated Radiology Report Generation
As shown in Fig. 2 (C), we employ a Transformer-
based encoder-decoder architecture for automated
radiology report generation. New visual and textual
representations are functionalized as the input for
the Transformer encoder and decoder, respectively.

Since considering context-aware disease labels
as macro-level features also benefits clinical report
generation, we concatenate macro-level context-
aware labels with micro-level visual features as the
input for the Transformer encoder. Specifically, the
new representation of micro-level visual features
{rx1 , . . . , rxp} and macro-level context-aware la-
bel features c are first fed into the encoder as

{z1, . . . , zp, zc} = fe(rx1 , . . . , rxp , c), (12)

where fe(·) represents the Transformer encoder.
Then, resulting intermediate state {z1, . . . , zp, zc}
are fed into the decoder at each decoding step with
aligned textual representation of the previously gen-
erated sequence {ry1 , . . . , ryi−1}. The output at the
i-th timestep can thus be generated by using

yi = fd(z1, . . . , zp, zc, ry1 , . . . , ryi−1), (13)

where fd(·) refers to the Transformer decoder.

4 Experiments

4.1 Dataset
We carried out our experiments on the most widely-
used and conventional benchmark dataset, namely,
Indiana University Chest X-Ray Collection1 (IU X-
RAY) (Demner-Fushman et al., 2016). It contains

1https://openi.nlm.nih.gov/
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3, 955 fully de-identified handwritten radiology re-
ports from the Indiana Network for Patient Care
and 7, 470 corresponding chest X-ray images from
the hospitals’ picture archiving systems. As shown
in Fig. 1, each sample is associated with a frontal
and/or a lateral chest X-ray image, and each report
is comprised of several sections: MeSH2, Indica-
tion, Findings, and Impression, etc. In this work,
we use the Findings and MeSH sections as ground-
truth reports and disease labels, respectively.

Following the dataset preprocessing procedure
of previous studies (Li et al., 2018), we preprocess
the reports by tokenizing, converting tokens into
lower cases, and removing non-alphabetic tokens.
Samples without MeSH or Findings sections in the
dataset were excluded. We apply the same split,
i.e., 70%/10%/20% for the training/validation/test
set, as that stated in Li et al. (2018). The basic
statistics of IU X-RAY, in terms of numbers of
images, reports, patients, and average length of
reports with respect to each split set, are listed in
Table 1.

4.2 Baselines

The following excellent baselines are used to exam-
ine the effectiveness of the proposed approach on
radiology report generation: conventional image
captioning methods including NIC (Vinyals et al.,
2015), ADAATT (Lu et al., 2017), ATT2IN (Rennie
et al., 2017), and VisualGPT (Chen et al., 2021a);
and the ones proposed for the medical domain, e.g.,
COATT (Jing et al., 2018), HRGR (Li et al., 2018),
CMAS-RL (Jing et al., 2019), R2GEN (Chen et al.,
2020), and CMN (Chen et al., 2021b). In addi-
tion, BASE is a vanilla Transformer (Vaswani et al.,
2017) used as the backbone encoder-decoder archi-
tecture in our full model. We further implement
several ablated versions of JPG with the aim of
evaluating the different components in it.

4.3 Evaluation Metrics

The performance of the aforementioned baselines,
as well as our proposed method, was evaluated by
conventional natural language generation (NLG)
metrics, including BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2011), and
ROUGE-L (Lin, 2004), which compare model-
generated reports with ground-truth by referring
to the overlap of n-grams (BLEU-n), explicit word-
to-word matches (METEOR), and longest common

2https://www.nlm.nih.gov/mesh/meshhome.html

subsequence (ROUGE-L). The results based on
these metrics were obtained by the standard image
captioning evaluation tool3. We further measured
the disease prediction subtask as a multi-label clas-
sification problem by the micro-averaged F1 score.

4.4 Implementation Details

Two X-Ray images of a patient were used as the
input for both the report generation and disease
annotation subtasks to ensure consistency with pre-
vious studies (Li et al., 2018; Chen et al., 2021b),
where all the CNN input images were rescaled to a
size of 256× 256. We employed ResNet101 (He
et al., 2016) pre-trained on ImageNet (Deng et al.,
2009) as the visual extractor to extract patch fea-
tures with a 7× 7× 2048-dimension feature map.
The maximum decoding sequence lengths are lim-
ited to 60 and 5 tokens for report generation and
disease annotation respectively by truncating and
zero-padding. 512-dimension word embeddings
with random initialization were fine-tuned during
training. We randomly initialized the shared sub-
space as a 512 × 2048 memory matrix, where
ds = 512, and 2048 is the number of shared ba-
sis vectors. We adopted GoogLeNet as the clas-
sification layer, and a single-layer GRU unrolling
up to five timesteps for context-aware disease la-
bel prediction. A 3-layer Transformer structure
with 8 attention heads and 512-dimension hidden
states was used in randomly initialized states as the
encoder-decoder backbone.

Our model is trained under a cross entropy loss.
As for the optimizer, Adam (Kingma and Ba, 2015)
with a learning rate of 1e−4 and an initial accumu-
lator value of 0.1 was used. We set the batch size
to 16, whereas the target sequences were decoded
through beam search with a beam size of 3 at test
time to balance the effectiveness and efficiency.

5 Results and Discussion

5.1 Performance of JPG

Table 2 lists the main results on the radiology report
generation task. Symbol † indicates statistically
significant differences of JPG from BASE using
T-test (Yang and Liu, 1999). The results for the
conventional image captioning methods are shown
at the top, with the ones proposed for the medical
domain in the middle, and those for our methods
at the bottom. According to Table 2, JPG can gen-

3https://github.com/tylin/coco-caption
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METHOD BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

NIC (Vinyals et al., 2015) 0.216 0.124 0.087 0.066 - 0.306
ADAATT (Lu et al., 2017) 0.220 0.127 0.089 0.068 - 0.308
ATT2IN (Rennie et al., 2017) 0.224 0.129 0.089 0.068 - 0.308
VisualGPT (Chen et al., 2021a) 0.482 0.314 0.221 0.158 0.204 0.375

COATT (Jing et al., 2018) 0.455 0.288 0.205 0.154 - 0.369
HRGR (Li et al., 2018) 0.438 0.298 0.208 0.151 - 0.322
CMAS-RL (Jing et al., 2019) 0.464 0.301 0.210 0.154 - 0.362
R2GEN (Chen et al., 2020) 0.470 0.304 0.219 0.165 0.187 0.371
CMN (Chen et al., 2021b) 0.475 0.309 0.222 0.170 0.191 0.375

BASE 0.369 0.254 0.179 0.135 0.164 0.342
JPG-projection 0.458 0.291 0.212 0.159 0.177 0.371
JPG-auxiliary 0.472 0.308 0.218 0.168 0.188 0.373
JPG 0.479† 0.319† 0.222† 0.174† 0.193† 0.377†

Table 2: Comparison of the proposed model with those of previous studies for Findings generation on the test set
of IU X-RAY with respect to various NLG metrics, where BLEU-n denotes BLEU scores using up to 4-grams. †
marked results significantly surpass BASE using T-test (Yang and Liu, 1999) with p < 0.05.
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Figure 3: Classification accuracy of AlexNet, NIN, and
GoogLeNet on the test set of IU X-RAY.

erate more accurate and fluent radiology reports
compared with the baselines.

We consider three possible reasons for the supe-
rior performance of JPG. First, the shared subspace
is configured to make up for the gap between dif-
ferent information extracted by word and image
embeddings. Compared to simply merging word
embeddings of disease tags into patch features as
complementary textual information, the additional
shared subspace projection makes the aligned vi-
sual and textual features much more understand-
able to each other, so that information is better inter-
acted, and the quality of reports is improved. Sec-
ond, regarding the improvement of BLEU scores,

the introduction of context-aware disease labels
provides the report generation process with explicit
lesion textual prompts, which prevents our model
from generating irrelevant diseases and enables
JPG to effectively capture the disease-related key-
words. Third, conclusive disease prediction and
descriptive report generation are jointly trained and
optimized in an overall framework to obtain a glob-
ally optimal solution for both subtasks.

As shown in Fig. 3, the three most effec-
tive classification networks, AlexNet (Krizhevsky
et al., 2012), NIN (Lin et al., 2014), and
GoogLeNet (Szegedy et al., 2015) were employed
for classification with context-aware disease labels.
Compared with adopting patch features directly
extracted from the visual extractor, learning new
visual representations from a shared subspace can
dramatically improve classification accuracy, be-
cause new visual representations contain more use-
ful semantic features in regard to the classifica-
tion task. Therefore, many inspiring context-aware
disease labels, such as <opacity lung bilateral in-
terstitial diffuse> and <opacity lung lower_lobe
bilateral>, can be obtained.

5.2 Ablation Study

JPG-projection To verify the alignment be-
tween visual and textual representations within the
encoder-decoder architecture, we show the ablation
performance in Table 2 by removing the shared
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Original Image

Ground truth: The lungs are clear. The 
cardiomediastinal silhouette is within 
normal limits. No pleural effusion is 
identified.

heart normal mediastinum lungs

BASE: the heart is normal in size. the mediastinum is unremarkable. the lungs are clear.

heart lungs pneumothorax osseous structures

JPG: the heart size and cardiomediastinal silhouette are normal. the lungs are clear without focal 
airspace opacity pleural effusion or pneumothorax. the osseous structures are intact.

Figure 4: Visualization of image-text mappings between particular regions (indicated by colored weights) of a chest
X-ray image and tokens from its reports generated by BASE and JPG, respectively.

subspace projection and simply using the raw vi-
sual extractor and word embedding outputs to both
predict disease labels and generate reports, which
obviously degrades the model performance with
respect to all evaluation metrics. This proves that
the shared base matrix plays a critical role in fa-
cilitating disease prediction and report generation
with sufficient understandable visual representa-
tions with semantic meanings, which cannot be
replaced by straightforward visual and textual fea-
tures. Besides, instead of using hard attention to
match visual features with textual features, the pro-
posed shared subspace acts as a soft alignment
medium to offset the gap between those features; it
thus unifies cross-modal features within the same
representation space. Furthermore, the shared sub-
space also provides further fusion patterns for dis-
ease tags and chest X-Ray images to communicate
with each other and pass both compatible visual
and textual information for more accurate reports.

JPG-auxiliary Based on the assumption that the
remarkable improvement of JPG from baselines is
due to jointly training disease prediction and report
generation and employing the predicted disease
tags as auxiliary information when generating re-
ports, we would like to experimentally evaluate the
performance of JPG in terms of a separate learning
pattern. In this experiment, the disease prediction
and report generation subtasks were treated as two
parallel procedures. Specifically, visual and textual
features were first projected into a shared subspace
to overcome the misalignment of features across

modalities. Then, we independently employed a
Transformer encoder-decoder structure for report
generation without adding context-aware disease
labels as auxiliary information on the input side.

According to the last block in Table 2, imple-
menting the subtasks individually degrades the
model performance and the quality of generated
reports to a certain extent. We consider that in
our complimentary interactive learning framework,
reports can receive more discriminative lesion lo-
cations and semantic features under the guidance
and constraint of predicted diseases. And in turn
disease prediction accuracy is improved by report
generation via visual feature extraction and fusion
in a manner that cannot be imitated by separate
learning. This result indicates the superiority of
JPG over the conventional methods, implying the
usage of auxiliary disease tags in the report gener-
ation process is promising for identifying salient
keywords.

5.3 Alignment Visualization and Case Study

To further qualitatively investigate the ability of
JPG to overcome the misalignment of features
across modalities, Fig. 4 visualizes how the pro-
posed model focuses on the image when generat-
ing a certain word or phrase; i.e., it learns from
the alignments between visual and textual features.
We randomly select an example from the IU-XRAY

dataset, and list its original chest X-Ray image
with the corresponding ground-truth report for ref-
erence. Fig. 4 shows image-text mappings between
particular regions (highlighted by colored weights)
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Frontal Lateral Ground-truth BASE JPG

Low lung volumes. Stable ectasia
of the thoracic aorta. Stable right
upper mediastinal Bilateral small
pleural effusions and bibasilar air-
space opacities. The heart size and
mediastinal silhouette are within
normal limits for contour. No pne-
umothorax. Stable wedging of the
anterior thoracic vertebral bodies.

Cardio mediastinal silhouette is
unremarkable. Visualized osseous
structures of the thorax are with-
out acute abnormality. Low lung
volumes bilaterally. The lungs are
clear bilaterally. Specifically no evi-
dence of focal consolidation pneu-
mothorax or pleural effusion.

There are low lung volumes with
bibasilar opacities xxxx represent-
ing subsegmental atelectasis. The
cardio the cardiac silhouette is of
the xxxx of normal in size and con-
tour. There is no pneumothorax or
large pleural effusion.

The lungs are clear. The cardiome-
diastinal silhouette is within norm-
al limits. No pleural effusion is ide-
ntified.

The lungs are clear bilaterally. Car-
dio mediastinal silhouette is unre-
markable. Visualized osseous stru-
ctures of the thorax are without
acute abnormality.

The heart size and cardiomedia-
stinal silhouette are normal. The
lungs are clear without focal air-
space opacity pleural effusion or
pneumothorax. The osseous struc-
tures are intact.

Figure 5: Example reports of BASE and JPG.

of an X-Ray image and words/phrases from its re-
ports generated by BASE and JPG. In detail, we
utilize the cross attention weight from the first de-
coder layer to show the alignment between visual
and textual features, since the latter decoder layers
couple the textual and visual information, mak-
ing it difficult to distinguish the most primitive
alignment weights. In general, JPG is able to pay
attention to relatively accurate patches when gener-
ating a word (especially disease terminologies), so
it brings about descriptions of higher quality than
those produced by BASE.

Fig. 5 exhibits two examples with both front
and lateral CXR images and their corresponding
reports obtained by ground-truth, BASE, and JPG,
where different colors on the texts indicate different
clinical terms. These examples indicate that JPG

can produce accurate terms and well-aligned de-
scriptions, which abide by a similar content flow as
radiologists follow, while BASE sometimes makes
factual errors. For example, in both cases, patterns
in the ground-truth and generated reports follow the
sequence of starting from observations (e.g., “lung
volumes” and “cardiomediastinal silhouette”) and
concluding with potential diseases (e.g., “pleural
effusion” and “pneumothorax”). In addition, JPG-
generated reports cover almost all of the necessary
clinical terminologies in the ground-truth reports.
On the contrary, BASE cannot keep abreast with the
description order of the ground-truth, so it gener-
ates misaligned and out-of-order sentences. More-
over, several phrases go against fact; e.g., “small
pleural effusions” is mistakenly ignored. By lon-
gitudinally viewing the reports produced by BASE

corresponding to two cases, we can also find that

the vanilla Transformer tends to iteratively generate
similar sentences.

6 Conclusion

We addressed several fundamental issues concern-
ing clinical disease prediction and radiology report
generation in an overall framework, where context-
aware disease terminologies act as complementary
textual features coupled with visual features of im-
ages to guide and facilitate the report generation
process. Meanwhile, these explicit clues of lesion
location effectively prevent the report generation
model from generating factual erroneous texts. The
proposed shared subspace provides an interaction
platform for different representations extracted by
image and word embeddings to overcome the mis-
alignment of information across modalities. Em-
pirical results acquired with the most widely used
dataset, including those of ablation studies, demon-
strate the effectiveness of the proposed JPG, which
achieves the state-of-the-art performance.
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