@inproceedings{doan-etal-2022-multi,
title = "Multi Graph Neural Network for Extractive Long Document Summarization",
author = "Doan, Xuan-Dung and
Nguyen, Le-Minh and
Bui, Khac-Hoai Nam",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2022.coling-1.512/",
pages = "5870--5875",
abstract = "Heterogeneous Graph Neural Networks (HeterGNN) have been recently introduced as an emergent approach for extracting document summarization (EDS) by exploiting the cross-relations between words and sentences. However, applying HeterGNN for long documents is still an open research issue. One of the main majors is the lacking of inter-sentence connections. In this regard, this paper exploits how to apply HeterGNN for long documents by building a graph on sentence-level nodes (homogeneous graph) and combine with HeterGNN for capturing the semantic information in terms of both inter and intra-sentence connections. Experiments on two benchmark datasets of long documents such as PubMed and ArXiv show that our method is able to achieve state-of-the-art results in this research field."
}
Markdown (Informal)
[Multi Graph Neural Network for Extractive Long Document Summarization](https://preview.aclanthology.org/jlcl-multiple-ingestion/2022.coling-1.512/) (Doan et al., COLING 2022)
ACL