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Abstract

In embodied cognition, physical experiences
are believed to shape abstract cognition, such
as natural language and reasoning. Image
schemas were introduced as spatio-temporal
cognitive building blocks that capture these re-
curring sensorimotor experiences. The few ex-
isting approaches for automatic detection of
image schemas in natural language rely on spe-
cific assumptions about word classes as indi-
cators of spatio-temporal events. Furthermore,
the lack of sufficiently large, annotated datasets
makes evaluation and supervised learning diffi-
cult. We propose to build on the recent success
of large multilingual pretrained language mod-
els and a small dataset of examples from image
schema literature to train a supervised classi-
fier that classifies natural language expressions
of varying lengths into image schemas. De-
spite most of the training data being in English
with few examples for German, the model per-
forms best in German. Additionally, we anal-
yse the model’s zero-shot performance in Rus-
sian, French, and Mandarin. To further inves-
tigate the model’s behaviour, we utilize local
linear approximations for prediction probabili-
ties that indicate which words in a sentence the
model relies on for its final classification deci-
sion. Code and dataset are publicly available1.

1 Introduction

In the tradition of embodied cognition, image
schemas have been proposed by Lakoff (1987) and
Johnson (1987) as spatio-temporal cognitive build-
ing blocks that capture recurring sensorimotor ex-
periences. For instance, in early infancy we expe-
rience many objects with the properties of a CON-
TAINER, i.e., having an inside and an outside sepa-
rated by a boundary. The image schema CONTAIN-
MENT captures this experience and is subsequently
used to make sense of new experiences while at the
same time also influencing how we think and talk

1https://tinyurl.com/24haedv5

Figure 1: Example of the image schema CONTAIN-
MENT: From experiencing different types of a CON-
TAINER in early infancy (left); to the development of
the schema (middle); and the usage in language on ab-
stract topics (right)

about abstract concepts, such as thinking, emotions,
or life (see Figure 1).

In order to systematically analyse the occurrence
of image schemas in natural language, we pro-
pose to build on the recent success of multilin-
gual pretrained language models and a small set
of examples from image schema literature (Hurti-
enne, 2017) to train a supervised classifier based on
XLM RoBERTa (XLM-R) (Conneau et al., 2020)
to classify natural language expressions into image
schemas. An image schema detection model as
ours could help linguists to explore the use of im-
age schemas efficiently and effectively in large text
corpora. It can guide researchers who, for instance,
investigate how the use of image schemas differs
across languages and cultures (e.g., Choi and Bow-
erman, 1991; Papafragou et al., 2006), how the lan-
guage of children with spatial impairments differs
(e.g., Lakusta and Landau, 2005) or which image
schemas occur in various literary works (e.g., Free-
man, 2002). Moreover, we hope that analysing
image schemas in large text corpora allows us to
contribute to image schema theory directly and to
investigate how we think and talk about abstract
concepts.

Our proposed method has significant advan-
tages over previously proposed methods. Sev-
eral corpus linguistic studies (e.g., Dodge and

https://tinyurl.com/24haedv5
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Lakoff, 2005) and unsupervised machine learning
approaches (e.g., Gromann and Hedblom, 2017)
for image schema extraction rely on specific parts-
of-speech (POS) as indicators of spatio-temporal
events. These approaches using POS-tags con-
ventionally portray prepositions as excellent spa-
tial indicators and verbs as movement indica-
tors (e.g., Gromann and Hedblom, 2017; Kord-
jamshidi et al., 2011). However, spatial language
might be expressed with prepositions (He walked
across the room) or without (He crossed the room)
(Dodge and Lakoff, 2005). In both examples, the
underlying image-schematic structure is that of
SOURCE-PATH-GOAL, i.e., the way through the
room. Since not all spatial expressions in language
rely on prepositions, a more general, word class-
independent method is needed, which we propose
in form of a supervised training procedure based
on a multilingual pretrained language model.

In contrast to these previous methods, we make
use of a small annotated image schema corpus that
not only allows us to extract image schemas in
different languages without relying on manually
created patterns, but also provides a gold standard
to evaluate our model. Natural language exam-
ples of image schemas in literature have been col-
lected in a repository (Hurtienne, 2017). However,
this database is rather inconsistent in its formatting
and image schema annotation. Thus, we cleaned
and complemented it with other examples from
MetaNet (Dodge et al., 2015). Our classification
method is trained and primarily evaluated in En-
glish and German. We also analyse the model’s
zero-shot performance on a small set of sentences
in French, Russian, and Mandarin, representing
different language families. To further investigate
the model’s behaviour, we utilize the explainable
artificial intelligence model LIME (Ribeiro et al.,
2016) that provides local linear approximations for
prediction probabilities for each word in the input
expression in relation to each available target class,
i.e., image schema. Thereby, we can provide an
analysis of which words in the input sequence the
model primarily relies on to make its predictions.

2 Related Work

Most previous automated approaches for image
schema extraction rely on handwritten rules and
pattern matching to annotate natural text with im-
age schemas (e.g., Bennett and Cialone, 2014).
However, such rules and patterns have to be spec-

ified for each image schema as well as for each
language resulting in a substantial manual effort.
Moreover, such patterns lead to low recall and
have no mechanisms to handle polysemous words.
The only existing machine learning approach clus-
ters triples of syntactically dependent nouns, verbs,
and prepositions in order to group them by image
schema in an unsupervised manner (Gromann and
Hedblom, 2017; Wachowiak, 2020). Since this ap-
proach relies on assumptions about word classes,
especially preposition, the range of expressions that
can be considered is limited. Fields with themat-
ically related objectives are metaphor extraction
and spatial role labeling, where recent state-of-the-
art approaches rely on pretrained neural language
models (e.g., Dankers et al., 2020; Leong et al.,
2020) and on contextualized embeddings created
for trajector, landmark, and preposition candidates
(Ramrakhiyani et al., 2019).

3 Foundation

Embodied cognition, a field that builds on the hy-
pothesis that cognitive processes are grounded in
perception and sensorimotor interactions with the
world, has experienced significant traction in cogni-
tive linguistics. In this tradition, Lakoff (1987) and
Johnson (1987) introduce image schemas as cogni-
tive concepts that are firmly rooted in sensorimotor
experiences that eventually shape higher-level cog-
nition, including natural language.

3.1 Image Schemas

An image schema according to Johnson (1987, p.
xiv) “is a recurring, dynamic pattern of our per-
ceptual interactions and motor programs that gives
coherence and structure to our experience.” Schema
here follows the notion of Langacker (1987) to ab-
stract away from less important details to core com-
monalities of experiences. Image relates to imag-
istic in the sense of sensory experiences building
on information from different perceptual modali-
ties (Talmy, 2005). They are directly meaningful,
preconceptual structures that represent experien-
tial gestalts, i.e., parts that flexibly organize expe-
riences into coherent wholes. Repeated physical
experiences starting in early infancy form concepts
that manifest themselves in language. For instance,
we learn early on that many objects function as
CONTAINER, for instance, a glass, a fridge, or a
basket, while other objects, such as tables, do not
show the same properties. Having learned the im-
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Image Schema Definition Conceptual
Metaphor

Example

CENTER-
PERIPHERY

Experience of objects or events as central,
while others are peripheral or even outside
(Gibbs Jr et al., 1994, p. 237). The pe-
riphery depends on the center but not vice
versa (Lakoff, 1987, p. 274).

AFFECTION IS
PHYSICAL CLOSE-
NESS

He keeps everyone at arms
length. (Lakoff et al.,
1991, p. 155)

CONTACT Relates to two entities physically touching
without depending on each other (Cienki,
2008, p. 36).

COMMUNICATION
IS ESTABLISHED
BY PHYSICAL
CONTACT

She’s in touch with him.
(Hurtienne, 2017)

CONTAINMENT Experience of boundedness, entailing an
interior, exterior, and a boundary (Johnson,
1987).

MIND AS CON-
TAINER FOR
IDEAS

Who put that idea in your
head? (Jäkel, 2003, pp.
156-157)

FORCE Implies the exertion of physical strengths
in one or more directions (Cienki, 2008, p.
431).

HAPPINESS IS A
NATURAL FORCE

He was swept off his feet.
(Kövecses, 2010, p. 100)

PART-WHOLE Wholes consisting of parts and a configu-
ration of parts (Lakoff, 1987, p. 273).

COHERENT IS
WHOLE

His thoughts are scattered.
(Lakoff et al., 1991, p.
138)

SCALE Quantitatively it refers to the grouping of
discrete objects and substances that can be
increased and decreased in amount; quali-
tatively it refers to the degree of intensity
(Johnson, 1987, p. 122).

IMPORTANT IS
BIG

Maslow is a towering fig-
ure in humanistic psychol-
ogy. (Tolaas, 1991, p.
207)

SOURCE-
PATH-GOAL

Source or starting point, goal or endpoint,
a series of contiguous locations connect-
ing both, and movement (Johnson, 1987,
p.113).

PURPOSES ARE
DESTINATIONS

He finally reached his
goals. (Kövecses, 2010, p.
163)

VERTICALITY A tendency to employ an UP-DOWN ori-
entation (Johnson, 1987, p. xiv).

LIFE IS UP He’s at the peak of health.
(Lakoff and Johnson,
1980, p. 15)

Table 1: Image Schema Definitions and Examples

age schema CONTAINMENT, it is later on reflected
in our language about physical objects; but also
about abstract concepts, for example, in expres-
sions such as He’s gone out of his mind. The image
schemas we consider in this work, selected based
on available natural language examples in litera-
ture, are defined, related to conceptual metaphors,
and exemplified in Table 1.

3.2 Image Schemas and Natural Language

Instead of only pertaining to the physical realm,
image schemas are metaphorically projected onto
abstract target domains (Lakoff, 1987). In
other words, conceptual metaphors map structures
learned in the physical source domain, i.e., spatial
in the case of image-schematic metaphors, to an ab-
stract target domain. To take up a previous example,
the expression He’s gone out of his mind relates to
the conceptual metaphor MIND AS CONTAINER

in which the physical properties of CONTAINMENT

in the sense of having an inside, outside and a
boundary are transferred to the abstract concept
of “mind” assigning it similar properties. Thus,
image schemas function as structuring devices for
language and thought (Kimmel, 2009). Similarities
in underlying image-schematic structures across ex-
pressions and even across languages can help guide
the analysis of language. For instance, the same
metaphor and image schema can be observed in
the Russian expression ...стереотипах, которые
нам вбивались в голову в советское время...2

(stereotypes that were hammered into our heads
during Soviet times). The image schema CON-
TAINMENT is frequently used to talk about emo-
tions, for example in French, Je suis cachée au
bord des larmes3 (I’m hiding on the verge of tears),

2In VTimes on 31 October 2020.
3Part of lyrics of anxiété by Pomme.
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German, ...nicht aus der Ruhe bringen (not be up-
set; literally: not get out of one’s calm) (Baldauf,
1997, p. 135) or Chinese, 他怒火中烧 (Ta nu-huo
zhong shao; He has angry fire burning inside him)
(Yu, 1995, p. 62).

Linguistic analyses of image schemas have been
criticized to suffer from circularity in the sense that
language analysis represents a means for forming
inferences about the mind, body and their interre-
lations, the results of which then motivate differ-
ent arguments on linguistic phenomena (Gibbs and
Colston, 1995, pp. 245-246). Natural language
might not provide evidence on the origin of im-
age schemas, however, its analysis can foster an
understanding of image schema usage in natural
languages (Dodge and Lakoff, 2005). This idea
is further supported by neuroscientific evidence.
For instance, Durand et al. (2018) found that mo-
tor areas in the brain are activated when process-
ing action words. Their research focuses on verb
anomia, described as difficulty to retrieve words,
and showed an added value of combining language
and sensorimotor strategies to effectively foster re-
covery from verb anomia.

3.3 Language Models

Many of the recent successes in natural language
processing can be accredited to deep neural lan-
guage models. Such models learn rich, contextual-
ized language representations during a pretraining
stage, in which they learn to predict a masked word
given its context, a task for which large amounts
of training data are readily available. In a second
stage, these models can be finetuned for specific
tasks like classification or question answering by
adding additional layers on top of the output of
the language model, thus, utilizing the previously
learned representations. Such a model is then op-
timized end-to-end, i.e., no additional manually
created feature extraction pipeline is needed, but
the neural network takes in text as it is and learns
by itself to pay attention to the features important
for a specific task. One of the most prominent
language models is BERT (Devlin et al., 2019),
which is based on the now ubiquitous Transformer
architecture (Vaswani et al., 2017). Multilingual
variants of BERT use multiple languages in the
pretraining phase, for instance multilingual BERT
and XLM-R (Conneau et al., 2020), which was pre-
trained on text in 100 different languages and uses
an improved training paradigm. Depending on the

Image Schema EN DE
CENTER-PERIPHERY 96 40
CONTACT 30 0
CONTAINMENT 451 154
FORCE 273 26
PART-WHOLE 30 0
SCALE 52 10
SOURCE-PATH-GOAL 367 99
VERTICALITY 236 85
Total 1,535 414

Table 2: Sample distribution across languages and im-
age schemas

task, multilingual models show decent zero-shot
performances on languages they were originally
pretrained on, but that were not part of the training
set in the finetuning stage.

4 Data

The data combined from the image schema reposi-
tory (Hurtienne, 2017) and MetaNet (Dodge et al.,
2015) consist of a total of 1,949 samples: 1,535
in English and 414 in German. The exact distri-
bution per image schema can be seen in Table 2.
The cleaning of the image schema repository con-
sisted in deduplicating and ensuring a consistent
processable format and annotation. Additionally,
the authors of this paper and Chao Xu for Man-
darin manually curated small test datasets of image
schematic language in Russian, French, and Man-
darin, consisting of 35, 40, and 55 samples respec-
tively, for evaluating the zero-shot performance of
the classifier. Sources for the additional language
samples consisted of image schema literature, nov-
els, and online news articles.

5 Method

5.1 Supervised Classification Model
We use the English and German data described in
Section 4 for finetuning XLM-R in order to classify
natural language sequences into image schemas.
The model input consists of natural language ex-
pressions, which are classified into one of the eight
image schemas described in Section 3.1 by adding
a fully connected layer on top of XLM-R’s output
with one output-neuron representing each class. We
train the model with 80% of the available data leav-
ing the other 20% for testing. We use a stratified
train-test split guaranteeing the same distribution of
labels in training and test set. In order to see if the
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model achieves consistent results we cross-validate
it by training it on five different stratified random
splits and report the averaged results for accuracy
and F1 scores. All Russian, French, and Mandarin
samples are only in the test data and never seen
during training. XLM-R exists in different sizes
depending on their number of parameters. For our
experiments we choose the variant called XLM-
RBase. This model is trained for 12 epochs utilizing
the Adam optimizer with a learning rate of 3e-5
and a batch size of 16.

5.2 Unsupervised Baseline Classifier

To see how our model compares to other image
schema extraction methods, we re-implement a
recent approach that clusters instances of spatial
language based on the underlying image schema
(Gromann and Hedblom, 2017; Wachowiak, 2020).
This approach uses the neural dependency parser
Stanza (Qi et al., 2020) to find prepositions as mark-
ers of spatial language as well as their connected
verbs and nouns. Examples of resulting triples
are: <fell, from, power> or <stir, in, ingredient>.
In a second step, each word of the triple is rep-
resented by their GloVe embedding (Pennington
et al., 2014). These embeddings are averaged or
summed, resulting in a 300-dimensional vector for
each triple. Lastly, similar vectors are grouped us-
ing spectral clustering (Ng et al., 2001) based on
the implementation made available by scikit-learn
(Pedregosa et al., 2011). Since we have a labeled
dataset, we simply annotate each cluster with the
label that is the most frequent among the contained
triples. We, thus, can compute accuracy and F1
score telling us how well the clusters separate dif-
ferent image schemas compared to the novel super-
vised approach. If the unsupervised method were
to be applied to a new and unlabelled dataset, this
annotation would have to be made manually. We
compute the clusters and their respective scores for
different hyper-parameter combinations and report
the best resulting score:

• Triple representation: summed vectors, aver-
aged vectors

• Number of clusters: 8, 16

• Affinity matrix construction: nearest neigh-
bors, radial basis function

• Label assignment: k-means, discretization

The data used for clustering consists of all En-
glish samples, including both training and test data,
as the unsupervised approach does not require any
training.

5.3 LIME Explanations

For a detailed analysis of the model’s decisions, we
use LIME (Ribeiro et al., 2016), which is a method
for interpreting machine learning models by ap-
proximating local decisions with an interpretable
model that assigns weights to the different input
features. A local decision refers to a classifica-
tion of a single input instance, whose features, in
our case, are the words that make up the sequence.
Such an interpretable model is build for a specific
input sample by being trained on perturbations of
that sample and the corresponding outputs of the
original model. A perturbed text sample, for in-
stance, leaves out one or more words contained
in the original sample. The thus generated expla-
nations indicate which words the classifier based
its decision on, i.e., which words indicate an im-
age schema. Looking at the explanations of wrong
model decisions can show us for which cases the
model requires additional training data or which
dataset samples are faulty, thus, leading to insights
that lie beyond the power of strictly numerical met-
rics, such as accuracy.

Additionally, we utilize LIME in order to gather
global statistics about typical indicators for a spe-
cific image schema class. For each sample in the
test set we look at the classification made by our
model and add the words of the input sequence
as well as the corresponding feature weights com-
puted by LIME to a list for this image schema class.
After iterating over all test samples, we rank the
words for each image schema class by their average
feature weight, thus, obtaining a list of words that
are strong indicators for a specific image schema
according to the model.

6 Results

6.1 Scores Supervised Classifier

The cross-validated results for the test sets in En-
glish, German, Russian, French, and Mandarin can
be seen in Table 3. The highest scores are achieved
in German with an average accuracy of 79.8%, fol-
lowed by the accuracy in English with 68.6%, Man-
darin with 63.2%, Russian with 61.2% and French
with 56.6%. The macro F1 score, which gives equal
importance to all classes, is consistently lower than
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Language Accuracy Macro Avg. Weighted Avg.
Precision Recall F1 Precision Recall F1

English 68.6 0.690 0.606 0.630 0.694 0.686 0.682
German 79.8 0.728 0.736 0.724 0.816 0.798 0.802
Russian 61.2 0.636 0.592 0.574 0.660 0.612 0.598
French 56.6 0.636 0.538 0.518 0.662 0.566 0.542
Mandarin 63.2 0.772 0.632 0.690 0.772 0.632 0.690

Table 3: Cross-validated test results in different languages

Relation Type Precision Recall F1 Test samples
CENTER-PERIPHERY 0.63 0.56 0.59 27
CONTACT 0.75 0.50 0.60 6
CONTAINMENT 0.77 0.82 0.79 121
FORCE 0.60 0.50 0.55 60
PART-WHOLE 0.75 0.50 0.60 6
SCALE 0.71 0.38 0.50 13
SOURCE-PATH-GOAL 0.72 0.80 0.76 93
VERTICALITY 0.78 0.84 0.81 64

Table 4: F1 scores for the individual classes of the test set (English and German)

the accuracy and the weighted F1 score showing
that the classes having more training data were
learned better. In comparison, a simple majority
classifier always predicting CONTAINMENT would
only achieve an accuracy of 31.0%, a weighted F1
score of 0.147, and a macro F1 score of 0.059 on
the combined English and German test set.

In order to further detail the results, we present
the class F1 scores in Table 4 as well as the confu-
sion matrix in Figure 2, which were computed for
one of the trained models for a mixed test set con-
sisting of the German and English samples. The
model performs best for the classes backed by the
most training data, i.e., CONTAINMENT, SOURCE-
PATH-GOAL, and VERTICALITY. Although a lot
of data samples belong to the image schema FORCE

it only has a class F1 score of 0.55, which is due
to the high confusion with SOURCE-PATH-GOAL.
For the classes with very little training data the
model achieves a lower F1 score, although never
below 0.5.

6.2 Scores Unsupervised Baseline

From all English samples in the dataset, only
36.5% contained a verb–preposition–noun triple.
This low percentage highlights how important a
word class-independent approach is. After cluster-
ing the resulting 613 triples, the highest score is
achieved with 16 clusters, averaged triple embed-
dings, nearest-neighbors for computing the affinity

matrix, and discretization. From the resulting clus-
ters, 7 are labeled as CONTAINMENT, 4 as FORCE,
4 as SOURCE-PATH-GOAL, and 1 as VERTICAL-
ITY. The obtained accuracy is 43.5%, thus, much
lower than the results obtained by XLM-R. The
low macro-averaged F1 score of 0.20 shows the
methods inability to properly deal with the class
imbalance.

Choosing a higher number of output clusters, the
scores can be increased, however, also requires a
lot of manual analysis if being applied to unlabeled
real world data. For example, with 32 clusters, the
accuracy increases to 49.8%.

6.3 LIME Explanations

Looking at the LIME explanations for some
wrongly classified samples, especially for those
belonging to classes regularly confused according
to the confusion matrix in Figure 2, we gained cru-
cial insights regarding the inner workings of the
model and issues in the dataset. Firstly, some of
the salient points of the confusion matrix are due
to common image schema collocations, i.e., two
or more image schemas occurring together in the
same sentence. An example of this are the four
expressions with the gold label SCALE which were
classified as VERTICALITY by the model. In all
samples the two image schemas are collocated, e.g.,
in the expression He’s head and shoulders above
everyone in the industry, where LIME correctly
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Figure 2: Confusion matrix for the image schema extraction model on the test set (English and German)

(a) VERTICALITY (b) CONTAINMENT

Figure 3: Words LIME finds as strong indicators for specific image schema class
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identifies the word above as strong indicator for
the image schema VERTICALITY. However, due to
its quantitative, comparing nature, the phrase also
belongs to the image schema SCALE as stated in
the gold standard. Interestingly, the confusion is
never the other way around, i.e., samples belong-
ing to VERTICALITY are never classified as SCALE,
which is most likely due to VERTICALITY being
supported by more training data so that the model
develops a certain bias towards that class. Other
samples show some unintended learned behavior
exhibited by the model. The expression to have an
open marriage, having the gold label CONTAIN-
MENT, is classified as SOURCE-PATH-GOAL by
the model although LIME identifies open as an
indicator for CONTAINMENT. However, LIME’s
output suggests that the model identified marriage
as a concept that is often talked about in terms re-
lating to the image schema SOURCE-PATH-GOAL,
such as in conceptual metaphors like LOVE IS A
JOURNEY. However, as this is not the case in the
given context, the classifier takes a wrong decision.

Figure 3 shows the features with the highest indi-
cator scores for the image schemas VERTICALITY

and CONTAINMENT averaged over all samples in
the test set. The words shown for VERTICALITY

are all correctly identified as strong markers. Only
looking further down the list, not shown in the fig-
ure anymore, one finds false positives, for instance,
wings which only is related to themes were VERTI-
CALITY plays a role. The words identified as strong
indicators for CONTAINMENT contain more clear
false positives, such as white or answer. The word
white occurs in two natural language expressions
labeled as CONTAINMENT in the dataset, while
answer occurs four times, however, surprisingly
never in a phrase labeled as CONTAINMENT.

7 Discussion

Task Design. A shortcoming of the current
model and dataset is not considering multiple labels
for one natural language expression. Thus, the task
should be changed to a multi-label classification
task supported by a corresponding dataset, which
could be created by manually adapting the current
annotations.

Moreover, instead of relying on additional expla-
nations to identify constituents of image schematic
language, one could try to approach image schema
extraction as a token-level classification task, in
which a label is not attributed to a full sentence but

to each word or continuation of a word in a sen-
tence individually. The classifier’s output would
then directly indicate which words of a sentence are
used in an image-schematic way. However, one has
to be careful not to treat words, especially prepo-
sitions, in isolation of their context. For instance,
the word on often indicates spatial languages as in
the phrase on the path to, but it can also be used
in non-spatial contexts, e.g., the book on biology.
When creating labels on a token-level, words need
to be carefully and consistently annotated with im-
age schemas, ideally following very explicit and
clear annotation guidelines.

Figure 4: Learning curve computed in decimal intervals
from 10% to 100% of training data and showing the av-
erage score and 95% confidence interval of three trained
models

Dataset Improvements. Moreover, the dataset
is missing data for some common image schemas,
e.g. SUPPORT or BALANCE. In general, more data-
points, especially for CONTACT and PART-WHOLE

as the two classes with the fewest datapoints and
the lowest class F1 scores, would likely lead to an
increase in the model’s performance. This is also
indicated by the learning curve in Figure 4 which
still shows an increasing weighted F1 score given
a higher number of overall training samples. For
the model to function in the wild, it additionally
requires training samples which are labeled as non-
image-schematic language as it otherwise will label
every sentence as image-schematic language. Fur-
thermore, LIME revealed certain samples where
the model made the correct decisions based on rel-
evant features, but the gold standard had erroneous
labels, which led to some corrections made on the
dataset.
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Global Explanations. To gain first insights into
the global behavior of the model we introduced
a simple algorithm for averaging LIME results
over multiple samples. However, changing the
procedure to rank words by taking into account
how often they indicate a specific image schema
class would also allow to gather information of
which parts-of-speech are most commonly used in
natural language expressions of a specific image
schema. Such improved forms of global aggre-
gations of local explanations were, for instance,
designed and evaluated in form of the Submodular
Pick algorithm proposed by Ribeiro et al. (2016)
or the Global Average and Global Homogeneity-
Weighted Importance proposed by van der Linden
et al. (2019), which we, in the future, plan to im-
plement and test in the context of image schema
extraction.

8 Conclusion

We introduce a novel approach to perform image
schema extraction from natural languages based
on multilingual, pretrained neural language models.
Thereby, a supervised training procedure can be
implemented by finetuning the pretrained model
with only a few training samples without making
any prior assumptions about word classes. The
model shows a strong cross-validated performance
in English and German, and even shows the ability
to generalize to languages unseen during finetun-
ing. Explanations generated by the explainable
AI approach show insights and shortcomings re-
garding the model behavior as well as the dataset
annotation. To further improve the differentiation
between image-schematic classes, a more equal
distribution of training data would be beneficial. In
terms of future work, we intend to add non-image-
schematic samples to further enable the trained
classifier to distinguish image-schematic from non-
image-schematic expressions. In addition, the task
should be devised as a multi-label classification
task to account for the frequent phenomenon of im-
age schema collocations. Lastly, we would like to
improve the aggregation of local explanations and
utilize it in order to systematically analyse image
schematic language in a text corpus.
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