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Abstract

Attention based methods for image-text gen-
eration often focus on visual features individ-
ually, while ignoring relationship information
among image features that provides important
guidance for generating sentences. To alleviate
this issue, in this work we propose the Joint
Relationship Attention Network (JRAN) that
novelly explores the relationships among the
features. Specifically, different from the pre-
vious relationship based approaches that only
explore the single relationship in the image, our
JRAN can effectively learn two relationships,
the visual relationships among region features
and the visual-semantic relationships between
region features and semantic features, and fur-
ther make a dynamic trade-off between them
during outputting the relationship representa-
tion. Moreover, we devise a new relationship
based attention, which can adaptively focus
on the output relationship representation when
predicting different words. Extensive experi-
ments on large-scale MSCOCO and small-scale
Flickr30k datasets show that JRAN achieves
state-of-the-art performance. More remarkably,
JRAN achieves new 28.3% and 58.2% perfor-
mance in terms of BLEU4 and CIDEr metric
on Flickr30k dataset.

1 Introduction

Image-text generation (i.e., image captioning) is
a typical cross-modal task that connects Natural
Language Processing (NLP) and Computer Vision
(CV) (Tahvili et al., 2020). Its core goal is to auto-
matically predict a meaningful and grammatically
correct sentence, which can accurately describe
the main content of images. Practical applications
for this task mainly include injecting visual intelli-
gence into the chatbots, searching semantic image,
and helping people with visual impairments to un-
derstand the visual world. However, image-text
generation is still a challenging task. The main
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Figure 1: Illustration of different schemes. (a) is an
example predicted by SC (base) baselines (Chen et al.,
2017) that mainly uses visual features to generate sen-
tence. (b) presents a more accurate sentence generated
by our JRAN method which learns two relationship, i.e.,
visual relationship between region features and visual-
semantic relationship between region features and se-
mantic features (i.e., background and environment).

difficulties originate from two aspect: 1) The noise
and complex background in the image are likely
to interfere with the generation of correct caption;
2) The interaction between features in the image
is often overlooked.

For difficulty 1), encouraging by the method
(Wu et al., 2021b), the noise can be injected into
RNN hidden states to predict the mean and stan-
dard deviation, and manipulate the RNN transition
states. In this way, the network robustness can be
significantly enhanced and the issue can be well
solved. However for difficulty 2), although some
related visual attention based methods (Xu et al.,
2015; Wang et al., 2016; Song et al., 2018) achieve
remarkable progress, they usually focus on the im-
age visual features while ignoring the relationships
between them. This makes the model often difficult
to generate an accurate or appropriate description
that can correctly describe the relationships among
objects in the image. For example, as illustrated in
Figure 1, only using the detected visual features in
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the image, SC (base) method (Chen et al., 2017)
predicts a description “Three boys are playing near
the ocean.", where the verb phrase “playing near"
indicates the relationship between the objects “boy"
and “ocean". Obviously, this description cannot ac-
curately reflect the main scene of the image. Con-
trarily, our JRAN accurately describes the main
content of image by effectively learn the visual re-
lationship between object region features and the
visual-semantic relationship between region fea-
tures and semantic features, generating a more rel-
evant sentence “Three children are flying a box
kite on the beach." The word “flying" appropriately
describes the relationship between the two region
features “children" and “kite", and the word “on"
accurately represents the relationship between re-
gion information “children" and semantic informa-
tion “beach" (i.e., background/surrounding). Thus,
learning the relationship between image features
is of crucial importance for generating accurate
sentence description for image.

Based on the above observations, different from
previous relationship based approaches (Wang
et al., 2020; Kipf and Welling, 2017; Li and Jiang,
2020) (See Figure 2(top)) that only explore the sin-
gle feature relationship in the image, we present a
new Joint Relationship Attention Network (JRAN)
that novelly learns the joint relationship between re-
gion features and semantic features in Figure 2(bot-
tom).

Figure 2: The illustration of existing relationship based
methods (top) and our JRAN method (bottom). (a)
Relationship based methods usually use Graph/GNN
(Graph Neural Network) to explore single (visual or
semantic) feature relationship; (b) Our JRAN method
can learn the joint relationship between visual features
and semantic features.

Specifically, we first utilize the object detec-
tor Faster R-CNN and CNN to extract region fea-
tures and complementary semantic features from

the input image. Then, JRAN builds two types
of relationship, i.e., visual relationship and visual-
semantic relationship. The former is solely based
on the detected region features in the image, and
encodes the visual relationship between region fea-
tures. Instead, the latter takes the region features
and semantic features of the image into account
to fully explore the visual-semantic relationship
between them. As shown in Figure 3, to obtain
the image representation containing joint relation-
ship features, we devise a core competition module
called joint relationship learning network, which
can effectively learn the visual relationship and
visual-semantic relationship while dynamically bal-
ancing the different contributions between them.
After that, we introduce the relationship based at-
tention module, which can adaptively focus on the
obtained most relevant joint relationship features
during generating words. The whole framework
of JRAN could be jointly learnt and optimized in
an end-to-end way. Our JRAN method achieves
significant improvement compared with the related
relationship based methods. More remarkably, it
can be integrated into a better baseline model to
achieve better performance.

Our contributions mainly include: firstly, we pro-
pose a novel image-text generation network that
utilizes the complementary region and semantic
features in the image for enriching feature repre-
sentations. Secondly, we devise a joint relationship
learning network, which can fully learn both visual
relationship and visual-semantic relationship in the
image, and further balance their contributions dur-
ing predicting different words. Finally, exhaustive
experiments indicate that our JRAN is not only
effective on large-scale but also achieves superior
performance on small-scale datasets.

2 Related Works

2.1 Image-Text Generation

Image-text generation can be treated as a sequence-
to-sequence task, which converts the data from
a raw image to a sentence description. For ex-
ample, Wang et al. (2016) presented an end-to-
end architecture to generate the sentence where
visual embedding is encoded with CNN and sen-
tence embedding is encoded using Bi-LSTM. Xu
et al. (2015) presented the first model based on vi-
sual attention, where it extracts visual features of
each region from the raw image, and then assigns
different weights for them. Chen et al. (2017) in-
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tegrated the spatial and channel attention features
extracted from a CNN, and uses the channel at-
tention to focus on different semantic information.
Similarly, Song et al. (2018) integrated the spatial
and channel attentions into salient object regions,
and effectively improved the performance of Vi-
sual Question Answering (VQA) task. Although
the above approaches have well performance, they
ignore the relationships among image features. In
our work, on one hand, we take full advantage of
the two complementary region features and seman-
tic features in the image. On the other hand, we
learn the visual relationships among region features
while exploring the visual-semantic relationships
between region features and semantic features.

2.2 Relationship Based Approaches

Recently, relationship based methods have been
proposed to boost the performance for image-text
generation task. It mainly uses Graph Convolu-
tion Network (GCN) and Graph Attention neTwork
(GAT) to learn the single relationship between local
features or global features. For instances, Li et al.
(2018b) took the data of arbitrary graphic struc-
ture as the input and introduced a flexible and gen-
eral GCN. Kipf and Welling (2017) presented the
GCN, which can be directly used to process graph
structure data. Wang et al. (2020) utilized GAT
to learn the relationship between image features.
It directly inputs the extracted region features and
semantic features into the GAT, and then follows
the self-attention strategy to calculate the relation-
ship between each feature node. Different from
previous relationship based methods, we devise a
new joint relationship attention network, which can
capture the visual relationship and visual-semantic
relationship in the image, and then further balance
their different contributions during generating dif-
ferent words. This effectively promotes the model
performance.

3 Our approach

The main purpose of this work is to explore the re-
lationship between different features in the image,
so as to generate a sentence description contain-
ing accurate interaction information for the input
image. The overall architecture of the proposed
JRAN is shown in Figure 3. The critical elements
in the architecture are described in detail as follows.

3.1 Problem Formulation
Formally, a sentence model receives a source im-
age I as the input and is required to output a tar-
get text sentence S to describe the image main
content. S is a sequence of sentence generated
word by word, which can be presented as S =
{x1, x2.., xT }, where T denotes the length of the
sequence, and xt, t ∈ [1, T ] is the t-th word. Dur-
ing the training, given a training dataset with a
set of image-sentence pairs (Ii, Si), and sentence
model is trained to minimize the cross entropy loss
which is equivalent to maximizing the likelihood,

Lloss(θ) = −
M∑
i=1

T∑
t=1

(logp(xi,t|Ii, xi,1:t−1, θ)),

(1)
where θ is the model parameters needed to train,
M is the total number of training samples, and xi,t
denotes the t word of ground-truth caption Si.

3.2 Feature Extraction
We extract the two complementary features from
the raw image: region features Vr and semantic
features Vs. For region features Vr ∈ RD×K , the
raw image is first fed into Faster R-CNN to de-
tect the top K candidate visual regions. For each
selected region k, we take the mean-pooled con-
volutional feature from the image region as Vk

r ,
which has D dimensions. Thus, the region fea-
tures Vr = [V1

r , ...,V
K
r ], Vk

r ∈ RD. For seman-
tic features Vs ∈ RL×D, since last convolutional
layer (Conv5_3) of ResNet usually contains the
context (or background) information around ob-
jects (Li et al., 2018a), thus, it is extracted as the
image semantic features. Then, the extracted fea-
ture map Vl ∈ RW×H×D is further flattened into
Vs ∈ RL×D, L =W ×H ,

Vs = {V1
s , ...,V

D
s } = flatten(Conv(I)), (2)

where Vi
s ∈ RL,i ∈ {1, 2, .., D} represents the

i-th semantic feature of the feature map Vs.

3.3 Joint Relationship Learning Network
We devise the Joint Relationship Learning Network
(JRLN) in Figure 4. It is consists of some stacked
feature relationship network, and each feature re-
lationship network is composed of a multi-head
Relationship Computation (RC) module. On one
hand, JRLN learns the visual relationship between
region features, which can unfold the inherent ac-
tion/interaction between different region objects.
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Figure 3: An overall framework of our proposed JRAN which consists of four modules: Feature Extractor module,
Joint Relationship Learning Network, Relationship Based Attention module and LSTM Based Language module.
We first use Feature Extractor module to extract region features Vr and complementary semantic features Vs for
image feature representation. Then, these features are input into the joint relationship learning network respectively,
and the balanced relationship feature VJ are output. After that, VJ is fed into relationship based attention module to
obtain the final context representation CF

t . Finally, CF
t is input into the LSTM Based Language module for word

generation.

On the other hand, JRLN utilizes the image seman-
tic features as guide to learn the visual-semantic re-
lationship between the semantic features and com-
plementary region features, which effectively con-
nects isolated region objects with their background
(or environment) information. Importantly, JRLN
further balances the different contributions between
the two relationships during generating words.

Now, we describe our competitive joint relation-
ship learning network. It consists of some Relation-
ship Attention (RA) and Feed-Forward Network
(FFN) modules, in which RA includes Nr RC mod-
ules. And the RC is able to learn two kinds of
relationships: (I) Visual relationships among re-
gion features, (II) Visual-semantic relationships
between region features and semantic features.

I) Visual relationships among region features:
Considering that the region features in the image
do not exist independently of each other, we learn
the visual relationship among region features by
using a multi-head RC, as illustrated in Figure 4
(b)-(I). Given the input set of N region features
{Vi

r}, the output visual relationship feature Vi
v of

the whole region feature with respect to the i-th
region feature is calculated as follows

Vi
v =

∑
j

ϕij · (WvV
j
r), (3)

where Wv is the model learnable matrix. Further,
the visual relationship weight ϕij is calculated by

measuring the correlation between the i-th region
feature and the j-th region feature,

ϕij = softmax(
WqV

i
r · (WkV

j
r)T√

dk
), (4)

where Wq and Wk are the projection matrices of
the i-th and j-th region features. dk is the matrix
dimension after projection (i.e., scaling factor). Eq.
(4) reflects how much every region is affected by
other regions, where semantically more correspond-
ing regions may have higher relationship weight
values in the image.

II) Visual-semantic relationships between re-
gion features and semantic features: Since region
features and semantic features are related to some
extent, how to learn the relationship between them
is important for image-text generation. Generally,
to effectively organize the region features guided
by the image semantic features, a common and
straightforward idea is to concatenate the guided
semantic features and all region features (i.e., Fig-
ure 5(b)). However, such a scheme is too naive to
model the relative importance of the region and se-
mantic features, i.e., the discrimination introduced
by semantic guiding features and region features
are different and should be distinguished. Thus,
we propose to utilize an attention mechanism to
weight the relative relationship between region fea-
tures and semantic features, as illustrated in Figure
4 (d)-(II). Given the input region features Vr and



5525

Figure 4: The illustration of our Joint Relationship Learning Network. It consists of a stack of Feature Relationship
Network, and each feature relationship network includes a Feed-Forward Network (FFN) and a Relationship
Attention (RA) module (a). Further, each RA consists of Nr Relation Computation (RC) modules (b). In addition,
in RC module (b), the broken red line part (I) indicates the visual relationships among region features; the broken
blue line part (II) is the visual-semantic relationships between region features and semantic features, and the broken
pink line part (III) denotes our designed Relationship Gate.

semantic features Vs of the raw image, the output
visual-semantic relationship feature Vi

v−s is,

Vi
v−s =

∑
j

βij · (WhV
j
s), (5)

where Vi
v−s denotes the i-th visual-semantic re-

lationship feature between region features and se-
mantic features. Further, the visual-semantic rela-
tionship weight βij between the i-th region feature
and j-th semantic feature is computed according to

βij = softmax(
WsV

j
s · (WrV

i
r)
T

√
dk

), (6)

where βij reflects the influence of image semantic
features on region features. Ws and Wr are the
model learnable matrices, which project the orig-
inal semantic features Vj

s and region features Vi
r

into the subspaces to measure how well they match,
and dk is the feature dimension after projection.

III) Relationship gate: As described in Section
introduction, relationships are of crucial important
for accurately describing the main content of the
input images. Considering that visual relationships
Vi
v and visual-semantic relationships Vi

v−s play
different roles during generating different words.
Thus, we introduce a relationship gate, which can
dynamically balance their different contributions
to obtain the image feature representation Vi

o con-

taining different relationship information,

Vi
o = σ ·WvsV

i
v + (1− σ) ·WvbV

i
v−s, (7)

where σ is the relationship gate coefficient, as,

σ = sigmoid(Concat(UvrV
i
r,UvsV

i
s) + bσ),

(8)
where W and U are the learnable matrixes, and
bσ is a bias.

Further, to comprehensively learn visual rela-
tionship while capturing visual-semantic relation-
ship, in our model we devise the multi-head RC in
which each head can focus on different relationship
attributes. Specifically, the relationship attention
module aggregates in total Nr RC modules,

Vi
J = SrV

i
r +Concat(Vi

o(1), ...,V
i
o(Nr))Sn,

(9)
where Sr is learnable parameter, and Sn is the out-
put projection matrix that aggregates the informa-
tion from different heads, and Vi

o(n), n ∈ (1, Nr)
denotes the n-th relationship feature.

Finally, a basic feed-forward network is comple-
mented to increase the model non-linearity, which
takes V i

J as its input and outputs as follows

Vi
J = Vi

JSJ + bJ . (10)

where SJ and bJ are the learnable parameters. Vi
J

denotes the i-th joint relationship feature obtained
by relationship attention module.
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3.4 Relationship Based Attention
Although the obtained joint relationship feature
Vi
J have provided a full relationship representation

for the image, in many cases, a word/phrase in the
generated sentence is only related to some of the
specific information containing in the feature repre-
sentation. Thus, we further develop a relationship
based attention module to automatically attend to
the corresponding relationship feature during gen-
erating words. The final attention context vector
CFt is obtained by the following updates,

zi,t = WT
r tanh(WJV

i
J+Whht−1+bh), (11)

ηt = softmax(zt), (12)

CF
t =

∑
ηtV

i
J , (13)

where W and bh are the model learnable param-
eters. Next, CF

t will be fed into the LSTM based
language module to predict word.

4 Experiments

4.1 Experiment Setting
Datasets and Evaluation Metrics: We extend
the experiment from large-scale MSCOCO (Lin
et al., 2014) to small-scale Flickr30k (Plummer
et al., 2015) datasets to verify the effectiveness
of our model. Further, several popular evaluation
metrics: BLEU (Papineni et al., 2002), ROUGE-
L (R) (Lin, 2004), METEOR (M) (Banerjee and
Lavie, 2005), CIDEr (C) (Vedantam et al., 2015)
and SPICE (S) (Anderson et al., 2016) are used to
evaluate the model performance, and coco-caption
code1 is utilized to compute these metrics.

Implementation Details: The LSTM hidden
state dimension is set to 512, and the number of
hidden cells and the embedded size of input words
are also set to 512. Further, the bottom-up features
provided by UD (Anderson et al., 2018) is also
used. We use the gradient clipping strategy during
back propagation to alleviate the problem of gra-
dients explosion. The initial learning rate of CNN
is 1e-5 and that of language model is 5e-4. When
fine-tuning the image model, the learning rate we
used is considerably smaller than that originally
used for the training model. In 24 training epochs,
the model stops training if its performance is not
improved. In addition, these experiments are im-
plemented via PyTorch, and we use Beam Search
(BS) strategy for predicting caption.

1Available: https://github.com/tylin/coco-caption

4.2 Ablation Studies

Firstly, some ablation experiments are performed
to clarify the effectiveness of following modules:
1) Region Features (R Fea.), 2) Semantic Features
(S Fea.), 3) Joint Relationship Learning Network
(JRLN), 4) Relationship based Attention (R-Att.)
module. Then, the effects of different relationship
fusion schemes are further analyzed in detail.

a. Effectiveness of Each Module: As shown
in Table 1, 1) in lines 1 and 2, “R Fea." or “S
Fea.", “JRLN" means that model only uses the
separate region features or semantic features to
build the relationship; 2) “R Fea." and “S Fea."
means that region features and semantic features
are directly concatenated, and then directly input
into LSTM to generate sentence; 3) “R Fea.", “S
Fea." and “JRLN" means that model learns visual
relationship and visual-semantic relationship, but
it does not introduce relationship attention to focus
on them; 4) “R Fea.", “S Fea." and “R-Att" denotes
that a relationship attention module is directly used
to focus on the concatenated region and semantic
features; 5) in line 6, “R Fea.", “S Fea.", “JRLN"
and “R-Att" is our full model, which explores the
two relationships among image features, and then
exploits relationship attention to dynamically focus
on the obtained relationship representation.

Num. Model Settings Model Metrics

R Fea. S Fea. JRLN R-Att. B-1 B-4 M R C

1 X X 77.9 36.1 26.2 56.3 120.8
2 X X 77.4 35.6 25.7 56.0 120.6
3 X X 78.8 37.1 26.8 56.8 121.4
4 X X X 80.6 38.2 28.1 58.1 127.9
5 X X X 79.1 37.4 27.1 57.1 123.2
6 X X X X 81.0 38.6 28.3 58.3 128.4

Table 1: Ablation performance of JRAN model on
MSCOCO dataset. ‘X’ means that the model only uses
the module for image-text generation.

We have the following conclusions from Table
1: 1) The metric scores line 4 is higher than line
3, which shows that the designed JRLN can ef-
fectively learn the visual-semantic relationship be-
tween region features and semantic features. 2)
Line 4 outperforms separate lines 2 and 1, it indi-
cates that visual relationship and visual-semantic
relationship can complement each other. 3) The per-
formance of model line 6 is better than line 4, it in-
dicates that relationship based attention module can
boost the model performance. 4) Our full model in
line 6 obtains the best score, which demonstrates
the overall effectiveness of the proposed model.
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b. Effectiveness of Relationship Fusion
Scheme:

(a) None (b) Concat (c) No-gate (d) RC (Ours)

Figure 5: Different schemes for exploring the relation-
ship between image features. (a) None and (b) Concat
utilize scaled dot-product attention; (c) No-gate directly
concatenates the two relationships. (d) RC (Ours) is our
designed relationship computation (RC) scheme.

There are generally four directions for deeply
exploring the relationship among features in the
image, as shown in Figure 5. (a) None denotes that
model only learns the visual relationship among
region features by using scaled dot-product atten-
tion model (Vaswani et al., 2017). Similarly, (b)
Concat follows the recent methods (Vaswani et al.,
2017; Duan et al., 2017), i.e., region features and
semantic features are directly concatenated, and
then directly fed into scaled dot-product attention
model to learn the visual-semantic relationships.
(c) No-gate does not use our designed relationship
gate, ignoring the different contributions between
visual relationships and visual-semantic relation-
ships during generating different words. (d) RC
(Ours) is our full competitive RC module, which
fully learns the two types of relationships, and fur-
ther takes into account that different relationships
contribute different during generating words.

We compare the performances of the RC variants
in the four schemes. The results are 36.3%, 37.9%,
38.4% and 38.6% in BLUE4 metric and 120.9%,
122.2%, 128.1% and 128.4% in CIDEr metric for
(a), (b), (c) and (d) schemes, respectively. It in-
dicates that our designed RC scheme outperforms
other learning relationship schemes.

5 Experimental Results

5.1 Comparison with State-of-The-Arts

Note that, for fair comparison, these models (Cor-
nia et al., 2020; Yao et al., 2019) are not included
in the comparison since the former (Cornia et al.,
2020) uses the extra dataset nocaps (Kuznetsova
et al., 2018), and the latter (Yao et al., 2019) uti-

lizes the extra COCO-detect to segment the whole
object.

a. Results on MSCOCO Dataset: The com-
parison results on MSCOCO are shown in the left
part of Table 2. It can be observed that our JRAN
achieves promising results. Compared with the
typical baselines (Li et al., 2018a), our newly pro-
posed JRAN can significantly improve BLEU 4
score from 36.4 to 38.6 (6.04%) and CIDEr score
from 122.2 to 128.4 (5.07%), which is a significant
improvement.

b. Results on Flickr30k Dataset: To further
evaluate the model generalization ability, we con-
duct experiments on small-scale Flickr30k dataset.
As shown in the right part of Table 3, JRAN
achieves the superior performance. This further
demonstrates that our model still maintains good
generalization ability even on small-scale dataset.

5.2 Comparison with Similar Relationship
Based Methods

More importantly, relationship based methods
also explore the visual relationships among im-
age features by using the graph/GCN. For example,
method “KMSL" (Li and Jiang, 2020) explicitly uti-
lizes the semantic relationship triples (scene graph)
as additional inputs to explores the visual relation-
ship. Similarly, “ARL" (Wang et al., 2020) explores
the visual relationship among image regions by
using GNN/GCN. As showed in Table 3, the per-
formance of our JRAN is significantly better than
these relationship based methods across all metrics,
which quantitatively demonstrates the potentials of
our joint relationship attention network.

5.3 Comparison with Transformer Based
Baselines

In particular, to demonstrate that our JRAN can be
integrated into the current mainstream transformer
based baselines to achieve a better performance, we
upgraded our baselines with a plain model “Sim-
plistic Transformer architecture (Sim-Trans)2" as
new baselines. The model doesn’t use transformer
encoder and the projected visual features are di-
rectly processed by the transformer decoder. There-
fore, to see the real performance gain contributed
by our JRAN model, we feed the final attention
context features CFt from the relationship based
attention module into the transformer decoder. In
Table 4, the last few rows show the results of our

2https://github.com/krasserm/fairseq-image-captioning
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Methods MSCOCO Flickr30k

B-1 B-2 B-3 B-4 M R C S B-1 B-2 B-3 B-4 M R C

ALT-ALTM (Ye et al., 2018) 75.1 59.0 45.7 35.5 27.4 55.9 110.7 20.3 68.5 50.7 37.0 27.0 21.2 48.0 56.2
SCST (Gao et al., 2019) 77.9 61.5 46.8 35.0 26.9 56.3 115.2 20.42 - - - - - - -

VD-SAN (He et al., 2019) 73.4 56.6 42.8 32.2 25.4 - 99.9 - 65.2 47.1 33.6 23.9 19.9 - -
Up-Down (Anderson et al., 2018) 79.8 - - 36.3 27.7 56.9 120.1 21.4 - - - - - - -

GLA (Li et al., 2018a) 72.5 55.6 41.7 31.2 24.9 53.3 96.4 - 56.8 37.2 23.2 14.6 16.6 41.9 36.2
HAN (Wang et al., 2019) 80.9 64.6 49.8 37.6 27.8 58.1 121.7 21.5 - - - - - - -

Trans+KG (Zhang et al., 2021) 76.24 - - 34.39 27.71 - 112.60 21.12 68.36 - - 26.55 21.71 - 56.62
TDA+GLD (Wu et al., 2021a) 78.8 62.6 48.0 36.1 27.8 57.1 121.1 21.6 - - - - - - -
cLSTM-RA (Yang et al., 2020) 81.7 64.5 49.4 37.2 28.0 57.9 121.5 - 70.5 52.5 37.6 27.1 21.9 49.4 57.7

Baselines 79.8 63.1 48.2 36.4 27.8 57.1 122.2 21.5 69.2 51.3 37.6 27.7 22.1 49.6 57.2

JRAN (BS=3) (ours) 80.8 64.4 49.6 38.3 28.4 58.2 128.0 21.8 69.9 53.0 37.9 27.9 24.8 52.6 57.9
JRAN (BS=4) (ours) 80.9 64.6 49.7 38.5 28.5 58.4 128.2 22.0 71.0 53.1 38.1 28.1 24.8 52.7 58.0
JRAN (BS=5) (ours) 81.0 64.7 49.8 38.6 28.3 58.3 128.4 22.1 71.2 53.3 38.3 28.3 25.0 52.9 58.2

Table 2: Performance of JRAN and related state-of-the-arts on two datesets. “BS" denotes the Beam Search strategy.

Methods B-1 B-2 B-3 B-4 M R C S

ARL (Wang et al., 2020) 75.9 60.3 46.5 35.8 27.8 56.4 111.3 -
KMSL (Li and Jiang, 2020) 79.2 63.2 48.3 36.3 27.6 56.8 120.2 21.4

JRAN (ours) 81.0 64.7 49.8 38.6 28.3 58.3 128.4 22.1

Table 3: Performance comparision of our JRAN with
the similar relationship based methods on MSCOCO.

Methods B-1 B-2 B-3 B-4 M R C S

Transformer (Sharma et al., 2018) 80.2 64.8 50.5 38.6 28.8 58.5 128.3 22.6
VORN (Herdade et al., 2019) 80.5 - - 38.6 28.7 58.4 128.3 22.6

LBPF (Qin et al., 2019) 80.5 - - 38.3 28.5 58.4 127.6 22.0
Sim-Trans ] 79.4 64.5 49.1 38.5 28.0 58.1 125.5 21.7

JRAN-Trans (ours) (BS=3) 81.2 65.3 50.1 39.2 28.9 58.7 129.4 22.6
JRAN-Trans (ours) (BS=4) 81.1 65.2 50.0 39.1 28.8 58.6 129.6 22.5
JRAN-Trans (ours) (BS=5) 80.9 65.0 49.8 39.0 28.5 58.5 129.3 22.2

Table 4: Performance comparisons with transformer
based baseline model on MSCOCO dataset. ‘]’ is the
current mainstream transformer based baseline model.

upgraded model “JRAN-Trans" under different BS.
Since the BLEU4 score of the original baselines
“Sim-Trans " is 38.5, our upgraded transformer vari-
ation based model can effectively boost the score
by 0.7. In addition, the CIDEr score is significantly
increased from 125.5 to 129.6, which is clearly
a meaningful improvement. Moreover, compared
with the other current mainstream methods, our
method still achieves very competitive performance
across most metrics.

5.4 Model Accuracy and Efficiency

We further conduct an experimental computational
cost analysis for comparing our updated model
“JRAN-Trans" with some typical models (i.e., “SC
(base) (Chen et al., 2017)", “Sim-Trans", and “X-
Transformer" (Pan et al., 2020)). Figure 6 presents
the computational cost in terms of the training time
and parameters of the model.

As can be seen from Figure 6, the baseline model
“SC (base)" has the less parameters and training

(a)

(b)

Figure 6: Illustration of the model computational cost
(a) and model accuracy (b).

time, but the model accuracy is the lowest. One
main reason is that it ignores the potential relation-
ship between features in the image. In addition, the
evaluation metric scores of the transformer based
model “X-Transformer" are relatively high, while
the parameter and training time are also relatively
high.

Compared with the “X-Transformer" model, ob-
viously, our “JRAN-Trans" does not significantly
increase the computational cost of the model while
achieving promising accuracy. This clearly indi-
cates that our method displays a trade-off between
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model accuracy and computational cost.

5.5 Qualitative Results
a. Comparison of Generating Sentences with
Different Approaches: Establishing the interac-
tion between visual and semantic information by
learning the relationship among image features, our
JRAN can generate comprehensive sentences more
consistent with the image theme scene. Figure 7
shows some examples of sentence description gen-
erated by different baseline methods, namely Base-
line (Li et al., 2018a), Sim-Trans and our JRAN-
Trans.

Figure 7: Examples of generating sentences. Blue is
region objects, purple is the background or environment
information of the object in the image, the red is the
corresponding visual relationship, and the underline in-
dicates the corresponding visual-semantic relationship.

From these exemplar results, it is clearly see that
the three methods can generate somewhat relevant
and logically correct sentences, while our JRAN
based method “JRAN-Trans" generates more con-
sistent sentences with image theme scene. It ef-
fectively improves the quality of generated text
by enriching visual-semantic relationships. For in-
stance, for image (a), compared to the relationship
words/phrases “playing" and “playing with" gen-
erated by methods “baselines" and “Sim-Trans"
respectively. Our “JRAN-Trans" not only accu-
rately generates the relationship phrase “staring at"
between region objects “dogs", but also enrichs the
relationship between region object “dog" and its
background word “road", and generates an appro-
priate interactive word “on" between them, which
significantly improves the model overall perfor-
mance.

b. Effectiveness of Relationship Gate: Figure
8 visualizes the weight of relationship gate during
generating different words. It can be seen that vi-
sual relationship and visual-semantic relationship
contribute differently to the generation of differ-
ent words. Specifically, the visual relationship has

Figure 8: Visualization of relationship gate weight. The
first column is original image, and the second column
are the values of visual relationship weight (purple) and
visual-semantic relationship weight (green).

a larger value when generating the visual words
“kite" and “sky" (red boxes). Contrarily, when
non-visual words (like “Two", “and", “flying" etc.)
are generated, the visual-semantic relationship has
greater value. This indicates that the two relation-
ships complement each other and jointly boost the
performance of image-text generation.

6 Conclusion

In the paper, a simple and effective model that
makes full use of the complementary region and
semantic features in the image, Joint Relationship
Attention Network (JRAN) is proposed. It explores
the relationship among the features to enrich the
relationship-level representation for finally boost-
ing image-text generation. To verify our claim,
we propose a new joint relationship learning net-
work, which is able to learn two kinds of feature
relationships. Considering the different contribu-
tions of these two relationships during generat-
ing words, we further devise a relationship gate
to finally obtain a feature representation contain-
ing different-level relationship information. Impor-
tantly, our model has made remarkable progress in
deeply exploring the relationship between features
for image-text generation. Extensive experiments
demonstrate that the effectiveness of our proposed
model on larger-scale and smaller-scale datasets.
More remarkably, we obtain new state-of-the-art
performances on popular Flickr30k dataset.
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