
Proceedings of the 29th International Conference on Computational Linguistics, pages 5476–5487
October 12–17, 2022.

5476

Multi-Layer Pseudo-Siamese Biaffine Model for Dependency Parsing

Ziyao Xu1, Houfeng Wang1, Bingdong Wang2

1MOE Key Lab of Computational Linguistics, Peking University
2Beijing Huilan Technology Co., Ltd.

{xzyxzy,wanghf}@pku.edu.cn, wangbd@huilan.com

Abstract

Biaffine method is a strong and efficient method
for graph-based dependency parsing. However,
previous work only used the biaffine method at
the end of the dependency parser as a scorer,
and its application in multi-layer form is ig-
nored. In this paper, we propose a multi-layer
pseudo-Siamese biaffine model for neural de-
pendency parsing. In this model, we modify
the biaffine method so that it can be utilized
in multi-layer form, and use pseudo-Siamese
biaffine module to construct arc weight matrix
for final prediction. In our proposed multi-layer
architecture, the biaffine method plays impor-
tant roles in both scorer and attention mecha-
nism at the same time in each layer. We eval-
uate our model on PTB, CTB, and UD. The
model achieves state-of-the-art results on these
datasets. Further experiments show the benefits
of introducing multi-layer form and pseudo-
Siamese module into the biaffine method with
low efficiency loss.

1 Introduction

Dependency parsing is a fundamental task in NLP.
Given a input sequence s = w0w1...wn, the out-
put is a dependency tree t = {(h, d, l), 0 ≤ h ≤
n, 1 ≤ d ≤ n, l ∈ L}, where wi(1 ≤ i ≤ n) is
a word, w0 is a pseudo-word as root and (h, d, l)
is an arc from wh to wd with label l in a relation
set L. Due to the simplicity and effectiveness of
representing syntactic information by using the tree
structure, many works involve dependency parsing,
such as syntax-enhanced pre-trained model (Xu
et al., 2021).

There are two approaches to dependency parsing:
transition-based and graph-based methods. Graph-
based dependency parsing scores the components
of a sentence and selects the highest scoring tree.
Dozat and Manning (2017) for the first time intro-
duce biaffine method into the dependency parsing.
This strong and efficient biaffine first-order graph-
based parser consists of BiLSTM encoder and bi-

affine scorer. After the biaffine parser is proposed,
many works have focused on further improving
the performance of this parser. Since the biaffine
parser consists of two parts: BiLSTM encoder and
biaffine scorer, there are two main directions of im-
provement focusing on the two parts respectively.

One direction of improvement is modifying the
encoder. Straka (2018) introduce pre-trained model
in the embedding stage. Na et al. (2019) fuse
the hidden states of different layers of BiLSTM
to construct the input of the biaffine scorer. Ji et al.
(2019) add graph neural networks before the bi-
affine scorer to capture high-order information. Li
et al. (2019) apply the self-attention mechanism
as the replacement of BiLSTM encoder. Mrini
et al. (2020) introduce the Label Attention Layer,
a new form of self-attention where attention heads
represent labels, into the encoder. In these works,
although the encoder changes, the biaffine method
remains as a scorer at the end of dependency parser.

Another direction is extending the biaffine scorer
for second-order parser. Currently, there are rela-
tively few works in this direction due to its dif-
ficulty. Zhang et al. (2020) introduce efficient
TreeCRF. Wang and Tu (2020) introduce MFVI.
Both works extend the biaffine scorer to the tri-
affine scorer for scoring second-order subtrees. The
results show that introducing high-order informa-
tion is beneficial to the dependency parser in many
ways. In these works, the extended biaffine method
still plays the role of a scorer for high-order model-
ing.

We observe that biaffine method only plays the
role of a scorer in almost all graph-based depen-
dency parsers improved by the biaffine parser. The
ways and effects of making the method play more
roles remains to be explored. This leads us to a new
direction of improvement: how to make biaffine
method play more roles in dependency parser? We
notice that biaffine method is essentially an atten-
tion mechanism, so it can be utilized in a multi-



5477

layer architecture like Transformers (Vaswani et al.,
2017) to capture more information before the bi-
affine scorer. However, such an application of bi-
affine method is equivalent to adding Transformers
which uses biaffine attention upon BiLSTM en-
coder and keeping the biaffine scorer at the end of
the model unchanged, that is, the biaffine scorer is
independent of the multi-layer architecture, so it
cannot obtain more information, which limits the
performance gains. This raises a question: how to
fuse the biaffine scorer into the multi-layer archi-
tecture, which allows the biaffine scorer to make
use of more information?

To address this question, we propose a multi-
layer pseudo-Siamese biaffine model for graph-
based dependency parsing. Our multi-layer archi-
tecture consists of several connectable layers with
the same structure, and each layer contains two bi-
affine modules that are identical but have separate
parameters, namely pseudo-Siamese module. One
biaffine module is used as an attention mechanism
to obtain the attention weight to construct the to-
ken representation for the next layer; the other is
used as a scorer to obtain the arc weight matrix
that contributes to final prediction. Therefore, in
our proposed multi-layer architecture, the biaffine
method plays the role of a scorer and an attention
mechanism at the same time in each layer. The
biaffine scorer can obtain information from each
layer before, instead of only seeing the output of
the last layer, so it can make use of more informa-
tion captured by the multi-layer architecture.

We conduct experiments on PTB, CTB, and UD
to verify the effectiveness of our model. Since
the usage of pre-trained models like BERT (De-
vlin et al., 2019) and XLNet (Yang et al., 2019) in
the embedding stage is common for dependency
parsing, we evaluate our model with different pre-
trained models. We conduct the experiments in
three aspects: 1) compare our model with previous
state-of-the-art dependency parsers using the same
pre-trained model to show that our model achieves
state-of-the-art performance; 2) implement the orig-
inal biaffine model and compare it with our model
when using the same pre-trained model to show
that our modification based on biaffine model sig-
nificantly improves the performance; 3) compare
our multi-layer architecture with other multi-layer
architectures for dependency parsing to justify the
specific layers we propose.

We also conduct detailed analysis to illustrate

four aspects relevant to our model: 1) the impact
of the choice of number of layers and attention
function on our model; 2) the importance of fusing
the biaffine scorer into the multi-layer architecture;
3) the benefit of introducing multi-layer form and
pseudo-Siamese module into the biaffine method in
many ways, including the overall performance, the
performance on short and long sentences respec-
tively and the performance of label prediction; 4)
the low efficiency loss of introducing multi-layer
form and pseudo-Siamese module into the biaffine
method.

In summary, the major contributions of our work
are as follows:

• We introduce a multi-layer architecture using
biaffine attention mechanism into the biaffine
dependency parser, which makes the biaffine
method plays more than a role of a scorer in
graph-based dependency parsing.

• We introduce pseudo-Siamese module to fuse
the biaffine scorer into the multi-layer archi-
tecture. We show that fusing the biaffine
scorer into the multi-layer architecture is im-
portant for the performance gains.

• We conduct experiments and detailed analy-
sis on PTB, CTB, and UD. The results show
the benefits of introducing multi-layer form
and pseudo-Siamese module into the biaffine
method with low efficiency loss.

2 Model

Our graph-based dependency parser contains three
parts, i.e., encoder, multi-layer biaffine model, and
pseudo-Siamese module.

2.1 Encoder
Encoder consists of Embedding layer and BiLSTM
layer. In Embedding layer, input token wi with
Part-of-speech tag pi are used to construct input
vector ei:

ei = [emb(wi); posemb(pi)] (1)

Where emb is word embedding, posemb is
learned Part-of-speech tag embedding. We use
pre-trained model BERT or XLNet for word em-
bedding. Following Straka et al. (2019), we use the
linear combination of hidden states of the last four
layers as the embedding, and a word embedding is
the average of its subword embeddings. We project



5478

Figure 1: The architecture of the t-th layer biaffine model and its corresponding pseudo-Siamese module.

word embedding to a lower dimension. In BiLSTM
layer, e0e1...en is input into a three-layer BiLSTM
model. We arrange the output vectors of the last
layer h0,h1, ...,hn into the matrix X1 ∈ Rn×2h,
as the initial input of multi-layer biaffine model:

hi =BiLSTMi(e0e1...en) (2)

X1 =


h0

h1

...
hn

 (3)

2.2 Multi-layer Biaffine Model
Multi-layer biaffine model consists of T layers with
the same structure. The architecture of the t-th
layer is shown in Figure 1. The input matrix of the
t-th layer is Xt. We use the same biaffine method
described in Dozat and Manning (2017) :

Ht = MLP (head)t(Xt) (4)

Dt = MLP (dep)t(Xt) (5)

St
i,j = Ht

jU
t(Dt

i)
T
+Ht

jb
t (6)

Where MLP (head)t and MLP (dep)t are 2h × d
(input dimension is 2h and output dimension is
d; similarly hereinafter); U t ∈ Rd×d and bt ∈
Rd are learned parameters. This biaffine module
corresponds to Biaffine 1 in Figure 1.

We scale and apply softmax function (Vaswani
et al., 2017) on St ∈ Rn×n to obtain attention
weight matrix, and use it to construct the arc-related
representation:

Rt = MLP (arc)t(Xt) (7)

V t = Softmax(
St

√
2h

)Rt (8)

Where MLP (arc)t is 2h× d.
At the end of the layer, we apply projection and

Add & Norm (Vaswani et al., 2017) to obtain the
input matrix of the next layer:

Xt+1 = LayerNorm(Xt + V tW t) (9)

Where W t ∈ Rd×2h is learned matrix. Xt+1 ∈
Rn×2h is used as the input of (t+ 1)-th layer.

2.3 Pseudo-Siamese Module
We notice that attention weight matrix in each layer
and arc weight matrix for final prediction have the
same form. Based on this, we use pseudo-Siamese
module to construct the arc weight matrix. In the
t-th layer, we use another biaffine module to cal-
culate matrix At ∈ Rn×n. This biaffine module
corresponds to Biaffine 2 in Figure 1. Biaffine 1
and Biaffine 2 have the same structure but different
parameters. That is, At is calculated by Equa-
tions 4 ∼ 6 similar to St but using another set of
parameters. We use the linear combination of At

as the arc weight matrix A for final prediction:

A =

T∑
t=1

at · Softmax(
At

√
2h

) (10)

Where a ∈ RT is learned weight satisfying that∑T
t=1 at = 1.

2.4 Inference
We use A calculated by Equation 10 as the arc
weight matrix and apply the Eisner algorithm (Eis-
ner, 2000) or the Chu-Liu-Edmonds algorithm
(Chu and Liu, 1965; Edmonds et al., 1967) to ob-
tain the maximum spanning tree. After obtaining
the tree structure, following Dozat and Manning



5479

(2017), we use a biaffine classifier to obtain the
label score vector for each word wi given the pre-
dicted head hi:

Bi = Hhi
U (1)(Di)

T + [Hhi
;Di]U

(2) + b

Li = Softmax(Bi) (11)

Where U (1) ∈ Rd×k×d, U (2) ∈ R2d×k and b ∈
Rk are learned parameters (k is the size of relation
set). H and D are calculated by Equations 4 ∼ 5
using XT as input. We select the label with the
maximum score for each arc to obtain the final
dependency tree.

2.5 Training
We calculate A by Equation 10, and calculate L
by Equation 11 using the gold head. We use the
cross-entropy loss for arc and label predictions:

L(arc) = −
n∑

i=1

log(Ai,hi
) (12)

L(label) = −
n∑

i=1

log(Li,li) (13)

Where hi is the gold head of wi, and li is the gold
label of arc (hi, wi). The final loss is:

L = λL(arc) + (1− λ)L(label) (14)

Where λ is a hyper-parameter between 0 and 1.

3 Experiments

3.1 Datasets
We evaluate our method on PTB 3.0 (Marcus et al.,
1993), CTB 5.1 (Xue et al., 2005), and Univer-
sal Dependencies (UD) 2.2. Following Chen and
Manning (2014), we use Stanford parser v3.3.0
to convert PTB, and use Penn2Malt tool with the
head-finding rules of Zhang and Clark (2008) to
convert CTB. Following Fernández-González and
Gómez-Rodríguez (2021), we do not use POS tags
on PTB, and use gold POS tags on CTB. Following
Ma et al. (2018), we evaluate 12 languages selected
from UD 2.2 and use POS tags.

3.2 Evaluation
We use UAS and LAS as the metric. During the
evaluation, we ignore all punctuation. We use the
model after the last epoch of training for evaluation.
For all results reported, we run the training process
five times with different random seeds and average
the results to avoid contingency.

3.3 Implementation Details

We evaluate our model with different pre-trained
models, including BERT-uncased and XLNet
for PTB, BERT-Chinese for CTB, and BERT-
Multilingual-cased for UD. The dimension of word
embedding after projection is 300, and the dimen-
sion of POS embedding is 50. We set h = 512,
λ = 0.55, d = 512 for arc and d = 128 for label.
We set T = 5 on PTB and UD, and T = 6 on CTB.
We apply dropout after embedding and BiLSTM
layers with dropout rate 0.33. We apply gradient
clipping with max 2-norm value 1. We use Adam
(Kingma and Ba, 2015) optimizer with β1 = 0.9,
β2 = 0.999. The learning rate is 1e − 5 for pre-
trained model and 5e−4 for other components. We
train the model for 8 epochs on PTB and UD, and
20 epochs on CTB. We decay the learning rate lin-
early to 0 during training. We batch the sentences
of similar length for efficiency. The batch size is 24.
During training, we divide the loss by batch size on
CTB and UD but not on PTB. During inference, we
use the Eisner algorithm on PTB and CTB, and we
use the Chu-Liu-Edmonds algorithm on UD. More
discussions on inference algorithms are presented
in Section 4.6.

3.4 Baselines

We use nine strong baseline models for comparison
and divide them into five categories. All results of
baseline models are from the corresponding papers.
Biaffine. Dozat and Manning (2017) introduces
the biaffine method for first-order graph-based de-
pendency parsing.
Second-order. Zhang et al. (2020) introduces
TreeCRF and Wang and Tu (2020) introduces
MFVI. These parsers extend the biaffine method to
triaffine for modeling second-order information.
HPSG. Zhou and Zhao (2019) introduces head-
driven phrase structure grammar (HPSG) for joint
dependency and constituent parsing. Mrini et al.
(2020) uses HPSG and introduces label attention
layer. These parsers use additional constituency
information for training.
G2GTr. Mohammadshahi and Henderson (2020)
and Mohammadshahi and Henderson (2021) intro-
duces Graph-to-Graph Transformer (G2GTr) for
transition-based dependency parsing and graph-
based dependency parsing respectively.
Pointer Networks. Ma et al. (2018) introduces
stack-pointer networks and Fernández-González
and Gómez-Rodríguez (2021) introduces bottom-



5480

Pre-trained Model PTB
UAS LAS

w/o Doz. & Man. (2017) 95.74 94.08
Zhang et al. (2020) 96.14 94.49

BERT-base
Moh. & Hen. (2020) 96.11 94.33
Moh. & Hen. (2021) 96.66 95.01
Ours(BERT-base) 96.93 95.18

BERT-large
Wang & Tu (2020) 96.91 95.34
Fer. & Góm. (2021) 97.05 95.48
Ours(BERT-large) 97.17 95.50

XLNet-base Ours(XLNet-base) 97.17 95.49

XLNet-large
Zhou & Zhao (2019)† 97.20 95.72
Mrini et al. (2020)† 97.42 96.26
Ours(XLNet-large) 97.44 95.81

Pre-trained Model CTB
UAS LAS

w/o Doz. & Man. (2017) 89.30 88.23
Ma et al. (2018) 90.59 89.29

BERT-base

Mrini et al. (2020)† 94.56 89.28
Wang & Tu (2020) 92.78 91.69
Fer. & Góm. (2021) 92.75 91.62
Moh. & Hen. (2021) 92.98 91.18
Ours(BERT-base) 93.37 92.16

Pre-trained Model UD2.2
UAS LAS

w/o Ma et al. (2018) 93.53 89.75
Zhang et al. (2020) - 89.33

BERT-base Wang & Tu (2020) - 91.02
Ours(BERT-base) 94.68 91.82

Table 1: Comparison of dependency parsers on PTB,
CTB, and UD2.2. Pre-trained column indicates pre-
trained model used for word embedding. †:These ap-
proaches join the constituency parsing and use addi-
tional constituency information for training.

up hierarchical pointer networks for transition-
based dependency parsing.

3.5 Main Results

Table 1 shows the results of baselines and our
model on PTB and CTB. For intuitive comparison,
we divide the models according to the pre-trained
model used for word embedding. Overall, the rank-
ing of performance of our model with different
pre-trained models is XLNet-large > XLNet-base
≈ BERT-large > BERT-base.

On PTB, the previous state-of-the-art model
with BERT-base is Mohammadshahi and Hender-
son (2021) using Graph-to-Graph Transformer for
graph-based parsing, which outperforms Moham-
madshahi and Henderson (2020) for transition-
based parsing. Compared with it, our model with
BERT-base improves 0.27 UAS and 0.17 LAS. The
previous state-of-the-art model with BERT-large is
Fernández-González and Gómez-Rodríguez (2021)
using bottom-up hierarchical pointer networks

for transition-based parsing, which outperforms
second-order graph-based parser Wang and Tu
(2020) using MFVI. Compared with it, our model
with BERT-large improves 0.12 UAS and performs
similarly on LAS. Our model with XLNet-base
also outperforms previous models with BERT-large.
Our model with XLNet-large achieves 97.44 UAS
and 95.81 LAS, which is the state-of-the-art result
among dependency parsers without additional con-
stituency information for training. For previous
models with XLNet-large, Zhou and Zhao (2019)
and Mrini et al. (2020) both use HPSG, which join
the constituency parsing and use additional con-
stituency information for training. Our model with
XLNet-large outperforms Zhou and Zhao (2019),
and has a comparable performance on UAS com-
pared with Mrini et al. (2020).

On CTB, we only evalutate our model with
BERT-base-Chinese because it is the only pre-
trained model used for CTB in baseline mod-
els. Our model with BERT-base-Chinese achieves
93.37 UAS and 92.16 LAS, which is the state-of-
the-art result among dependency parsers without
additional constituency information for training.
Compared with the previous state-of-the-art model
on UAS which does not join the constituency pars-
ing (Mohammadshahi and Henderson, 2021), our
model improves 0.39 UAS. Compared with the pre-
vious state-of-the-art model on LAS (Wang and
Tu, 2020), our model improves 0.47 LAS. Com-
pared with Mrini et al. (2020) using additional con-
stituency information for training, our model has a
significant performance advantage on LAS.

On UD2.2, our model with BERT-Multilingual-
cased achieves 94.68 average UAS and 91.82 aver-
age LAS. Compared with the previous state-of-the-
art model (Wang and Tu, 2020) using MFVI, our
model improves 0.8 average LAS.

3.6 Comparison with Original Single-layer
Biaffine Model

We compare our model with the original biaffine
model when using the same pre-trained model.
When our model has only one layer, it degener-
ates to the original biaffine model, so we simply set
T = 1 and keep other hyperparameters unchanged
to implement the original biaffine model with dif-
ferent pre-trained models. The results on PTB and
CTB are shown in Table 2. It can be seen that
our model with each kind of pre-trained model per-
forms significantly better than the original single-



5481

Figure 2: Results of our model with T layers on PTB and CTB (T = 1 means the original biaffine model). For
T > 1, we perform significance test against T = 1. Triangle point means p < 0.05 and square point means
p < 0.005.

Pre-trained Model PTB
UAS LAS

BERT-base
Original 96.70 94.92
Ours 96.93‡ 95.18‡

BERT-large
Original 97.00 95.33
Ours 97.17‡ 95.50‡

XLNet-base
Original 97.01 95.26
Ours 97.17‡ 95.49‡

XLNet-large
Original 97.28 95.59
Ours 97.44‡ 95.81‡

Pre-trained Model CTB
UAS LAS

BERT-base
Original 93.18 91.93
Ours 93.37‡ 92.16‡

Table 2: Comparison of original biaffine model and
our model with different pre-trained models on PTB
and CTB. We perform significance test for each pair of
results. ‡ means p < 0.005.

layer biaffine model with the same pre-trained
model. Compared with the original single-layer bi-
affine model, our model improves 0.18 UAS, 0.22
LAS on average on PTB, and improves 0.19 UAS,
0.23 LAS on CTB. The results on UD2.2 are shown
in Table 3. It can be seen that our model outper-
forms the original single-layer biaffine model on
12 languages and improves 0.18 average UAS, 0.11
average LAS. The results show that our modifica-
tion based on the original biaffine model signif-
icantly improves the performance. As a supple-
ment, the results without gold POS tags on CTB
are shown in Appendix A.

3.7 Comparison with Other Multi-layer
Architectures

We compare our multi-layer architecture with other
multi-layer architectures to justify the specific lay-
ers we propose. We select two strong multi-layer
architectures which use BERT-base pre-trained

model and have been evaluated on PTB or CTB
for comparison: (1) Self-attentive parser proposed
by Li et al. (2019). This architecture uses stan-
dard multi-head self-attention mechanism in multi-
layer form. (2) Syntactic Transformer proposed
by Mohammadshahi and Henderson (2021). This
architecture uses the same architecture as BERT
(Devlin et al., 2019) but changes the functions used
by each attention head. For a fair comparison, we
remove BiLSTM from our model and use BERT-
base pre-trained model, so that the only difference
between the models is the multi-layer architecture.
The results are shown in Table 4. It can be seen that
our multi-layer architecture achieves better results
with fewer layers compared with other multi-layer
architectures on PTB and CTB, which justifies the
specific layers we propose.

4 Analysis

4.1 Number of Layers

We evaluate our model with number of layers
T ∈ {1, 2, 3, 4, 5, 6, 7} (T = 1 means the original
biaffine model). The pre-trained model is BERT-
base for PTB and BERT-base-Chinese for CTB,
and we use this setting in the whole section 4 un-
less otherwise specified. The results are shown in
Figure 2. It can be seen that: (1) Our model with
any T > 1 outperforms the original single-layer
biaffine model on both PTB and CTB. (2) With the
increase in the number of layers, the performance
of our model gradually improves and starts to be
significantly different from the original single-layer
model at T = 2 on PTB and T = 3 on CTB. (3)
From T = 2 on PTB and T = 3 on CTB, the
performance of our model improves with a similar
trend on both datasets. This continuous improve-
ment is due to more useful information captured by
more layers. (4) After three more layers on both
datasets, that is, at T = 5 on PTB and T = 6 on
CTB, our model achieves the optimal performance.



5482

Model UD2.2 (UAS)
bg ca cs de en es fr it nl no ro ru Avg.

Original 95.71 95.49 95.28 90.49 93.05 94.77 94.28 96.16 94.68 95.93 93.13 95.52 94.54
Ours 95.78 95.69‡ 95.31† 90.61 93.27† 94.83 94.42† 96.33 94.84 96.05† 93.36 95.65‡ 94.68‡

Model UD2.2 (LAS)
bg ca cs de en es fr it nl no ro ru Avg.

Original 91.87 93.77 92.30 85.89 90.90 92.69 91.34 94.43 91.88 94.46 86.95 94.03 91.71
Ours 92.00† 94.00‡ 92.34† 85.97 91.03 92.72 91.45 94.61 92.05 94.56 87.00 94.18‡ 91.82‡

Table 3: Comparison of original biaffine model and our model with BERT-base-Multilingual-cased on UD2.2. We
perform significance test for each pair of results. † means p < 0.05 and ‡ means p < 0.005.

Multi-layer Architecture PTB
UAS LAS

SelfAtt (8 Layers) 96.67 95.03
SynTr (12 Layers) 96.60 94.94
Ours (5 Layers) 96.75 95.05

Multi-layer Architecture CTB
UAS LAS

SynTr (12 Layers) 92.42 90.67
Ours (6 Layers) 92.91 91.80

Table 4: Comparison of different multi-layer architec-
tures for dependency parsing on PTB and CTB. SelfAtt:
Li et al. (2019); SynTr: Mohammadshahi and Hender-
son (2021).

Our optimal model improves 0.23 UAS, 0.26 LAS
on PTB and 0.19 UAS, 0.23 LAS on CTB com-
pared with the original single-layer biaffine model.
(5) The performance of our model starts to decline
after T = 5 on PTB and T = 6 on CTB. This in-
dicates that the use of more layers helps the model
to capture more information, but also makes the
model more prone to overfitting the training data,
which is consistent with previous works related to
multi-layer architecture for dependency parsing (Li
et al., 2019; Mrini et al., 2020).

4.2 Attention Function
We compare the biaffine attention function used in
Equation 6 with another three common attention
functions described in Luong et al. (2015):

St
i,j =


Ht

j(D
t
i)

T Dot
Ht

jU
t(Dt

i)
T General

tanh([Dt
i ;H

t
j ]P

t)pt Concat

(15)

Where U t ∈ Rd×d, P t ∈ R2d×d and pt ∈ Rd

are learned parameters. The results are shown in
Table 5. It can be seen that biaffine attention func-
tion outperforms another three attention functions

Function PTB CTB
UAS LAS UAS LAS

Biaffine 96.93 95.18 93.37 92.16
Dot 96.87† 95.14 93.32 92.11

General 96.89 95.14 93.35 92.12
Concat 96.87† 95.09‡ 93.30 92.08

Table 5: Results of our model with four attention func-
tions used in Equation 6 on PTB and CTB. We per-
form significance test against Biaffine function for an-
other three functions. † means p < 0.05 and ‡ means
p < 0.005.

in our multi-layer architecture, although the differ-
ence is not significant in some cases. Our model
with any of another three attention functions still
significantly outperforms the original single-layer
biaffine model. The results show that our model
can achieve high performance using any common
attention function, and biaffine attention function
is the best choice for our model.

4.3 Effect of Pseudo-Siamese Module

In order to fuse the biaffine scorer into the multi-
layer architecture, we use pseudo-Siamese module
in our model to construct the arc weight matrix
for final prediction. To verify the effect of pseudo-
Siamese module, we compare it with two other
construction methods: (1) True-Siamese. Two bi-
affine modules in each layer share the parameters,
which means At = St. (2) Non-Siamese. The
biaffine module for prediction is removed, and the
final prediction is based on ST . The results are
shown in Table 6. It can be seen that either re-
placing pseudo-Siamese module with true-Siamese
module or removing pseudo-Siamese module, will
lead to a significant decrease in the performance of
our model. In particular, removing pseudo-Siamese
module, which means not fusing the biaffine scorer
into the multi-layer architecture, will make the per-
formance of our model not significantly different



5483

Method PTB CTB
UAS LAS UAS LAS

P-S 96.93 95.18 93.37 92.16
T-S 96.81‡ 95.06‡ 93.20† 91.99†

N-S 96.72‡ 94.91‡ 93.19† 91.98†

Table 6: Results of our model with three methods of
constructing arc weight matrix for final prediction on
PTB and CTB. P-S: pseudo-Siamese; T-S: true-Siamese;
N-S: non-Siamese. For T-S and N-S, we perform signif-
icance test against P-S. † means p < 0.01 and ‡ means
p < 0.005.

Model
PTB

UAS LAS
L < 24 L ≥ 24 L < 24 L ≥ 24

Original 96.89 96.61 95.17 94.80
Ours 97.14 96.83 95.40 95.07

Model
CTB

UAS LAS
L < 28 L ≥ 28 L < 28 L ≥ 28

Original 94.69 92.49 93.43 91.26
Ours 94.72 92.75 93.44 91.57

Table 7: Results of original biaffine model and our
model on sentences shorter or longer than average length
on PTB and CTB.

from the original single-layer biaffine model on
both PTB and CTB. The results show that using
pseudo-Siamese module to fuse the biaffine scorer
into the multi-layer architecture is important for
the performance gains of our model.

4.4 Sentence Length
We evaluate our model and original biaffine model
on sentences shorter or longer than average length
on PTB and CTB. The average length is 23.85
words on PTB and 27.22 words on CTB. The re-
sults are shown in Table 7. It can be seen that
our model outperforms the original single-layer bi-
affine model on both short and long sentences on
PTB and CTB.

4.5 Label Prediction
We evaluate the accuracy of label prediction of
our model and the original biaffine model when
the gold head is provided on CTB and PTB. Our
model achieves 97.79% on PTB and 98.30% on
CTB. The original biaffine model achieves 97.76%
on PTB and 98.26% on CTB. It can be seen that
when the influence of performance difference in

Pre-trained Algorithm PTB
UAS LAS

BERT-base
C-L-E 96.88 95.13
Eisner 96.93 95.18

BERT-large
C-L-E 97.13 95.48
Eisner 97.17 95.50

XLNet-base
C-L-E 97.13 95.46
Eisner 97.17 95.49

XLNet-large
C-L-E 97.41 95.79
Eisner 97.44 95.81

Pre-trained Model CTB
UAS LAS

BERT-base
C-L-E 93.28 92.07
Eisner 93.37 92.16

Table 8: Results of our model using two inference al-
gorithms with different pre-trained models on PTB and
CTB. C-L-E: the Chu-Liu-Edmonds algorithm.

head prediction is excluded, our model still per-
forms better in label prediction than the original
single-layer biaffine model.

4.6 Inference Algorithms

On PTB and CTB, we use the Eisner algorithm for
inference. The time complexity of the Eisner algo-
rithm is O(n3). Based on the code of Kiperwasser
and Goldberg (2016), we implement the Eisner al-
gorithm with Pytorch, which can obtain projective
maximum spanning trees on the entire PTB test
set in about 5 seconds on a single TITAN RTX
GPU. We compare the performance of the Eisner
algorithm and the Chu-Liu-Edmonds algorithm on
PTB and CTB. The results are shown in Table 8.
It can be seen that the Eisner algorithm slightly
outperforms the Chu-Liu-Edmonds algorithm on
PTB and CTB, because trees in PTB (99.9% pro-
jective) and CTB (100% projective) are almost all
projective, and the Eisner algorithm guarantees that
the obtained tree is projective. There are many non-
projective trees in UD, which the Eisner algorithm
cannot handle, so we use the Chu-Liu-Edmonds
algorithm with time complexity O(n3) on UD for
inference.

4.7 Efficiency Loss

We evaluate the parameter size and speed of the
original biaffine model and our model with 5 lay-
ers. Our speed evaluation is performed on a single
TITAN RTX GPU. Excluding the same encoder



5484

part, the original biaffine model has 2.34M param-
eters, and our model has 17.04M parameters. To
run one epoch of training with batch size 24 on
the entire PTB training set, the original biaffine
model takes 10.48 minutes, and our model takes
11.07 minutes. Compared with the original biaffine
model, our model uses 5.63% more time on train-
ing. For inference, the scoring process described
in Section 2.2 and 2.3 is the only process in which
there is an efficiency difference between the two
models. When only considering this process, to
parse the whole PTB test set, the original biaffine
model uses 0.06 seconds, and our model uses 0.51
seconds. Our model uses 0.45 seconds more in this
process, which has little effect on the entire parsing
time (17.5 seconds). The relatively low increase in
parameter size and time consumption on both train-
ing and parsing indicates the low efficiency loss of
introducing multi-layer form and pseudo-Siamese
module into the biaffine method.

5 Related Work

Transition-based method (Nivre, 2003; Yamada and
Matsumoto, 2003) and graph-based method (Mc-
Donald et al., 2005; McDonald and Pereira, 2006)
are two main approaches to dependency parsing.
Before the deep learning era, almost all dependency
parsers classify based on many sparse indicator fea-
tures. Titov and Henderson (2007) for the first time
introduce neural networks into transition-based de-
pendency parsing. Chen and Manning (2014) pro-
pose a fast and accurate transition-based depen-
dency parser using neural networks. Dyer et al.
(2015) introduce BiLSTM into transition-based de-
pendency parsing. Wang and Chang (2016) intro-
duce BiLSTM encoder into the graph-based depen-
dency parser. Kiperwasser and Goldberg (2016)
also introduce BiLSTM encoder into dependency
parsing and test it with both transition-based and
graph-based methods. Based on these works, Dozat
and Manning (2017) introduce biaffine method as
a scorer into the graph-based dependency parsing
and achieve significant performance improvement.

Multi-layer architecture is widely used to im-
prove the performance of the original biaffine
parser. Since the original biaffine parser uses multi-
layer BiLSTM, Na et al. (2019) propose to use
hidden states of different layers of BiLSTM to
construct role-dependent representations for each
layer, which are aggregated as the input of the
biaffine scorer. Li et al. (2019) propose to use

multi-layer self-attention at the encoder stage as
the replacement of BiLSTM. Ji et al. (2019) pro-
pose to add multi-layer graph neural networks be-
fore the biaffine scorer and apply layer-wise loss
to capture high-order information. Mohammad-
shahi and Henderson (2021) propose a recursive
non-autoregressive graph-to-graph transformer for
dependency parsing. They introduce a multi-layer
architecture similar to BERT but changing the atten-
tion function. In these models, the biaffine method
is used as a scorer after the multi-layer architec-
ture. Differently, our multi-layer architecture uses
the biaffine method in each layer as the role of an
attention mechanism and a scorer at the same time.

Pseudo-Siamese network architecture, which
means using two separate but identical networks
to process a pair of inputs and fusing the informa-
tion at a later stage, is widely used in the field of
computer vision (Hughes et al., 2018; Treible et al.,
2019). In our model, we use two separate but iden-
tical biaffine modules in each layer to process the
same input into two branches, which is a reversed
pseudo-Siamese network architecture.

6 Conclusions

In this paper, we propose a multi-layer biaffine
pseudo-Siamese model for neural dependency pars-
ing. In our proposed multi-layer architecture, bi-
affine method plays the role of a scorer and an
attention mechanism at the same time in each layer.
We conduct experiments and detailed analysis on
PTB, CTB, and UD, showing the benefit of intro-
ducing multi-layer form and pseudo-Siamese mod-
ule into the biaffine method. Compared with the
original single-layer biaffine model, our model has
a significant advantage in performance with low
efficiency loss. Our analysis shows that fusing the
biaffine scorer into the multi-layer architecture is
important for the performance gains of our model.
Compared with other multi-layer architectures for
dependency parsing, our multi-layer architecture
also has a performance advantage. Our model
achieves state-of-the-art results on PTB, CTB, and
UD. Our code is available at https://github.
com/xzy-xzy/MLPSB-Parser.

Acknowledgements

The work is supported by National Natural Science
Foundation of China under Grant No. 62036001
and PKU-Baidu Fund (No. 2020BD021). The cor-
responding author of this paper is Houfeng Wang.

https://github.com/xzy-xzy/MLPSB-Parser
https://github.com/xzy-xzy/MLPSB-Parser


5485

References
Danqi Chen and Christopher Manning. 2014. A fast and

accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750, Doha, Qatar. Association for Com-
putational Linguistics.

Chu and Liu. 1965. On the shortest arborescence of a
directed graph. Scientia Sinica, 14:1396–1400.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing of the Asian Federation of Nat-
ural Language Processing, ACL 2015, July 26-31,
2015, Beijing, China, Volume 1: Long Papers, pages
334–343. The Association for Computer Linguistics.

Jack Edmonds et al. 1967. Optimum branchings. Jour-
nal of Research of the national Bureau of Standards
B, 71(4):233–240.

Jason Eisner. 2000. Bilexical grammars and their cubic-
time parsing algorithms. In Advances in probabilis-
tic and other parsing technologies, pages 29–61.
Springer.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2021. Dependency parsing with
bottom-up hierarchical pointer networks. CoRR,
abs/2105.09611.

Lloyd H. Hughes, Michael Schmitt, Lichao Mou,
Yuanyuan Wang, and Xiao Xiang Zhu. 2018. Iden-
tifying corresponding patches in SAR and optical
images with a pseudo-siamese CNN. IEEE Geosci.
Remote. Sens. Lett., 15(5):784–788.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-based
dependency parsing with graph neural networks. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2475–
2485, Florence, Italy. Association for Computational
Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple
and accurate dependency parsing using bidirectional
LSTM feature representations. Transactions of the
Association for Computational Linguistics, 4:313–
327.

Ying Li, Zhenghua Li, Min Zhang, Rui Wang, Sheng
Li, and Luo Si. 2019. Self-attentive biaffine depen-
dency parsing. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 5067–5073. ijcai.org.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1412–1421, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia. As-
sociation for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Ryan T. McDonald, Fernando Pereira, Kiril Rib-
arov, and Jan Hajic. 2005. Non-projective depen-
dency parsing using spanning tree algorithms. In
HLT/EMNLP 2005, Human Language Technology
Conference and Conference on Empirical Methods
in Natural Language Processing, Proceedings of the
Conference, 6-8 October 2005, Vancouver, British
Columbia, Canada, pages 523–530. The Association
for Computational Linguistics.

Ryan T. McDonald and Fernando C. N. Pereira. 2006.
Online learning of approximate dependency parsing
algorithms. In EACL 2006, 11st Conference of the
European Chapter of the Association for Computa-
tional Linguistics, Proceedings of the Conference,
April 3-7, 2006, Trento, Italy. The Association for
Computer Linguistics.

Alireza Mohammadshahi and James Henderson. 2020.
Graph-to-graph transformer for transition-based de-
pendency parsing. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 3278–3289. Association
for Computational Linguistics.

https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.3115/v1/p15-1033
https://doi.org/10.3115/v1/p15-1033
https://doi.org/10.3115/v1/p15-1033
https://doi.org/10.1007/978-94-015-9470-7_3
https://doi.org/10.1007/978-94-015-9470-7_3
http://arxiv.org/abs/2105.09611
http://arxiv.org/abs/2105.09611
https://doi.org/10.1109/LGRS.2018.2799232
https://doi.org/10.1109/LGRS.2018.2799232
https://doi.org/10.1109/LGRS.2018.2799232
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.24963/ijcai.2019/704
https://doi.org/10.24963/ijcai.2019/704
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/H05-1066/
https://aclanthology.org/H05-1066/
https://aclanthology.org/E06-1011/
https://aclanthology.org/E06-1011/
https://doi.org/10.18653/v1/2020.findings-emnlp.294
https://doi.org/10.18653/v1/2020.findings-emnlp.294


5486

Alireza Mohammadshahi and James Henderson. 2021.
Recursive non-autoregressive graph-to-graph trans-
former for dependency parsing with iterative refine-
ment. Trans. Assoc. Comput. Linguistics, 9:120–138.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking self-attention: Towards inter-
pretability in neural parsing. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 731–742, Online. Association for Com-
putational Linguistics.

Seung-Hoon Na, Jinwoon Min, Kwanghyeon Park,
Jong-Hun Shin, and Young-Kil Kim. 2019. JBNU
at MRP 2019: Multi-level biaffine attention for se-
mantic dependency parsing. In Proceedings of the
Shared Task on Cross-Framework Meaning Repre-
sentation Parsing at the 2019 Conference on Natural
Language Learning, CoNLL 2019, Hong Kong, Nove-
mer 3, 2019, pages 95–103. Association for Compu-
tational Linguistics.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Conference on Parsing Tech-
nologies, IWPT 2003, Nancy, France, April 2003,
pages 149–160.

Milan Straka. 2018. Udpipe 2.0 prototype at conll 2018
UD shared task. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, Brussels, Belgium, October
31 - November 1, 2018, pages 197–207. Association
for Computational Linguistics.

Milan Straka, Jana Straková, and Jan Hajic. 2019. Eval-
uating contextualized embeddings on 54 languages in
POS tagging, lemmatization and dependency parsing.
CoRR, abs/1908.07448.

Ivan Titov and James Henderson. 2007. Fast and robust
multilingual dependency parsing with a generative
latent variable model. In EMNLP-CoNLL 2007, Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, June 28-30,
2007, Prague, Czech Republic, pages 947–951. ACL.

Wayne Treible, Philip Saponaro, and Chandra Kamb-
hamettu. 2019. Wildcat: In-the-wild color-and-
thermal patch comparison with deep residual pseudo-
siamese networks. In 2019 IEEE International Con-
ference on Image Processing, ICIP 2019, Taipei,
Taiwan, September 22-25, 2019, pages 1307–1311.
IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional LSTM. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2306–2315, Berlin, Germany.
Association for Computational Linguistics.

Xinyu Wang and Kewei Tu. 2020. Second-order neu-
ral dependency parsing with message passing and
end-to-end training. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 93–99, Suzhou, China. Association
for Computational Linguistics.

Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su, Linjun
Shou, Ming Gong, Wanjun Zhong, Xiaojun Quan,
Daxin Jiang, and Nan Duan. 2021. Syntax-enhanced
pre-trained model. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5412–5422, Online. Association for
Computational Linguistics.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Nat. Lang.
Eng., 11(2):207–238.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines.
In Proceedings of the Eighth International Confer-
ence on Parsing Technologies, IWPT 2003, Nancy,
France, April 2003, pages 195–206.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 5754–5764.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295–3305, Online. Association for Computa-
tional Linguistics.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562–571,
Honolulu, Hawaii. Association for Computational
Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank. In

https://transacl.org/ojs/index.php/tacl/article/view/2297
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/K19-2009
https://doi.org/10.18653/v1/K19-2009
https://doi.org/10.18653/v1/K19-2009
https://aclanthology.org/W03-3017/
https://aclanthology.org/W03-3017/
https://doi.org/10.18653/v1/k18-2020
https://doi.org/10.18653/v1/k18-2020
http://arxiv.org/abs/1908.07448
http://arxiv.org/abs/1908.07448
http://arxiv.org/abs/1908.07448
https://aclanthology.org/D07-1099/
https://aclanthology.org/D07-1099/
https://aclanthology.org/D07-1099/
https://doi.org/10.1109/ICIP.2019.8803742
https://doi.org/10.1109/ICIP.2019.8803742
https://doi.org/10.1109/ICIP.2019.8803742
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/P16-1218
https://doi.org/10.18653/v1/P16-1218
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://doi.org/10.18653/v1/2021.acl-long.420
https://doi.org/10.18653/v1/2021.acl-long.420
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://aclanthology.org/W03-3023/
https://aclanthology.org/W03-3023/
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230


5487

Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396–
2408, Florence, Italy. Association for Computational
Linguistics.

A Supplementary Results

Previous works generally use gold POS tags on
CTB. To get a more realistic estimate of real per-
formance, we evaluate our model and the origi-
nal biaffine model without gold POS tags on CTB.
Our model achieves 91.45 UAS, 89.31 LAS. The
original biaffine model achieves 91.19 UAS, 89.07
LAS. Compared with the original biaffine model,
our model improves 0.26 UAS, 0.24 LAS. The sig-
nificance test shows that p < 0.005 on UAS and
p < 0.01 on LAS. It can be seen that our model
still outperforms the original biaffine model with-
out gold POS tags on CTB.


