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Abstract

Abstract Meaning Representation (AMR) of-
fers a unified semantic representation for nat-
ural language sentences. Thus transformation
between AMR and text yields two transition
tasks in opposite directions, i.e., Text-to-AMR
parsing and AMR-to-Text generation. Existing
AMR studies only focus on one-side improve-
ments despite the duality of the two tasks, and
their improvements are greatly attributed to the
inclusion of large extra training data or complex
structure modifications which harm the infer-
ence speed. Instead, we propose data-efficient
Bidirectional Bayesian learning (BiBL) to fa-
cilitate bidirectional information transition by
adopting a single-stage multitasking strategy
so that the resulting model may enjoy much
lighter training at the same time. Evaluation on
benchmark datasets shows that our proposed
BiBL outperforms strong previous seq2seq re-
finements without the help of extra data which
is indispensable in existing counterpart mod-
els. We release the codes of BiBL at: https:
//github.com/KHAKhazeus/BiBL.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a formalism that could cap-
ture the semantic meaning of a natural language
sentence in a graph representation. An AMR graph
example is shown in Figure 1. Leaves in the AMR
graph denote concepts in the text sentence while
other nodes within the graph are entities. Two en-
tities could be connected with relations defined
under a common standard, and instance relations
connect entities and corresponding concepts. The
flexibility and semantic invariance characteristics
make AMR applicable to various natural language
processing (NLP) downstream tasks and achieve
solid performance.
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The boy wants to play. 
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Figure 1: AMR graph and DFS-linearized formats for
representing a text sentence “The boy wants to play". In-
stance relations are denoted with dotted red lines while
other relations are denoted with black lines. Concepts
in AMR graphs are enclosed by oval shapes. The inden-
tation in the DFS-linearized format is only for clarity
purposes.

The transformation between AMR graphs and
texts forms two basic tasks offering helpful AMR
information for the downstream tasks. Traditional
approaches treat AMR-to-Text generation and Text-
to-AMR parsing separately. However, utilizing
graph linearization and the power of pre-trained lan-
guage models, SPRING (Bevilacqua et al., 2021)
casts two tasks into a unified sequence-to-sequence
(seq2seq) structure and outperforms all traditional
approaches proposed before. Such progress consol-
idates the prevalent position of seq2seq approaches
tackling the AMR transition tasks.

Recently, many methods have been proposed to
further enhance the seq2seq model. In order to
improve the model performance on Text-to-AMR
parsing, Zhou et al. (2021) incorporates an action-
pointer mechanism. Yu and Gildea (2022) adds an-
cestor information of AMR graphs into the model.
Chen et al. (2022) introduces a data augmentation
approach by transforming data excerpted from se-
mantic role labeling and dependency parsing into
pseudo-AMR data, and then constructing extra
training tasks using these data. Hoang et al. (2021)
proposes graph ensembling to combine different
models in order to achieve better results. For the
AMR-to-Text generation task, Anonymous (2021)
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designs two auxiliary training objectives, i.e., re-
lationship prediction and distance prediction of
nodes in AMR graphs. Ribeiro et al. (2021) uti-
lizes data from the KG2Text task, which is trans-
forming knowledge graphs into texts, and masked
language modeling to pre-train the model. Bai
et al. (2022) proposes six graph pre-training tasks
to obtain a better pre-trained model. Though the
above-mentioned refinements are effective, apply-
ing auxiliary techniques, including ensembling and
adding graph information during training, could
greatly harm the training or inference speed. Mean-
while, obtaining a better pre-training model using
extra silver data or data augmentation techniques
greatly increases the time consumption and design
complexity of the whole model training phase.

Instead of using extra data or complicated tech-
niques which harm the training or inference speed,
we propose a novel solution for AMR transition
tasks. The solution consists of two auxiliary tasks
to help the model grasp the joint probability of
the AMR graphs and texts. By interweaving the
two auxiliary tasks with the main transduction task,
the extra knowledge learned in the two auxiliary
tasks could boost the model understanding of the
main task. Therefore, single-stage multitask learn-
ing without fine-tuning could be adopted for BiBL.
Based on our proposed BiBL, the training paradigm
could be greatly simplified, and under the same
model settings, our implemented models achieve
new state-of-the-art performances in AMR-to-Text
generation. Compared with previous refinements,
further comparison experiments show that BiBL is
more efficient both during the training and infer-
ence phases.

2 Related Work

There are two tasks when concerning the transfor-
mation between AMR graphs and texts. However,
it is not always that these two tasks are jointly con-
sidered.

2.1 Text-to-AMR Parsing

Graph-based approaches Many graph-based
approaches (Zhang et al., 2019a,b; Cai and Lam,
2020a,b; Zhou et al., 2020) have been proposed
to solve the transition from texts to AMR graphs.
These approaches merge graph structures into their
model design, and graph recategorization tech-
nique (Zhang et al., 2019a; Zhou et al., 2020; Cai
and Lam, 2020a) is introduced to unify different

graph representations that are identical in seman-
tics. Despite the complex graph structure design,
these models can achieve decent performances due
to the explicit incorporation of AMR graph fea-
tures.

Pure seq2seq approaches Pure seq2seq ap-
proaches for the Text-to-AMR task are data-hungry
in nature. Therefore, in previous works, several
methods have been explored to counter the data
sparsity problem (Konstas et al., 2017; van Noord
and Bos, 2017). However, these approaches ei-
ther introduce a large amount of data that is not
closely related to the parsing task or reduce the
capacity of the model by ignoring and recovering
fine-grained details through data pre-processing
and post-processing. Utilizing BART (Lewis et al.,
2020) as the model backbone, SPRING (Bevilac-
qua et al., 2021) provides a new seq2seq solution
for Text-to-AMR parsing without removing details
during the training process. Nonetheless, SPRING
obtains solid model performance gains compared
with previous methods and consequently becomes
the backbones of many recent refinements.

2.2 AMR-to-Text Generation

Graph2seq approaches AMR-to-Text genera-
tion is the reverse process of Text-to-AMR parsing.
Taking graph characteristics into consideration, sev-
eral graph2seq methods (Beck et al., 2018; Guo
et al., 2019; Wang et al., 2020a,b; Song et al., 2018;
Zhu et al., 2019) utilize graph neural networks to
tackle the problem. However, the performances
of graph2seq approaches are inferior to the state-
of-the-art approach, i.e., SPRING, which is purely
seq2seq.

Pure seq2seq approaches Similar to pure seq2seq
approaches in the Text-to-AMR parsing task, graph
linearization is the key to transforming the task
into a seq2seq formulation. Based on this formu-
lation, Mager et al. (2020) adapts a pre-trained
Transformer decoder to the generation task through
fine-tuning. SPRING (Bevilacqua et al., 2021) fine-
tunes BART on the generation task and proves that
the encoder-decoder structure of BART greatly con-
tributes to the final model performance. Since
SPRING is powerful for both transduction di-
rections, BiBL inherits the model backbone of
SPRING, which guarantees a solid basis of model
performance.
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3 Method

As the seq2seq model only receives and emits data
in sequential forms, we have to take the neces-
sary pre-processing and post-processing to perform
conversions between AMR graphs and their se-
quential forms. Then, the seq2seq transduction is
completed using sequence generation models of
encoder-decoder structure.

On top of the seq2seq model design, we enhance
bidirectional model performance through two aux-
iliary tasks which facilitate the model’s understand-
ing of the joint probability between texts and AMR
graphs.

3.1 Graph Linearization

For both AMR-to-Text generation and Text-to-
AMR parsing, graph linearization is a necessary
pre-processing task in seq2seq modeling. First,
we replace the variables in the AMR graphs with
specially designed tokens to avoid unnecessary to-
kenization. These tokens are added to the model as
special tokens. Then, we linearize the graphs fol-
lowing a depth-first search (DFS) fashion. We use
parentheses to indicate visit depth and use blank
spaces to separate variables and actual concepts. A
DFS-linearized example is shown in Figure 1.

Since the capacity of the model backbone is
fairly adequate and graph recategorization men-
tioned in Section 2.1 harms the model performance
in out-of-distribution settings, we do not incorpo-
rate graph recategorization into the pre-processing
procedures of BiBL.

3.2 Task Formulation

Following the design of graph linearization, the
bidirectional transition task could be transformed
into a seq2seq task formulation. Given a linearized
AMR graph Y = [y1, ..., yk] and the corresponding
sentence X = [x1, ..., xn] where the length of the
linearized graph is k and the length of the text sen-
tence is n, the goal of Text-to-AMR parsing is gen-
erating Y given X , and the goal of AMR-to-Text
generation is generating X given Y . Specifically,
the target of Text-to-AMR parsing is to maximize
P (Y |X), and the target of AMR-to-Text genera-
tion is to maximize P (X|Y ).

Sequence generation in NLP tasks is auto-
regressive in nature. Therefore, the two condi-
tional probabilities mentioned above could be de-
composed according to the following formulations:

P (Y |X) =

k∏
t=1

P (yt|X,Y<t)

P (X|Y ) =
n∏

t=1

P (xt|Y,X<t)

(1)

where t denotes the index of the decoding step,
Y<t and X<t denote the tokens before t position
in the linearized AMR graph and the text sentence,
respectively. P (yt|X,Y<t) and P (xt|Y,X<t) de-
note the probability distributions of each word in
the target vocabulary being the next candidate.

3.3 Post-processing
For the Text-to-AMR parsing task, post-processing
is required to ensure the validity of the generated
AMR sequences. We restore parenthesis parity,
remove tokens that are not possible descendants
of the previous token and remove tokens that are
obvious repetitions through the rule-based filter
mechanism proposed in SPRING. Moreover, since
each kind of wiki tag is sparse in the whole data
distribution, it is hard for the seq2seq model to
attach correct wiki concepts. Therefore, we use the
BLINK Entity Linker (Wu et al., 2020) to overwrite
the wiki tags generated by BiBL.

3.4 Encoder-Decoder for Sequence
Generation

To model the probability distribution P (yt|X,Y<t)
and P (xt|Y,X<t) in Equation 1, we adopt an
encoder-decoder model structure. In detail, the
encoder first turns the input tokens into embed-
dings, and then multi-head attention modules
transform the embeddings into hidden represen-
tations. For the simplicity of the formulation,
we ignore the begin-of-sentence [BOS], end-of-
sentence [EOS], and separation tokens [SEP] in
the input tokens. We could represent the process of
the encoder as follows:

He = Encoder(H i, θe) (2)

where θe denotes trainable parameters of the en-
coder module, H i ∈ Rl×d denotes the input em-
beddings of length l, He ∈ Rl×d denotes the out-
put embeddings of the encoder, and d denotes the
hidden size of the whole model.

Next, for the decoding step of t during training,
the decoder module takes the encoder output em-
beddings He and the ground truth tokens before
t position as inputs. Then, it generates a hidden
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I love games.

(<R0> love-01
:ARG0 (<R1> i)
:ARG1 (<R2> game))

[GEN]

I love games. 
(<R0> love-01

:ARG0 (<R1> i)
:ARG1 (<R2> game))

(b) Generation Task (c) Reconstruction Task

I love games. 
(<R0> love-01

:ARG0 (<R1> i) 
:ARG1 (<R2> game))

I [MASK] games. 
(<R0> [MASK]

[MASK] (<R1> [MASK]) 
:ARG1 ([MASK] game))

Encoder

Decoder

Encoder

Decoder

(a) Transduction Task

[ANS][ANS]

Figure 2: Visualization of the BiBL’s multitask learning paradigm. All texts and graphs are linearized in implemen-
tations. The indentation in the figure is only for understanding and clarity purposes. Words in the text sentence are
italicized, and special tokens are shown in bold.

vector as the output. The computation process of
the decoder could be represented as follows:

hdt = Decoder(He, T<t, θd) (3)

where θd denotes trainable parameters of the de-
coder module, He denotes the output embeddings
of the encoder, T<t denotes the tokens before t po-
sition in the target sequence, and hdt ∈ Rd denotes
the output hidden vector. During inference, T<t

is replaced with tokens generated by the decoder
module before t time step T̂<t.

The final step of sequence generation is to gen-
erate a probability distribution for the next candi-
date token utilizing the output hidden vector. Com-
bining the definitions of the encoder and decoder
module, the formulation of the whole process is as
follows:

SGt(H
i, θe, θd) = softmax(hdtW

LM ) (4)

where SGt(H
i, θe, θd) denotes the probability dis-

tribution vector output of t decoding step, WLM ∈
Rd×∥V ∥ denotes a trainable classification matrix
that turns the output hidden vector of the decoder
hdt into a probability distribution of size ∥V ∥, the
target vocabulary size.

3.5 Transduction Loss
Following the design of graph linearization and the
adoption of the encoder-decoder sequence gener-
ation model, we could model the paired transduc-
tion tasks between graphs and text sequences as
follows. Taking Text-to-AMR parsing as an exam-
ple, the encoder input should be the text sequence

X = [x1, ..., xn] and subsequently the encoder out-
puts a contextualized representation of X . For the
training step t, the decoder takes the linearized
graph before t position Y<t as the input and auto-
regressively generates the next graph token while
taking the contextualized output of the encoder into
account. Similarly, AMR-to-Text generation could
be modeled by swapping the text sequence and the
linearized graph. An example of the transduction
task is shown in Figure 2(a).

Given model parameters θ, two conditional prob-
abilities mentioned in Equation 1 could be for-
mulized as:

P (Y |X, θ) =

k∏
t=1

P (yt|X,Y<t, θ) =
k∏

t=1

SGt(H
i
X , θe, θd)

P (X|Y, θ) =
n∏

t=1

P (xt|Y,X<t, θ) =

n∏
t=1

SGt(H
i
Y , θe, θd)

(5)
where H i

X ∈ Rn×d and H i
Y ∈ Rk×d denote the

input embeddings of sequence X and sequence Y ,
respectively.

In order to maximize these two conditional prob-
abilities, transduction loss is defined as one of the
training objectives:

lA2T
td = −

n∑
t=1

logP (xt|Y,X<t, θ)

lT2A
td = −

k∑
t=1

logP (yt|X,Y<t, θ)

(6)

where lA2T
td and lT2A

td denote the sample-wise
transduction loss defined for AMR-to-Text gen-
eration and Text-to-AMR parsing, respectively.
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P (yt|X,Y<t, θ) and P (xt|Y,X<t, θ) denote the
probability of generating yt and xt, which are the
ground truth labels in respective transduction tasks.

3.6 Bidirectional Bayesian Learning

Inspecting previous refinements and other general
methods for bidirectional enhancement including
dual learning (He et al., 2016), their improvements
are mainly due to the inclusion of large pre-training
data or complex structure modifications. How-
ever, our proposed method is data-efficient and can
achieve great model improvements without extra
pre-training data and model structure changes.

According to the Bayesian rules, we could find
that two conditional probabilities in Equation 1 are
interconnected through a common factor P (X,Y ):

P (Y |X) = P (X,Y )/P (X)

P (X|Y ) = P (X,Y )/P (Y )
(7)

Therefore, our motivation is that the incorpora-
tion of joint probability P (X,Y ) could facilitate
the model’s understanding of the joint probabilistic
space of AMR graphs and texts. The model per-
formance could be enhanced on both sides of the
transduction task with proper design. The extra de-
sign should first clearly model the joint probability
P (X,Y ) and then should take measures to avoid
causing excessive confusion.

We propose two ways to model the joint probabil-
ity P (X,Y ), and two auxiliary loss functions are
included in our model design, i.e., generation loss
and reconstruction loss. Utilizing the concatena-
tion of text sentences and corresponding linearized
graphs, two tailored auxiliary tasks help the model
grasp the mutual information between two data
forms, which is beneficial for the basic transduc-
tion task. Meanwhile, various effective measures
are taken to avoid causing excessive confusion. Vi-
sualizations of the model input and output for these
two auxiliary tasks are shown in Figure 2(b,c).

Inspired by LAMOL (Sun et al., 2020), we
feed the model encoder with a specially designed
[GEN] token. Denoting the [GEN] token as sg,
the encoder input is represented as G = [sg]. Then
the encoder generates an output signal which the
decoder attends to, and the decoder would begin a
special generation process. For training step t, de-
noting the concatenation of a text sequence and the
corresponding linearized graph as Z = [X;Y ]. To
form the concatenation, we insert another special
[ANS] token between X and Y sequences to sepa-

rate them, creating discrimination from the original
task. The decoder is expected to re-generate Z
in an auto-regressive fashion. We adopt teacher
forcing for the training of the selected encoder-
decoder. For generation step t, the decoder is fed
with ground truth labels before the t position. Con-
sequently, it is possible for the model to re-generate
paired data without much information provided to
the encoder. The corresponding joint probability
and the sample-wise generation loss are defined as
follows:

P ([X;Y ]) =
n+k∏
t=1

P (zt|G,Z<t, θ) =
n+k∏
t=1

SGt(H
i
G, θe, θd)

lg = −
n+k∑
t=1

logP (zt|G,Z<t, θ)

(8)
where H i

G ∈ R1×d denotes the input embedding
of G, and lg denotes the auxiliary generation loss.
This auxiliary generation task could help the de-
coder grasp the underlying joint probability dis-
tribution of the graph-text data and facilitates the
model to gain more knowledge from the training
data. The [GEN] token input for the encoder
works as a special signal for the decoder to main-
tain clear discrimination between the generation of
the concatenated sequences in the generation task
and the target sequences in the original transduc-
tion task. Discriminated by [GEN] token, it would
not impede the learning of the encoder-decoder at-
tention mechanism in the main transduction task.
Therefore, the auxiliary generation task could facil-
itate the main transduction task and avoid causing
excessive confusion.

Besides having a thorough understanding of the
joint probability distribution of the training data
pairs, BiBL needs to learn a universal joint distri-
bution that is applicable to open-world data. In-
spired by masked language modeling (Devlin et al.,
2019), we adopt the following reconstruction task.
First, we concatenate the text sentence and the lin-
earized graph to get Z = [X;Y ]. Similar to the
generation auxiliary task, [ANS] token is inserted
between X and Y sequences, which could pre-
vent excessive confusion brought to the original
transduction task. Then we randomly mask 50%
of the concatenation to get a masked concatena-
tion M = [x1, ..., sm, ..., xn, sa, y1, ..., sm, ..., yk],
where sm denotes the [MASK] token and sa de-
notes the [ANS] token. Taking this masked con-
catenation as input, the encoder generates a con-
textualized masked representation. Attending to
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the representation generated by the encoder, the de-
coder is expected to auto-regressively reconstruct
the original concatenation Z. In this auxiliary task,
the reconstruction loss would be computed over all
tokens generated by the decoder. The correspond-
ing joint probability and the sample-wise recon-
struction loss are defined as follows:

P ([X;Y ]) =
n+k∏
t=1

P (zt|M,Z<t, θ) =
n+k∏
t=1

SGt(H
i
M , θe, θd)

lr = −
n+k∑
t=1

logP (zt|M,Z<t, θ)

(9)
where H i

M ∈ R(n+k)×d denotes the input embed-
ding of the masked input M and lr denotes the
auxiliary reconstruction loss. This auxiliary task
reinforces the decoder to understand the condensed
representation produced by the encoder. Mean-
while, since masks could be applied simultaneously
to texts and AMR graphs, the reconstruction of
masked tokens helps the model adapt to the special
structures of the graph linearization results while fa-
cilitating possible information alignment between
two forms of data. This knowledge could be ex-
tended to general situations and is applicable to
open-world data.

3.7 Single-stage Multitask Learning
A multitask learning paradigm is used in our train-
ing process to combine three loss functions men-
tioned above, i.e., transduction loss lA2T

td or lT2A
td ,

generation loss lg and reconstruction loss lr. The
formulae are as follows:

lA2T = lA2T
td + λglg + λrlr

lT2A = lT2A
td + λglg + λrlr

(10)

where lA2T and lT2A denote the loss functions of
AMR-to-Text generation and Text-to-AMR parsing,
respectively, λg is the weight of the generation loss,
and λr is the weight of the reconstruction loss. The
loss is computed for every sample while averaged
over a single batch. Moreover, the input sequences
in the transduction task are placed in front of the
target sequences for concatenation.

Since the joint probability distribution learned
in two auxiliary tasks is conducive to the under-
standing of the conditional probability that corre-
sponds to the original transduction task, it should
be better to interweave the auxiliary tasks with the
transduction task. Meanwhile, three measures are
taken to avoid causing disturbances over the main
transduction task. First, for the generation task,

the special [GEN] token input for the encoder cre-
ates discrimination between the generation task and
the original task. Second, for both auxiliary tasks,
we utilize another special [ANS] token to sepa-
rate two sequences, creating further discrimination
from the original task. Third, by choosing the best
loss weight configuration, the relationship among
the three tasks could be adjusted and unnecessary
confusion could be minimized. Therefore, differ-
ent from all previous refinements that adopt a two-
stage training paradigm of pre-training and fine-
tuning, a single-stage multitask learning paradigm
is explored. Results listed in the ablation studies 6
could show that this learning paradigm can greatly
simplify the training process while retaining the
extra performance boost by incorporating the extra
knowledge.

4 Experimental Setup

Based on the evaluation system of previous
works (Bevilacqua et al., 2021; Chen et al., 2022;
Hoang et al., 2021), we inspect the performance
of BiBL in two settings: In-Distribution and Out-
of-Distribution. The in-distribution setting shows
the power of BiBL on standard benchmarks. Since
the bidirectional transitions between AMR graphs
and texts should be modeled as a unified process
without dependence on language contexts, it is
also important to evaluate our model in out-of-
distribution settings. The experiment benchmark
system uses Nvidia Titan RTX as GPU and Intel
Xeon E5-2637@3.50Ghz as CPU. The system is
built with 256GB RAM.

4.1 Datasets

In-Distribution The data we use in the in-
distribution setting are AMR 2.0 (LDC2017T10)
and AMR 3.0 (LDC2020T02) corpora releases.
AMR 3.0 is an expanded version of AMR 2.0 with
additional AMR-text data to cover more general sit-
uations. AMR 3.0 contains 55, 635 pairs of graphs
and texts, and AMR 2.0 contains 36, 521 pairs.
Out-of-Distribution Following the benchmark
proposed in SPRING, we incorporate three eval-
uation datasets in the out-of-distribution setting:
i) TLP, an AMR-tagged dataset containing 1, 562
data pairs constructed from the famous children’s
novel The Little Prince.; ii) Bio, full data from
the Bio-AMR corpus (May and Priyadarshi, 2017)
containing 6, 952 data pairs. While in SPRING,
only the test data are used in the evaluation, we
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use all data splits to conduct a thorough evaluation;
iii) New3, a set of data excerpted from AMR 3.0
containing 527 data pairs, whose original source is
the LORELEI DARPA project.
Silver Data Silver data is generated according
to the following process. First, we obtain the best
Text-to-AMR parsing BiBL model trained on the
target dataset (AMR 2.0 or AMR 3.0). Then, we
choose English Gigaword (LDC2003T05) as an
unlabeled dataset. We use the previously trained
Text-to-AMR BiBL model to generate annotations
over randomly chosen sentences from the unlabeled
dataset. Finally, a newly annotated dataset for extra
training is acquired. For BiBL, the silver data we
generate contains 200k sentence-graph pairs.

4.2 Models

Model Setting BART with augmented vocabu-
lary is chosen as the pre-trained encoder-decoder
model for BiBL. We inherit the model hyper-
parameters from BART Large, defined in Hug-
gingface’s transformers library. For training-
related hyperparameters, our models are trained for
30 epochs using cross-entropy with a batch size of
500 graph linearization tokens, RAdam (Liu et al.,
2020) optimizer, and a learning rate of 1 × 10−5.
The gradient is accumulated for 10 batches. The
dropout is set to 0.25.
BiBL variants During experiments, we have done
an empirical study on the best weight configuration
for generation and reconstruction loss. Details are
shown in Appendix A. For Text-to-AMR parsing,
we set λg as 1.0 and λr as 0.5. For AMR-to-Text
generation, we set λg as 0.15 and λr as 0.5. Models
with λg or λr as 0 are included for ablation studies.
BiBL variants trained with extra silver data are also
included in the experiments. The silver data will
be directly included in the single-stage multitask
learning without further fine-tuning.

4.3 Evaluation Metrics

Text-to-AMR Parsing Fine-grained Smatch (Cai
and Knight, 2013) is chosen as the evaluation met-
ric for Text-to-AMR parsing since previous works
all use this metric, and it reports fine-grained scores
on different aspects of the parsed AMR graphs.
AMR-to-Text Generation Following previous
works, we evaluate BiBL with three common Natu-
ral Language Generation measures, i.e., BLEU (Pa-
pineni et al., 2002), chrF++ (Popović, 2017), and
METEOR (Banerjee and Lavie, 2005).

4.4 Comparison System

Text-to-AMR Parsing SPRING (Bevilacqua
et al., 2021), Ancestor (Yu and Gildea, 2022),
Graphene4S (Hoang et al., 2021), AMRize (Chen
et al., 2022) and GraphPre (Bai et al., 2022) men-
tioned in Section 1 are included.
AMR-to-Text Generation SPRING (Bevilac-
qua et al., 2021), ReconCov (Anonymous, 2021),
STA (Ribeiro et al., 2021) and GraphPre (Bai et al.,
2022) mentioned in Section 1 are included.

5 Results

Text-to-AMR parsing According to Tables 1
and 2, under the setting of no extra training data
and no complex ensembling techniques applied,
BiBL outperforms all other refinements on AMR
3.0. Moreover, for AMR 2.0 and AMR 3.0, BiBL
outperforms all previous refinements on the fine-
grained Named Entity Recognition (NER) metric
by a large margin. Especially for AMR 3.0, the per-
formance metric of NER is increased by 4.3 even
compared with AMRize. Besides, Wikification
and topology-related Unlabeled metrics are also
improved. This shows that the extra reconstruction
task helps the model grasp the alignment between
texts and AMR graphs. These alignments include
special entity mappings and structural mappings,
which are beneficial to NER and topology-related
unlabeled metrics.
AMR-to-Text generation According to Tables 3
and 4, outperforming all previous methods by a
significant margin (1.7 BLEU for AMR 2.0 and
1.5 BLEU for AMR 3.0), BiBL with silver data
achieves a new state-of-the-art performance on
AMR-to-Text generation. Meanwhile, BiBL with
no silver data also surpasses all previous refine-
ments under the same setting, proving that BiBL is
the most effective refinement without the need for
extra training data and the pre-training setting.
Out-of-Distribution Table 6 shows that BiBL out-
performs several models (Graphene and SPRING)
under the out-of-distribution setting without extra
training data or graph ensembling techniques. This
confirms that BiBL facilitates the model to grasp
the joint probability distribution of AMR graphs
and texts which is applicable to open-world data.
Bidirectional Performance Enhancement In-
specting BiBL on the more comprehensive AMR
3.0 dataset, under the setting of no extra data and
no ensembling techniques, BiBL achieves the best
results on Text-to-AMR parsing. For AMR-to-Text
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Model Extra Data Ensemble Smatch NoWSD Wiki. Conc. NER Neg. Unlab. Reent. SRL

SPRING (2021) N N 83.8 84.4 84.3 90.2 90.6 74.4 86.1 70.8 79.6
*Ancestor (2022) N N 84.8 85.3 84.1 90.5 91.8 74.0 88.1 75.1 83.4
BiBL (ours) N N 84.6 85.1 83.6 90.3 92.5 73.9 87.8 74.4 83.1

SPRING (2021) 200k N 84.3 84.8 83.1 90.8 90.5 73.6 86.7 72.4 80.5
Graphene4S (2021) 200k Y 84.8 85.3 83.9 90.6 92.2 75.2 88.0 71.4 83.5
*AMRize (2022) 40k Y 85.3 85.7 83.9 90.7 92.2 75.0 88.4 75.0 83.6
*GraphPre (2022) 200k N 85.4 85.8 81.4 91.2 91.5 74.0 88.3 73.5 81.5
BiBL (ours) 200k N 84.7 85.1 83.2 90.4 92.6 75.0 87.8 74.6 83.3

Table 1: Text-to-AMR parsing results on AMR 2.0 dataset. Row blocks: baseline + approaches without any extra
training data and ensembling techniques; approaches with extra training data or ensembling techniques. Columns:
Model; Smatch; Fine-grained scores. The best results within each block are shown in bold. Models with * denote
contemporary works.

Model Extra Data Ensemble Smatch NoWSD Wiki. Conc. NER Neg. Unlab. Reent. SRL

SPRING (2021) N N 83.0 83.5 82.7 89.8 87.2 73.0 85.4 70.4 78.9
*Ancestor (2022) N N 83.5 84.0 81.5 89.5 88.9 72.6 86.6 74.2 82.2
BiBL (ours) N N 83.9 84.3 83.7 89.8 93.2 68.1 87.2 73.8 81.9

SPRING (2021) 200k N 83.0 83.5 81.2 89.5 87.1 71.7 85.4 71.3 79.1
Graphene4S (2021) 200k Y 83.8 84.2 81.9 90.1 88.3 74.6 86.9 70.2 82.5
*AMRize (2022) 40k Y 84.0 84.5 80.7 90.0 88.9 73.1 87.1 73.9 82.6
*GraphPre (2022) 200k N 84.2 85.8 81.4 90.2 88.5 72.1 87.1 72.4 80.3
BiBL (ours) 200k N 83.5 84.0 82.1 89.6 88.9 73.3 86.7 73.7 82.2

Table 2: Text-to-AMR parsing results on AMR 3.0 dataset. Row blocks/Columns/Bold/* as in Table 1.

Model Extra Data BL CH++ MET

SPRING (2021) N 45.3 73.5 41.0
*ReconCov (2021) N 45.4 73.6 42.4
BiBL (ours) N 47.0 74.8 43.2

SPRING (2021) 200k 45.9 74.2 41.8
STA (2021) 2000k 49.7 - 45.4
*GraphPre (2022) 200k 49.8 76.2 42.6
BiBL (ours) 200k 51.5 77.6 45.2

Table 3: AMR-to-Text generation results on AMR 2.0
dataset. Row blocks: approaches without extra training
data; approaches with extra training data. Columns:
Model; BLEU; chrF++; METEOR. The best results
within each block are shown in bold. Models with *
denote contemporary works.

generation, BiBL with single-stage multitask learn-
ing surpasses the current state-of-the-art GraphPre
model. Since the two-stage training paradigm of
pre-training and fine-tuning is adopted by Graph-
Pre, the performance boost proves that the single-
stage multitask learning could not only simplify
the training process but also contribute to the fi-
nal model performance. For both transduction di-
rections, BiBL with no silver data even surpasses
several refinements that need extra training data
(SPRING, Graphene4S) in both in-distribution and
out-of-distribution settings. These results show

Model Extra Data BL CH++ MET

SPRING (2021) N 44.9 72.9 40.6
*ReconCov (2021) N 45.7 73.7 42.8
BiBL (ours) N 47.4 74.5 43.4

SPRING (2021) 200k 46.5 73.9 41.7
*GraphPre (2022) 200k 49.2 76.1 42.3
BiBL (ours) 200k 50.7 76.7 45.0

Table 4: AMR-to-Text generation results on AMR 3.0
dataset. Row blocks/Columns/Bold/* as in Table 3.

Model SMATCH BLEU

BiBL (silver)
- two-stage 84.70 51.49
- single-stage 84.65 51.45

Table 5: Experiments on training paradigms. AMR 2.0
is chosen as the dataset. The recorded results are the
best results achieved among all BiBL variants.

that our proposed method is data-efficient and ef-
fective on bidirectional transitions. A case study is
included in Appendix B for further examination.

We have also conducted experiments on model
efficiency. According to Table 8, the time spent
pre-training and fine-tuning GraphPre, which is the
current state-of-the-art refinement, is 8.6x of the
time spent training BiBL through single-phase mul-
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Model Extra Data Ensemble TLP Bio New3

Text-to-AMR
SPRING (2021) N N 77.3 59.7 73.7
Graphene4S (2021) 200k Y 77.9 61.5 74.8
*AMRize (2022) 40k N 78.9 61.2 75.4
*GraphPre (2022) 200k N 76.9 63.2 76.9
BiBL (ours) N N 78.6 61.0 75.4
BiBL (ours) 200k N 78.3 61.1 75.4

AMR-to-Text
SPRING (2021) N N 24.3 18.9 37.2
*GraphPre (2022) 200k N 29.1 20.7 44.8
BiBL (ours) N N 26.1 20.3 39.0
BiBL (ours) 200k N 28.2 24.4 45.0

Table 6: OOD evaluation on Text-to-AMR (Smatch)
and AMR-to-Text (BLEU). All models are trained on
the AMR 2.0 dataset. Bold/* as in Table 1.

Model Extra Data SMATCH NER BLEU

BiBL
- λg = 0.15 + λr = 0.5 N - - 47.4
- λg = 1.0 + λr = 0.5 N 83.9 93.2 -
- λg = 0.15 + λr = 0.5 200k - - 50.1
- λg = 1.0 + λr = 0.5 200k 83.5 88.9 -
- λg = 0 + λr = 0.5 N 83.7 89.1 47.3
- λg = 0.15 + λr = 0 N 82.8 88.2 45.2
- λg = 1.0 + λr = 0 N 83.0 88.3 45.5

Table 7: Ablation studies on Text-to-AMR (Smatch
and fine-grained NER) and AMR-to-Text (BLEU) using
AMR 3.0 as the benchmark. Bold denotes the best
results.

titask training under the same setting. According
to Table 9, since the ensembling of Graphene4S is
computed with CPUs, the time spent ensembling
four graphs generated by Graphene4S is 22.8x of
the time spent by BiBL for the inference of one
training sample when the beam size is set to 5.

6 Ablation Studies

Since AMR 3.0 is the superset of AMR 2.0, our ab-
lation studies are based on the AMR 3.0 dataset so
that a more comprehensive investigation could be
conducted. Through a thorough analysis of Table 7,
the following conclusions could be made:
• Inspecting all variants of BiBL for Text-to-

AMR parsing on both AMR 2.0 and AMR 3.0, if
the scope of the original dataset is limited, silver
data could have minor contributions to BiBL on the
Text-to-AMR parsing task. Otherwise, silver data
may hurt the model performance. For the oppo-
site AMR-to-Text generation task, the performance
boost of silver data on BiBL is distinct.
• The combination of the auxiliary reconstruc-

tion and generation tasks achieves the best model
performance, proving that both tasks are conducive
and indispensable to the main transduction task.

Model Extra Data Ensemble Time Multiplier

SPRING (2021) N N 35.63 1.0x
*GraphPre[pre] (2022) 200k N 267.23 7.5x
*GraphPre[fine] (2022) N N 38.73 1.1x
*GraphPre[total] (2022) 200k N 305.96 8.6x
BiBL (ours) 200k N 128.38 3.6x

Table 8: Training efficiency evaluation on different re-
finement approaches. Time is evaluated using the same
computation resource and averaged over three batches.
The unit of Time is a millisecond.

Model Ensemble Time Multiplier

BARTlarge-based models - 133.99 1.0x
SPRING (2021) N
*GraphPre (2022) N
BiBL (ours) N

Graphene4S (2021) Y 3050.13 22.8x

Table 9: Inference efficiency evaluation on different
refinement approaches. Time is evaluated using the
same computation resource and averaged over a single
batch. The unit of Time is a millisecond.

BiBL enables the model to effectively capture the
underlying information in the joint probabilistic
space of AMR graphs and texts.

BiBL is trained with single-stage multitask learn-
ing. Further experiments are conducted to compare
the chosen paradigm with the two-stage training
paradigm. For two-stage training, we pre-train
BiBL with auxiliary tasks and then fine-tune BiBL
without them. Results listed in Table 5 show that
the benefits brought by fine-tuning are rather trivial.
This proves that through proper loss weight config-
uration, auxiliary tasks could help BiBL to achieve
better performance on the main transduction task
without causing confusion. Therefore, the training
paradigm could be reduced to single-stage multi-
task learning without losing performance boost.

7 Conclusion

In this paper, we propose BiBL which is capable of
enhancing the seq2seq approach to tackle the bidi-
rectional transition task between AMR graphs and
texts. BiBL could learn the joint probability of two
data forms in a data-efficient way through single-
stage multitask learning with auxiliary generation
and reconstruction tasks. Eventually, model perfor-
mances are greatly improved in in-distribution and
out-of-distribution settings. Moreover, our model
outperforms all previous refinements with no extra
data on Text-to-AMR parsing and achieves the new
state-of-the-art result on AMR-to-Text generation.
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SMATCH

AMR 2.0 AMR 3.0

BiBL
- λg = 0.00 84.06 83.81
- λg = 0.15 83.98 83.92
- λg = 0.25 84.01 84.06
- λg = 0.50 83.92 83.83
- λg = 1.00 84.17 83.98

Table 10: Text-to-AMR parsing experiments on weight
configurations of the generation auxiliary task. Bold
denotes the best results. Underline denotes second-best
results. Results are reported on the validation set.

A Empirical Study on Weight
Configuration of Auxiliary Tasks

For the weight configuration of the auxiliary
tasks proposed for Bidirectional Bayesian Learning
(BiBL), we have experimented with several BiBL
variants of different λg and λr. All experimen-
tal models are trained without extra silver data in
order to discriminate the direct effect of different
parameters.

During experiments, we find that the magnitudes
of transduction, generation, and reconstruction loss
should be on the same level. Otherwise, the gener-
ation validity of BiBL will be greatly influenced by
auxiliary tasks constructed using the concatenation
of AMR graphs and texts. Therefore, reasonable
ranges of λg and λr could be roughly determined.
Moreover, we find that the weight sensitivity of the
generation task is relatively high compared with
the auxiliary reconstruction task. Therefore, it is
necessary to conduct a grid search over reasonable
ranges of λg. Since the weight sensitivity of the
reconstruction task is relatively low according to
our conclusion, 0.5 is chosen for λr.

According to the results presented in Ta-
bles 10, 11, 12, and 13, for Text-to-AMR parsing,
it is obvious that BiBL variant with λg = 1.00
is the best choice. However, for AMR-to-Text
generation, the effect of λg varies across datasets.
Focusing on achieving the best performance on in-
distribution datasets, BiBL variants with λg = 0.15
and λg = 1.00 are the best models. However, ac-
cording to Table 14, after inspecting the combina-
tion effect of generation and reconstruction tasks
on AMR-to-Text generation, BiBL variant with
λg = 0.15 and λr = 0.5 greatly outperforms the
model with λg = 1.00 and λr = 0.5.

BLEU

AMR 2.0 AMR 3.0

BiBL
- λg = 0.00 40.21 41.50
- λg = 0.15 40.34 41.72
- λg = 0.25 40.19 41.20
- λg = 0.50 39.89 41.24
- λg = 1.00 40.23 41.52

Table 11: AMR-to-Text generation experiments on
weight configurations of the generation auxiliary task.
Bold denotes the best results. Underline denotes second-
best results. Results are reported on the validation set.

SMATCH

AMR 2.0 AMR 3.0 TLP

BiBL
- λg = 0.00 83.80 83.00 77.30
- λg = 0.15 84.28 82.78 77.91
- λg = 0.25 83.97 82.93 77.88
- λg = 0.50 83.86 83.30 77.62
- λg = 1.00 84.23 83.00 77.94

Table 12: Text-to-AMR parsing experiments on weight
configurations of the generation auxiliary task. Bold
denotes the best results. Underline denotes second-best
results. Results are reported on the test set.

Therefore, according to the above analysis, re-
spectively for Text-to-AMR parsing and AMR-to-
Text generation, BiBL variants with λg = 1.0 and
λr = 0.5 and λg = 0.15 and λr = 0.5 are chosen
due to their excellent performances.

B Case Study

In section 5, we analyzed the performance of BiBL
according to chosen metrics. Here we present four
cases to further inspect the improvements of BiBL.
First, we inspect two representative cases for Text-
to-AMR parsing. Figure 3 shows a case where
BiBL correctly labels the named entity OCD as a
disease. However, in the output AMR graph of the
SPRING baseline, the named entity is falsely la-
beled as a medical condition, which is too general.
This proves that BiBL could better recognize and
understand the named entities included in the text
sentences, which leads to a large performance boost
of BiBL on the fine-grained NER metric. Figure 4
shows a case where BiBL correctly recognizes the
reentrancy that occurred in the text. Although the
short sentence provides limited semantic informa-



5473

BLEU

AMR 2.0 AMR 3.0 TLP

BiBL
- λg = 0.00 44.77 44.90 24.37
- λg = 0.15 44.65 45.18 23.83
- λg = 0.25 43.61 45.50 24.17
- λg = 0.50 44.30 45.35 25.11
- λg = 1.00 44.62 45.47 24.78

Table 13: AMR-to-Text generation experiments on
weight configurations of the generation auxiliary task.
Bold denotes the best results. Underline denotes second-
best results. Results are reported on the test set.

Model BLEU

BiBL
- λg = 0.15 + λr = 0.5 46.95
- λg = 1.00 + λr = 0.5 46.65

Table 14: Experiments on the combination effect of
generation and reconstruction tasks. AMR 2.0 is chosen
as the dataset.

tion and the speaker information is indicated by
a colon separation, BiBL still fully understands
the meaning of the sentence and generated the cor-
rect reentrancy relations in the AMR graph result.
However, in SPRING-generated AMR graphs, the
reentrancy information is missing. This proves that
BiBL could still understand the structures of text
sentences even with limited context provided.

Then, we inspect two representative cases for
AMR-to-Text generation. Figure 5 shows a case
where BiBL could understand the complex seman-
tic meaning indicated by the AMR graph. While
the SPRING baseline misrepresents the semantic
relation between sight and hope, BiBL could re-
store the correct meaning in the generated text by
using the same grammar structure in the gold label.
This proves that BiBL could accurately grasp the
underlying semantic meaning of texts and correctly
represent the information using proper grammar
structures. Figure 6 shows a case where a complex
AMR graph is involved. The relations between the
nouns in the AMR graphs are complicated, and
there are obvious overlaps between several nodes.
We could see that the text generated by SPRING
fails to reconstruct the word "Japan delegation",
misrepresents the relation between head and Tokyo
Handicapped Integrated Sports Center, and misses
the concept of director. However, BiBL could cor-
rectly generate all the concepts involved in the com-

plex graph and maintain the correct relations. This
proves that BiBL could deal with situations where
graph information is rather complicated.
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SPRING AMR

(s / sound-01
      [OMIT]
      :ARG2 (a / anxious
            [OMIT]
            :ARG1-of (i2 / instead-of-91
                  :ARG2 (h / have-03
                        :ARG0 y
                        :ARG1 (d / disease

        :name (n / name :op1 "OCD")
                                     [OMIT]))))
      [OMIT])

(z0 / sound-01
      [OMIT]
      :ARG2 (z2 / anxious
              [OMIT]
              :ARG1-of (z5 / instead-of-91
                    :ARG2 (z6 / have-03
                          :ARG0 z3
                          :ARG1 (z7 / disease
                                       :name (z8 / name :op1 "OCD")
                                       [OMIT]))))
      [OMIT])

GOLD AMR

BiBL AMR

(z0 / sound-01
      [OMIT]
      :ARG2 (z2 / anxious
              [OMIT]              
              :ARG1-of (z5 / instead-of-91
                    :ARG2 (z6 / have-03
                          :ARG0 z3
                          :ARG1 (z7 / medical-condition
                                        :name (z8 / name :op1 "OCD")
                                        [OMIT]))))
      [OMIT])

To me that just sounds like you being overly 
anxious, as opposed to having really bad OCD.

TEXT

Figure 3: Text-to-AMR parsing case study on NER.
The input text sentence is italicized. Wikification la-
bels are omitted on gold, SPRING, and BiBL generated
AMR graphs. The [OMIT] sign represents the omis-
sion of other graph nodes that are the same across gold,
SPRING, and BiBL generated AMR graphs. The under-
lined parts highlight the label generated for the "OCD"
named entity.

SPRING AMR

(s / say-01
      :ARG0 (i / i)
      :ARG1 (u / understand-01 :polarity -
                   :ARG0 i
                   :ARG1 (p2 / point-04
                                :ARG0 p))
      :ARG2 (p / person :wiki - 
                   :name (t / name 
                               :op1 "TMT")))

(z0 / say-01
       :ARG1 (z1 / understand-01 :polarity -
                    :ARG0 (z2 / i)
                    :ARG1 (z3 / point-04
                                 :ARG0 (z4 / you)))
       :ARG2 (z5 / person :wiki - 
                    :name (z6 / name 
                                :op1 "TMT")))

GOLD AMR

BiBL AMR
(z0 / say-01
       :ARG1 (z1 / understand-01 :polarity -
                    :ARG0 (z2 / i)
                    :ARG1 (z3 / point-04
                                 :ARG0 (z4 / person :wiki - 
                                              :name (z5 / name 
                                                          :op1 "TMT"))))
       :ARG2 z4)

TMT: I don't understand your point. 
TEXT

Figure 4: Text-to-AMR parsing case study on Reentran-
cies. The input text sentence is italicized. The underline
parts highlight the occurrence of a graph reentrancy.
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SPRING TEXT

(s / sight-01
      :ARG1 (h / hopeful-03
            :ARG0 (t / they)
            :ARG1 (e / enter-01
                  :ARG0 t
                  :ARG1 (h2 / heat)))
      :time (a / already)
      :condition (a2 / accident :polarity -))
GOLD TEXT
If accidents do not occur, their hopes of entering 
the heats are already insight.

AMR

If there is no accident, there is already a sight of 
them hoping to enter the heat.

BiBL TEXT
Without the accident, their hopes of entering the 
heat were already in sight.

Figure 5: AMR-to-Text generation case study on seman-
tic understanding. The text sentence output is italicized.
The underline parts highlight the main differences be-
tween gold, SPRING, and BiBL generated sentences.

SPRING TEXT

(h / hand-over-02
      :ARG0 (p3 / person :wiki -
            :name (n / name :op1 "Souya"))
      :ARG1 (f2 / flag
            :poss (d / delegation
                  :source (c2 / country :wiki "Japan"
                        :name (n2 / name :op1 "Japan")))
            :mod (d2 / delegation))
      :ARG2 (p / person :wiki -
            :name (n3 / name :op1 "Banminyan")
            :ARG0-of (h2 / head-01
                  :ARG1 d)
            :ARG0-of (h3 / have-org-role-91
                  :ARG1 (s2 / sports-facility :wiki -
                        :name (n4 / name :op1 "Tokyo" 
                              :op2 "Handicapped" 
                              :op3 "Integrated" 
                              :op4 "Sports" :op5 "Center"))
                  :ARG2 (d3 / director))))
GOLD TEXT

Souya handed over the delegation flag of the 
Japanese delegation to Banminyan, head of the 
delegation and director of the Tokyo Handicapped 
Integrated Sports Center .

AMR

Souya handed over the delegation flag of the 
Japanese delegation to the head of the delegation 
and Director of the Tokyo Handicapped Integrated 
Sports Center, Banminyan .

BiBL TEXT

Souya handed over the delegation flag of Japan to 
the head of the Tokyo Handicapped Integrated 
Sports Center Banminyan .

Figure 6: AMR-to-Text generation case study on com-
plex graph structures. The text sentence output is itali-
cized. The underline parts highlight the main differences
between gold, SPRING, and BiBL generated sentences.


