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Abstract

A Visual Question Answering (VQA) model
processes images and questions simultaneously
with rich semantic information. The attention
mechanism can highlight fine-grained features
with critical information, thus ensuring that
feature extraction emphasizes the objects re-
lated to the questions. However, unattended
coarse-grained information is also essential for
questions involving global elements. We be-
lieve that global coarse-grained information
and local fine-grained information can com-
plement each other to provide richer compre-
hensive information. In this paper, we propose
a dual capsule attention mask network with
mutual learning for VQA. Specifically, it con-
tains two branches processing coarse-grained
features and fine-grained features, respectively.
We also design a novel stackable dual capsule
attention module to fuse features and locate
evidence. The two branches are combined to
make final predictions for VQA. Experimental
results show that our method outperforms the
baselines in terms of VQA performance and
interpretability and achieves new SOTA perfor-
mance on the VQA-v2 dataset.

1 Introduction

In recent years, visual question answering (VQA)
has received extensive research attention in the
fields of computer vision and multimedia comput-
ing. The goal of VQA is to answer questions re-
lated to the content of images correctly (Antol et al.,
2015). It has a wide range of practice applications,
such as helping people with visual impairment and
human-computer Q&A.

In the early stage, most VQA models ex-
tract features from images and questions indepen-
dently (Malinowski et al., 2015; Gao et al., 2015;
Ren et al., 2015). These methods fail to capture
the fine-grained key features and include much un-
necessary information. Afterward, the attention
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Q:What is on the little girls head ? 
A:helmet 

Q:Could this be a multi-purpose room?
A:yes

Figure 1: Samples in the VQA-v2 dataset. (Left): The
fine-grained features with attention have the critical in-
formation required for the answer inference, which can
help the model generate the correct answer by elimi-
nating the interference of irrelevant factors. (Right):
Unattended coarse-grained features have richer seman-
tic information, which can help the answer inference
when the attention mechanism is of limited use.

mechanism becomes popular and is introduced in
many fields (Lu et al., 2016; Cai and Hu, 2020).
The VQA models with the attention mechanism ex-
tract critical information from one modality guided
by another modality (Lu et al., 2016; Anderson
et al., 2018; Yu et al., 2019). Consider the question
related to Figure 1 (Left) “What is on the little girl’s
head?” The attention method needs to encourage
the model to focus on the "girls head" in the ques-
tion and related regions in the image to produce
the correct answer as “helmet.” In this case, local
fine-grained input(features which have critical in-
formation with attention processing) can help the
model eliminate distractions and generate correct
answers. However, the attention mechanism is not
a panacea. Some questions may mislead visual at-
tention and lead to wrong answers. For example,
in Figure 6 (line 3, left), the question word "boxes"
makes the model focus on the printer(which looks
like a box) in the picture and leads to the wrong
answer. Also, in some scenarios, the model needs
to focus on multiple objects for reasoning, but the
question cannot explicitly remind which object re-
quire its attention. For example, consider the ques-
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tion related to Figure 1 (Right) “Could this be a
multi-purpose room?” The model needs to take
the bed, chair, computer, and printer into account
for reasoning, but there are no words in the ques-
tion that can help identify the relevant objects. In
these cases, global coarse-grained input(features
that have all information without attention process-
ing) can provide more comprehensive information
for generating answers. The challenge is to make
the model focus on key features while maintaining
a reference to the global information.

To overcome the above limitations, we propose
a novel Dual Capsule Attention Mask Network
(DCAMN) with mutual learning to process multi-
modal information at different granularities. We
believe that coarse-grained information and fine-
grained information can complement each other
to provide richer comprehensive information for
answer reasoning. Inspired by mutual learning and
its variants (Zhang et al., 2018; Song and Chai,
2018), we design a two-branch network. The first
branch processes the entire features of visual and
language, analyzes global information at the coarse-
grained level and fuses the features to produce pre-
dictions. We also design a Stackable Dual Capsule
Attention Module (SDCAM) to model cross-modal
deep interactions between the image and the ques-
tion. The second branch masks visual features and
language features with the attention weights gen-
erated by the SDCAM of the first branch to get
fine-grained features, which enables the network
to focus on key regions of the image and keywords
of the question. Finally, we combine results from
two branches to get final predictions. In contrast to
other multi-granularity work (Nguyen et al., 2021),
our DCAMN does not introduce additional infor-
mation such as predicates, while utilizes the atten-
tion weights from the first branch to filter features
for the second branch.

As a novel method of multi-modal fusion, SD-
CAM can output precise attention weights, which
not only mask fine-grained features but also help
locate evidence(grounds for the answer). By an-
alyzing evidence, we can learn what information
the network concerns more and how it makes deci-
sions. Also, the stacking strategy for SDCAM im-
proves attention accuracy and the fusion of visual
and language representations. In DCAMN, there is
only one language module to encode the questions,
while images are presented to the two branches for
processing separately. Compared with using two

independent peer networks, sharing the language
module between two branches can reduce the bur-
den of parameters and calculation. Moreover, early
blocks acquire gradients from both branches during
backpropagation, which reduces the risk of gradi-
ent vanishing (Song and Chai, 2018). The knowl-
edge of two branches at different perspectives and
granularities is learned by another branch for infor-
mation supplement and regularization, which can
improve the generalization capability and VQA
performance of DCAMN.

The main contributions of this paper are as fol-
lows: (1) A novel dual capsule attention mask net-
work with mutual learning is proposed, which can
process coarse-grained features and fine-grained
features separately. Two branches can learn from
each other, and their combination can improve the
VQA performance. (2) A stackable dual capsule
attention module is proposed, which provides pre-
cise co-attention weights for masking out features
and locating evidence. (3) We propose to share
the language module between two branches of dif-
ferent granularities, which can reduce parameter
requirements and the risk of gradient vanishing.
(4) Extensive experiments are conducted to eval-
uate the proposed method. Our method has sig-
nificant advantages over the baselines in terms of
interpretability and accuracy and achieves state-of-
the-art performance on the VQA-v2 dataset.

2 Related Work

2.1 Visual Question Answering

The rapid development of VQA has benefited
from many aspects. The latest studies in visual
and language feature representation are applied
to VQA to improve the ability to extract and pro-
cess features (Jiang et al., 2020; Devlin et al.,
2019). Better multimodal fusion methods, such
as MCB (Fukui et al., 2016), MLB (Kim et al.,
2017), MUTAN (Ben-younes et al., 2017), etc.,
are proposed to capture the high-level interactions
between visual and language features. The trans-
former significantly contributes to the improvement
of VQA (Yu et al., 2019; Zhou et al., 2021) and
makes large-scale pre-training possible (Chen et al.,
2020; Li et al., 2020). To extract useful information
from the cumbersome features, many approaches
introduce the attention mechanism to refine key
information (Lu et al., 2016; Anderson et al., 2018;
Gao et al., 2019; Yu et al., 2019). However, The
attention mechanism may perform poorly on ques-
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tions involving background. (Sharma and Jalal,
2022). Moreover, some words in the questions
may mislead the question-based attention. These
situations indicate that the attention mechanism
is not a panacea, and a method that can integrate
attention features and global features is necessary.

2.2 Mutual Learning

Most distillation-based model compression meth-
ods distill large and powerful networks into smaller
and efficient networks (Romero et al., 2015; Zhang
and Ma, 2021). However, its two-step strategy(train
the teacher first and then train students) is time-
consuming. So mutual learning is proposed (Zhang
et al., 2018), which enables networks to be trained
in parallel. In Zhang et al. (2018), each student
model learns from the predictions of the other mem-
bers, and the whole network requires complex asyn-
chronous updates among different students. An-
other approach (Song and Chai, 2018) advocates
that all students share the same early module, ag-
gregating the gradient flow from all branches. This
strategy reduces the training computational com-
plexity and facilitates the supervision of the shared
layers. Our network is based on the latter.

2.3 Capsule Network

The idea of grouping neurons is proposed early
in Hinton et al. (2011). Following this, the dy-
namic routing method with capsules is formally
introduced in Sabour et al. (2017). After dy-
namic routing, Hinton et al. (2018) implement
EM routing of matrix capsules. The applications
in other domains prove the universality of capsule
networks (Duarte et al., 2018; Jaiswal et al., 2018;
Zhao et al., 2019). Zhou et al. (2019), inspired by
dynamic-routing implementation of capsule net-
works (Sabour et al., 2017), proposed CapsAtt
model replacing the previously multi-level atten-
tions.

3 Method

Given an image I and a question Q, the purpose of
VQA is to output the correct answer a ∈ A, where
A indicates the candidate word list for answers. We
follow the transformer design of MCAN (Yu et al.,
2019) and TRAR (Zhou et al., 2021) and use them
as our backbones with their encoder-decoder units.
The overall framework of DCAMN is shown in
Figure 2.

3.1 Question Representation and Image
Representation

DCAMN models language features and visual fea-
tures by encoding layers and decoding layers, re-
spectively. The question Q is first processed by
Glove word embedding (Pennington et al., 2014)
accompanied by LSTM (Hochreiter and Schmid-
huber, 1997) and then is presented to the encoding
layers to get the question feature matrix Y ∈ Rk×d,
where d is the latent dimensionality in multi-head
attention of encoder-decoder units, and k denotes
the number of words in the question. Following
BUTD (Anderson et al., 2018), we extract the
salient region features X0 ∈ Rm×d from the im-
age I as the visual input by a pre-trained Faster R-
CNN. X0 are then fed into two independent decod-
ing structures to obtain the visual feature matrices
X1
t ∈ Rm×d and X2

t ∈ Rm×d (t = [1, 2, · · · , T ]),
where Xb

t represents the output of the t-th decoder
block of branch b (b ∈ [1, 2]); T denotes the num-
ber of decoding layers; m is the number of bound-
ing boxes.

3.2 Stackable Dual Capsule Attention Module
and Decoder Block

We design an efficient multi-modal fusion method
SDCAM. The attention of SDCAM is transformed
from capsule dynamic routing, and the stack-
ing strategy is also employed to improve visual-
language co-attention performance. The details of
SDCAM are shown in Figure 3. Specifically, it
alternately performs attention and fusion on visual
features and language features. The visual input X
of SDCAM is X1

t or X2
t and the language input is Y,

where X = [x1,x2,· · · ,xm], Y = [y1,y2,· · · ,yk]. In
SDCAM, xi(i = 1, · · · ,m) denotes the image fea-
ture of the i-th bounding box and yi(i = 1, · · · , k)
denotes the language feature of the i-th word, and
they are considered as the underlying capsules
which need to be routed.

First, the high-level capsule St of the visual at-
tention module is initialized by the fusion feature
Ft−1. When t = 1, F0 is a language feature pro-
cessed by the reduction model, which is a simple
self-attention module proposed in Yu et al. (2019).
The high-level capsule for the visual attention mod-
ule is calculated by:

Sp+1
t = Sp

t +
m∑
i=1

cixwi , (1)

xwi = σ(Wxxi), i ∈ [1,m], (2)
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Figure 2: The overall framework of DCAMN. Coarse-grained branch 1 and fine-grained branch 2 handle coarse-
grained features and fine-grained features, respectively. The fine-grained features are obtained by masking with
attention weights provided by the last SDCAM of branch 1. AR, EU, and DU indicate reduction model, encoder
unit, and decoder unit, respectively. We combine the two predictions P1 and P2 to get the final prediction.

where Sp
t denotes the high-level capsule of the vi-

sual attention module in the t-th SDCAM unit after
p ∈ [0, R− 1] routing iterations, R represents the
total number of routing iterations, ci is the coupling
coefficient between the underlying capsule xi and
high-level capsule St, which can be interpreted as
the contribution to the high-level capsule, xi is mul-
tiplied by the projection matrix Wx ∈ Rd×d and
passed through the activation function σ to get xwi .

The value of the coupling coefficient ci depends
on bi. In the routing algorithm, the value of bi is
used to measure the similarity between the under-
lying capsule xi and the high-level capsule St, and
is obtained by:

bi = bi + (xwi )
T · Sp

t , i ∈ [1,m]. (3)

We initialize bi to be 0. In each routing iteration,
bi is added with the dot product of the high-level
capsule and the underlying capsule for updating,
and then softmax is applied to obtain the coupling
coefficient ci as follows:

ci = softmax(bi), i ∈ [1,m]. (4)

When the processing of the visual attention mod-
ule finishes, the fusion feature St will be used to
initialize the high-level capsule St

′
of the language

attention module. The language attention module is
similar to the visual one, except that the input of the
language attention module is Y = [y1,y2,· · · ,yk].

After the language attention module, St
′
, which

is also denoted as the fusion feature output Ft of the
SDCAM, is fed to the next SDCAM for initializing
its high-level feature St+1. The whole procedure is
defined as:

Ft,Ft
′
= SDCAMt(X,Y,Ft−1), t ∈ [1, T ]. (5)

In decoder block t, visual features and language
features are fed to a DU and a SDCAM for process-
ing:

Xt = DUt(Xt−1,Y), (6)

Ft,Ft
′
= SDCAMt(Xt,Y,Ft−1), t ∈ [1, T ], (7)

where DUt is the t-th decoder unit and denotes a
Guided-Attention Unit (Yu et al., 2019). The DUt

takes Xt−1 and Y as inputs. Its output Xt is fed to
SDCAMt and the next decoder block. The whole
procedure of decoder block t is defined as:

Ft,Ft
′
, c, c

′
,Xt =

DecoderBlockt(Xt−1,Y,Ft−1), t ∈ [1, T ],
(8)

where c and c′
are coupling coefficients generated

from the SDCAM, which can be used to label the
weights of bounding boxes and question words,
respectively. In this way, we can learn what the
model concerns in the inference process.
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Figure 3: Illustration of decoder block t. It consists of a
SDCAM and a DU. The attention map of the image is
obtained by labeling bounding boxes with the weight c
from SDCAM, and the importance of each word in the
question is reflected by the weight c

′
.

3.3 Double Branches with Coarse and Fine
Granularities

In coarse-grained branch 1, coarse-grained visual
feature X0 and language feature Y are sent to T
decoder blocks to obtain FT , F

′
T and X1

T . Note that
we let all SDCAMs in decoder blocks of branch 1
share parameters to reduce the parameter burden.
After this, X1

T and Y pass through the attentional
reduction model and are summed. The result is
then concatenated with the sum of FT and F

′
T to

get the fused feature U1 ∈ Rdf , where df is the
dimension of the fused feature. Afterward, U1 is
passed through a linear layer to get the vector O1 ∈
RN , where N indicates the number of candidate
answers.

The fine-grained visual features and language
features are processed in fine-grained branch 2
which has independent decoder blocks. To obtain
critical features with visual-language relevance, we
mask X0 and Y with the attention weights from the
last SDCAM of coarse-grained branch 1. Specif-
ically, in the visual attention module of SDCAM,
the coupling coefficient ci(i = [1, 2, · · · ,m]) cor-
responds to the visual feature xi ∈ X0(i =
[1, 2, · · · ,m]). We sort xi from large to small ac-

cording to the coupling coefficient ci. The bottom
p% of xi are selected to be multiplied by the mask
coefficient γ(< 1) while the rest remain unchanged.
The language feature Y is processed in the same
way. Mask enables the network to focus on critical
information. For example, in Figure 2, the word
"dog" in the question and the bounding boxes about
the dog are more significant after masking.

In fine-grained branch 2, the masked features
XM
0 and YM are processed in the same way as

branch 1. They are sent to T decoder blocks and
fused to obtain U2 ∈ Rdf and the vector O2 ∈ RN .

We apply a softmax function on O1 and O2 to
obtain predictions of branch 1 and branch 2:

Pi = softmax(Oi), i ∈ [1, 2], (9)

where P1 and P2 are predictions of branch 1 and
branch 2, respectively. We sum P1 and P2 and
take the candidate answer that has the maximum
probability in their results as the final answer a.

3.4 Mutual Learning and Loss Function
For each branch, we utilize the prediction from the
other branch to supervise. The Kullback Leibler
(KL) Divergence is used to calculate the loss of
mutual learning:

LM = Dkl(P2∥P1) +Dkl(P1∥P2). (10)

LM forces the two branches to match the prob-
ability distribution of each other and learn from
each other. In addition to LM , binary cross-entropy
(BCE) is employed to compute the loss between
predictions and labels:

LBCE = BCE(sigmoid(O1), label)
+BCE(sigmoid(O2), label).

(11)

The two branches independently compute their
BCE losses. The total loss is the sum of LM and
LBCE .

In contrast to the tedious training method of tra-
ditional mutual learning (Zhang et al., 2018) that
performs asynchronous updates among different
sub-networks, DCAMN only has a total loss L,
which means that parameter optimization in differ-
ent branches can be performed simultaneously and
training efficiency can be improved.

4 Experiments

4.1 Datasets
We use the VQA-v2 dataset (Goyal et al., 2017) to
evaluate our model. The dataset is split into three
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subsets: train, val, and test, which contain 80k,
40k, and 80k images and 444k, 214k, and 448k QA
pairs, respectively. It has three types of questions:
yes/no, number, and other. test-std and test-dev, as
the subsets of the test set, are provided to evaluate
model performance online. In addition, we also
use the VQA-CPv2 dataset (Agrawal et al., 2018)
to test models’ robustness for the question biases.
The VQA-CPv2 dataset is a VQA dataset with a
particular answer distribution used to evaluate the
ability of the model against language priors.

4.2 Implementation Details

The hyperparameter setting of our method is de-
scribed in this subsection. We set the hidden layer
dimension of LSTM to be 512. The dimension
df of the fused feature is 1024. The latent dimen-
sionality d in multi-head attention is set to be 512.
Features in the multi-head attention are split into 8
heads with 64 dimensions for each head. We set the
number of candidate answers N and the number of
decoding layers T to 3129 and 6. Following Sabour
et al. (2017), the number of routing iterations R is
set to 3. We set mask coefficient γ and mask prob-
ability p to 0.5 and 30, which are experimentally
selected.

We set the number of epochs to 15. The batch
size is 64. The learning rate is initialized to 2.5e−5,
gradually grows to 1e−4, and is decayed by 0.2 in
the last three epochs. We use the adam optimizer
and set the parameters β1 and β2 to be 0.9 and
0.98, respectively. We use the train and val sets for
training and a subset of Visual Genome (Krishna
et al., 2017) for data augmentation, and test for
online evaluation on test-dev and test-std.

4.3 Ablation Studies

We use MCAN (Yu et al., 2019) and TRAR (Zhou
et al., 2021) as the baselines. SDCAM-last-layer-n
represents that the final output of encoder-decoder
is processed by n SDCAMs in a single branch, as
illustrated in Figure 4. Table 1 shows that SDCAM-
last outperforms the baseline MCAN, which vali-
dates the effectiveness of SDCAM as a novel fusion

Model All Other Yes/No Num.

MCAN(baseline) 67.2 58.7 84.84 48.69
SDCAM-last-layer-3 67.34 58.81 85.15 48.42
SDCAM-mid-layer-6 67.43 58.89 85.15 48.78
SDCAM-mid+Mutual 68.05 59.63 85.60 49.43
SDCAM-mid+Mutua+Mask 68.14 59.66 85.74 49.65

Table 1: Ablation studies using MCAN as the backbone
on VQA-v2 val set. Mutual means using the two-branch
mutual learning strategy. Mask means using our mask-
ing mechanism.

SA TD SDCAM Mutual Mask KLloss Accuracy

67.6
✓ 67.48

✓ 67.55
✓ 67.76

✓ ✓ 68.27
✓ ✓ ✓ 68.30

✓ ✓ ✓ ✓ 68.09
✓ ✓ ✓ ✓ 68.19

✓ ✓ ✓ 68.00

✓ ✓ ✓ ✓ 68.40

Table 2: Ablation studies using TRAR as the backbone
on VQA-v2 val set. SA and TD mean using the Self-
Attention in MCAN and the Top-Down mechanism in
BUTD for co-attention to replace SDCAM, respectively.
KLloss means the loss LM .

method. SDCAM-mid indicates that the interme-
diate features from decoder units are processed
by SDCAM, which is similar to coarse-grained
branch 1 of Figure 2. SDCAM-mid outperforms
SDCAM-last, which demonstrates the effective-
ness of reusing intermediate information. Besides
improving VQA performance, SDCAM has a fur-
ther contribution to enhancing the interpretability
of DCAMN. From the result of Table 1 and Table 2,
we can see that each component (mutual learning,
SDCAM, and the masking strategy) contributes to
performance improvement. Moreover, The mutual
learning in DCAMN will degenerate into the mod-
ules ensemble if the additional loss LM is removed.
By comparing the performance of DCAMN with
or without KLloss, we can determine that DCAMN
is not just a model simply using the modules en-
semble because it enables branches to learn from
each other to improve effectiveness.

Figure 5(a) shows that the VQA accuracy of
SDCAM-last and SDCAM-mid grows and satu-
rates as the number of stacks increases. This proves
that stacking can improve the performance of SD-
CAM and enable it to perform a better fusion.
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4.4 Qualitative Analysis

To explore the inference process of the model and
determine whether the correct answer is obtained
by reasoning based on features rather than exploit-
ing the statistics of the dataset, we visualize the
attention weights of SDCAM in Figure 6.

From the first row, we can see that SDCAM
achieves more accurate attention both on visual re-
gions and on question words. In the first question,
SDCAM locates the "drainage" in the image accu-
rately and gets the correct answer. By analyzing
examples of MCAN and BUTD, we can see that the
models usually get the wrong answers when they
focus on the incorrect visual regions and words.
This demonstrates the ability of SDCAM to find
evidence and help analyze the reasoning process.

Moreover, from the second row, we can observe
that as the number of stacked layers increases, the
interest regions of SDCAM tend to be more ac-
curate, and the distribution of weights tends to be
more focused. In the question "What is being cel-
ebrated?" SDCAM focuses on the people at first,
but after several iterations, the center of attention
shifts to the cake, and the model finally gets the
correct answer. The next question is similar to this
one. These cases prove that SDCAM can focus on
different objects exactly as reasoning requires.

In the third row, we show some examples of
wrong predictions. With the attention map of SD-
CAM, we can know the reason for wrong predic-
tions. For example, in the question "Are there any
boxes in the room?" SDCAM focuses on the printer
that looks like a box and incorrectly answers yes.

4.5 Analysis of the Attention Accuracy

We quantify the accuracy of visual attention of
SDCAM and other methods, as shown in Table 3.
VQS is a dataset in which for each triad (image,

Method B=1 B=2 B=3 B=AU

DFAF (2019) 5.07 11.27 14.18 17.55
MCAN (2019) 15.43 18.77 20.01 23.91
BUTD (2018) 26.46 27.80 26.92 33.97

SDCAM-mid-layer-6 27.72 29.94 29.12 37.15
DCAMN-branch-1 28.05 30.26 29.21 37.38
DCAMN-branch-2 28.29 30.25 28.98 37.18
DCAMN-branch-sum 28.78 30.68 29.45 37.80
SDCAM-mid-layer-4 29.04 30.94 29.79 37.93

Table 3: Attention accuracy comparison of various meth-
ods. B is the number of candidate bounding boxes.
DCAMN-branch-b denotes the attention accuracy of
the last SDCAM in branch b of DCAMN. branch-sum
means attention weights of two branches are added to-
gether. We evaluate methods on the VQS validation set.

question, and answer), there is a corresponding
image segmentation mask depicting the contours
which need attention in the image (Gan et al., 2017).
We calculate the Intersection of Union (IOU) be-
tween the VQS segmentation mask and the atten-
tion mask of DCAMN as the metric to evaluate
the attention accuracy, where the attention mask
of SDCAM is the union of top B bounding boxes
in terms of the attention weights rank. B=AU (au-
tomatically) indicates that the optimal result for
different bounding box numbers is incorporated
into the overall IOU statistics. From Table 3, we
can see that SDCAM has higher attention accuracy
than other methods. The results of two-branches
DCAMN are not better than those of single branch
SDCAM, which indicates that SDCAM attention
accuracy is hardly influenced by mutual learning.

In Figure 5(b), we show the performance of
SDCAM-mid with different stacking numbers n.
With increasing n, the attention accuracy becomes
higher and reaches a maximum at n = 4. This con-
firms that the stacking strategy can help SDCAM
focus on the correct regions.

4.6 Comparison with SOTAs

We compare our DCAMN 1 with the state-of-the-
art methods on the VQA-v2 dataset, and the results
are shown in Table 4. We can see that DCAMN
outperforms other methods and DCAMNmcan and
DCAMNtrar have higher performance than the
baseline MCAN and TRAR, respectively, which
proves the validity of the proposed method. It is
worth noting that for the baseline TRAR, the im-
provement on the number type question is particu-

1Code is available at https://github.com/
HFUTLHD/DCAMN-VQA-master.

https://github.com/HFUTLHD/DCAMN-VQA-master
https://github.com/HFUTLHD/DCAMN-VQA-master
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DCAMN MCAN BUTD DCAMN MCAN BUTD

Q: What is being celebrated? Predict: birthday✓ G.T: birthday Q: Is he going to land? Predict: yes✓ G.T: yes

Q: Are there any boxes in the room?
Predict: yes ×

G.T: no

Q: Is the seagull in danger of getting 
entangled in these boat sails?

Predict: yes ×
G.T: no

Q: What color is the truck?
Predict: white ×

G.T: red and white

Predict: yes✓ G.T: yes Predict: no × G.T: yes Predict:no × G.T: yes Predict: 3✓ G.T: 3 Predict: 1 × G.T: 3 Predict: 3✓ G.T: 3

Figure 6: Visualization of attention weights for DCAMN, MCAN and BUTD on visual regions and question words.
We mark the top three bounding boxes based on attention weights rank and label their weights above. The second
row shows the visual attention distribution of the image in the 1st, 3rd, and 6th SDCAM of DCAMN. The third row
shows some incorrect samples.

Test-dev Test-std

Method All Yes/no Num. Others All

BUTD (2018) 65.32 81.82 44.21 56.05 65.67
DFAF (2019) 70.22 86.09 53.32 60.49 70.34
CFR (2021) 72.5 - - - -
MCAN (2019) 70.63 86.82 53.26 60.72 70.90
TRAR (2021) 72.62 88.11 55.33 63.31 72.93

DCAMNmcan 71.77 87.80 53.96 62.12 72.19
DCAMNtrar* 73.67 88.86 58.02 64.22 74.05

Table 4: VQA performance comparison with
state-of-the-art approaches on the VQA-v2 dataset.
DCAMNmcan and DCAMNtrar denote DCAMNs us-
ing MCAN and TRAR as the backbone, respectively. *
means using the 16 × 16 grid features.

larly significant, with a 2.7 point gain. We attribute
such a marked improvement to the fact that the
objects which require counting are more promi-
nent after masking, which facilitates more accurate
modeling in the second branch. From the results
in Table 5, we can see that DCAMN outperforms
the baselines and other methods on the VQA-CPv2
dataset, which proves the effectiveness of DCAMN
against the language priors.

Method Accuracy

BUTD (2018) 39.06
QCG (2018) 39.32
BAN (2018) 40.06
MCAN (2019) 43.29
TRAR (2021) 42.30

DCAMNtrar 43.03
DCAMNmcan 44.09

Table 5: VQA performance comparison with other meth-
ods on VQA-CPv2 test.

5 Conclusion

In this paper, we propose a dual capsule attention
mask network for VQA. DCAMN can process fea-
tures at different granularities to take global infor-
mation into account and focus on critical informa-
tion. Combining the views of the two branches
at different perspectives and granularities can im-
prove the generalization capability of the model
and make more accurate predictions. In addition,
the proposed SDCAM can effectively fuse multi-
modal features and locate evidence, which also en-
hances the interpretation capability of the network.
Experiments show that DCAMN outperforms other
methods in terms of interpretability and accuracy
and achieves new SOTA performance for VQA.
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