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Abstract

Semantic parsing converts natural language
utterances into structured logical expressions.
We consider two such formal representations:
Propositional Logic (PL) and First-order Logic
(FOL). The paucity of labeled data is a major
challenge in this field. In previous works, dual
reinforcement learning has been proposed as
an approach to reduce dependence on labeled
data. However, this method has the following
limitations: 1) The reward needs to be set man-
ually and is not applicable to all kinds of logical
expressions. 2) The training process easily col-
lapses when models are trained with only the re-
ward from dual reinforcement learning. In this
paper, we propose a scoring model to automati-
cally learn a model-based reward, and an effec-
tive training strategy based on curriculum learn-
ing is further proposed to stabilize the training
process. In addition to the technical contribu-
tion, a Chinese-PL/FOL dataset is constructed
to compensate for the paucity of labeled data
in this field. Experimental results show that the
proposed method outperforms competitors on
several datasets. Furthermore, by introducing
PL/FOL generated by our model, the perfor-
mance of existing Natural Language Inference
(NLI) models is further enhanced.

1 Introduction

Semantic parsing is the task of mapping natural lan-
guage utterances into logical expressions. As two
major logical forms of text representation, Proposi-
tional Logic (PL) and First-order Logic (FOL) play
an increasingly important role in a wide range of
downstream tasks including Inductive Logic Pro-
gramming (ILP) (Yang and Song, 2019), Question
Answering (QA) (Longo and Santoro, 2020) and
Interpretable Reinforcement Learning (Ma et al.,
2020; Kimura et al., 2021) because they are capable
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English-FOL
Natural Language Utterance
Some volunteers include executives and professionals.
Logical Expression
exists x1.(_volunteer(x1) & exists x2.
(_executive(x2) & _professional(x2) & _include(x1, x2)))

Table 1: Example of the English-FOL dataset. Text
in olive denotes quantifiers, and text in teal denotes
predicates. x1 and x2 denote variables, and & denotes
logical connectives.

of discovering and representing knowledge in an
explicit symbolic structure that can be understood
and examined by human (Evans and Grefenstette,
2018). It is worth noting that all of these tasks have
a prerequisite, i.e., parsing natural language utter-
ances into PL/FOL. The results of parsing directly
affect the performance of downstream tasks. Thus,
it is crucial to have a strong semantic parser for
PL/FOL.

Some solutions have been proposed to parse nat-
ural language into PL/FOL. One of the most typical
methods is to model the parsing task as a sequence-
to-sequence (Seq2seq) generation problem, includ-
ing using a character-level recurrent neural net-
work (Levkovskyi and Li, 2021) and introducing a
variable alignment mechanism (Singh et al., 2020).
However, these approaches have the following is-
sues. First, a large amount of labeled data is re-
quired for these approaches to achieve good results,
which inevitably suffers from the paucity of labeled
data in this field. One of the solutions is to gen-
erate labeled data by templates (Levkovskyi and
Li, 2021), but it leads to a lack of diversity in the
data which makes the model prone to overfitting
the training data. Second, previous works (Singh
et al., 2020; Levkovskyi and Li, 2021) only con-
sider unidirectional generation (from utterance to
PL/FOL), while intuitively bidirectional generation
can further enhance the performance of the models.
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Regarding these issues, we propose an effec-
tive framework for parsing natural language into
PL/FOL named Dual-(m)T5, and introduce unla-
beled data to alleviate the impact of insufficient
labeled data. Inspired by He et al. (2016); Cao
et al. (2019), we model the learning of logical ex-
pressions and natural language generation as dual
tasks. Both of the tasks are jointly trained via rein-
forcement learning (RL) since the training process
is non-differentiable. However, we encounter the
following challenges when applying dual reinforce-
ment learning to PL/FOL: 1) The validity reward
in dual reinforcement learning is rule-based (Cao
et al., 2019), which results in a lot of manual at-
tempts to get an effective one, and needs to be
redesigned when the type of logical expressions
changes (e.g. from lambda-calculus to FOL) since
it is customized for a specific type of logical expres-
sion. 2) The effectiveness of the validity reward
needs to be improved because it only considers
a lexical-level matching between utterances and
logical expressions, and cannot achieve deep se-
mantic matching. 3) An effective training strategy
needs to be explored since the training process eas-
ily collapses when the model is trained with only
the rewards from dual reinforcement learning.

To address the first two issues mentioned above,
we propose a scoring model to automatically learn
a model-based validity reward that is applicable to
various types of logical expressions. The scoring
model aims to evaluate whether the semantics of
utterances and logical expressions match. For is-
sue 3, we propose an effective training strategy to
stabilize the training process. Specifically, curricu-
lum learning (Bengio et al., 2009) is employed to
initialize the parameters of the model, aiming to
get the model in a good initial state, and unlabeled
data is introduced to prevent models from crashes
due to insufficient labeled data. Experimental re-
sults on different datasets show that our framework
effectively parses natural language into PL/FOL
and consistently improves performance compared
to competitors. To further demonstrate the value
of PL/FOL, we take Natural Language Inference
(NLI) as a downstream task, and the performance
of existing NLI models is further enhanced by in-
troducing PL/FOL generated by our model.

Our contributions are three-folds:

• We propose a dual reinforcement learning
framework called Dual-(m)T5 with a novel
model-based validity reward that fully con-

siders the semantics of utterances and logical
expressions and is applicable to all types of
logical expressions. We further propose an
effective training strategy to stabilize the train-
ing process of dual reinforcement learning.

• We release a new dataset called Chinese-
PL/FOL that contains 1,263 Chinese-PL pairs
and 1,464 Chinese-FOL pairs to compensate
for the paucity of labeled data in this field.

• Experimental results show that the proposed
method outperforms competitors on several
datasets. Furthermore, by introducing addi-
tional logical expressions generated by Dual-
(m)T5, the performance of existing NLI mod-
els is further enhanced.

2 Overview

In this section, we formalize the problem and out-
line our framework.

2.1 Problem Definition

As shown in Table 1, given a natural language
sentence s, the goal of this paper is to gener-
ate the corresponding logical expression e. For
example, given a sentence “Some volunteers in-
clude executives and professionals.”, an ideal
model would generate a logical expression “exists
x1.(_volunteer(x1) & exists x2. (_executive(x2) &
_professional(x2) & _include(x1, x2)))”.

2.2 Framework

The overview of our framework is shown in Figure
1. The backbone of the framework is dual reinforce-
ment learning, which consists of two sub-modules:
The prime module generates a logical expression
given a natural language sentence, while the dual
module produces a sentence given a logical ex-
pression. The scoring model is used to obtain the
validity reward, and the reconstruction reward is
used to force the generated sentence in the dual
module as similar to the original sentence as pos-
sible. To stabilize the training process, models are
pre-trained before dual reinforcement learning, and
curriculum learning is employed to get the model
in a good initial state.

3 Methodology

In this section, we first present the details of dual
reinforcement learning in § 3.1. The scoring model
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Figure 1: An overview of the framework. Dual reinforcement learning consists of NL2LE and LE2NL, and the
validity reward is learned by the scoring model. The (m)T5s used in the scoring model and dual reinforcement
learning are initialized by pre-training. The sentence s and expression e represent a ground truth pair.

is introduced in § 3.2, and the training strategy is
provided in § 3.3.

3.1 Backbone: Dual Reinforcement Learning

The backbone of our framework is dual reinforce-
ment learning which consists of two sub-modules:
Natural Language to Logical Expression (NL2LE)
and Logical Expression to Natural Language
(LE2NL). Both of the modules adopt T5 (Raffel
et al., 2019) / mT5 (Xue et al., 2021), a (multi-
lingual) pre-trained text-to-text transformer as the
backbone. These two modules in a closed-loop are
trained by a reinforcement learning (RL) method
based on policy gradient (Sutton et al., 2000). In
RL, the state is denoted by the input of the prime
module, i.e., sentence s. The action in the prime
and dual modules is defined as the logical expres-
sion and sentence generation, respectively. The
policy is denoted as the parameters of the (m)T5
models in the two modules.
Prime Module (NL2LE) aims to transform nat-
ural language into PL/FOL. Specifically, given a
sentence s, the NL2LE model could generate k pos-
sible logical expressions e1, e2, · · · , ek via nucleus
sampling (Holtzman et al., 2020). Then, the scor-
ing model scores the generated logical expressions
and obtains a validity reward Rval (ei | s) for each
logical expression ei. The details of the scoring
model will be introduced in § 3.2.
Dual Module (LE2NL) is an inverse of the prime
module, which aims to generate sentences given
PL/FOL. Formally, the input is the logical expres-
sion ei generated in the prime task, and the model is
expected to output the original sentence s. Recon-
struction reward is used to estimate the similarity
between the input of the prime model and the out-
put of the dual model. Let ΘNL2LE and ΘLE2NL

denote all the parameters of NL2LE and LE2NL,
respectively. The reconstruction reward is formu-
lated as:

Rrec (s | ei) = logP (s | ei; ΘLE2NL) (1)

Learning Algorithm By utilizing policy gradient
(Sutton et al., 2000), the stochastic gradients of
ΘNL2LE and ΘLE2NL are computed as:

∇ΘNL2LE
E[r] =

1

k

k∑
i=1

ri · gi (2)

ri = αRval (ei | s) + (1− α)Rrec (s | ei) (3)

gi = ∇ΘNL2LE
logP (ei | s; ΘNL2LE) (4)

∇ΘLE2NL
E[r] =

1− α

k

k∑
i=1

g′i (5)

g′i = ∇ΘLE2NL
logP (s | ei; ΘLE2NL) (6)

where a hyper-parameter α ∈ [0, 1] is exploited to
balance between Rval and Rrec.

3.2 Scoring Model

The scoring model is used to evaluate whether
the semantics of the generated logical expression
is consistent with the semantics of the input sen-
tence and calculate the validity reward Rval. For-
mally, given a ⟨s, e⟩ pair, the scoring model outputs
P (e | s) ∈ [0, 1], which represents the correlation
between s and e. Intuitively, we take {⟨si, ei⟩}
pairs from the supervised dataset L as positive
samples P to train such a scoring model. The
challenge is that off-the-shelf negative samples are
not available. Negative sampling, i.e., sampling
{⟨si, ej⟩}i ̸=j pairs from L as negative samples is
an optional solution, but the quality of negative
samples obtained in this way are not challenging



5422

for the scoring model. To get enough hard negative
samples to train the scoring model, we design the
following approach:

First, an NL2LE model is pre-trained with the
supervised dataset L (details in § 3.3.1). After that,
given a sentence s, the NL2LE model could gen-
erate k possible logical expressions ē1, ē2, · · · , ēk
via nucleus sampling (Holtzman et al., 2020). We
denote {⟨s, ēi⟩} as negative samples N , where the
logical expression ēi is not equal to ground truth e.
Since the NL2LE model has been pre-trained, ēi
will be similar to the ground truth e. These hard
negative samples will challenge the scoring model
and enable it to learn the effects of small differ-
ences in logical expressions. For each ⟨si, ei⟩ ∈
P ∪ N , we take the last layer hidden states of
the NL2LE model’s encoder henci1 , · · · , hencin and
decoder hdeci1 , · · · , hdecim as the feature of si and ei
respectively. Then, the scoring model is defined as
follows:

h
enc
i =

1

n

n∑
j=1

hencij , h
dec
i =

1

m

m∑
j=1

hdecij (7)

ui = h
enc
i ·W1 + b1, vi = h

dec
i ·W2 + b2 (8)

P (ei | si) = σ ([ui; vi; |ui − vi|] ·W3 + b3) (9)

where W1|2|3 and b1|2|3 are trainable parameters.
[·; ·] is the concatenation operation, and σ repre-
sents sigmoid function. The training loss L of the
scoring model is binary cross-entropy (BCE) loss
between the model’s output P (ei | si) and labels,

L =− 1

|P ∪ N |

 ∑
⟨si,ei⟩∈P

logP (ei | si)

+
∑

⟨si,ei⟩∈N

(1− logP (ei | si))

 (10)

Note that the parameters of the NL2LE model are
fixed, and only the scoring model is updated during
the backpropagation. Finally, we take P (ei | s) as
the validity reward Rval(ei | s).

3.3 Training Strategy
In this section, we will introduce the training strat-
egy of our framework. The entire training process
consists of two stages: pre-training and dual rein-
forcement learning. For pre-training, we explore
how to integrate curriculum learning into the train-
ing phase in § 3.3.1. For dual reinforcement learn-
ing, we explore how to construct and introduce

unlabeled data in § 3.3.2, and make the training
stable in § 3.3.3.

3.3.1 Pre-training with Curriculum Learning
The pre-training of the NL2LE model aims to maxi-
mize the likelihood p(e|s) for each ⟨s, e⟩ pair from
the supervised dataset L. According to the learning
principle of human beings in the cognitive process,
we should start with simple samples and gradually
consider more complex samples. To this end, we
employ curriculum learning (Bengio et al., 2009)
to determine the training order. Here, we take the
length of logic expressions as an indicator of the
training order, i.e., the longer the logical expression,
the more difficult it is. We first sort the training
samples according to the length of the logical ex-
pressions. At each training step t, a batch of train-
ing samples is obtained from the top f(t) portions
of the entire sorted training samples. Following
Platanios et al. (2019), f(t) is defined as:

f(t) = min

1,

√
t
(
1− c20

)
T

+ c20

 (11)

where c0 represents the models start training using
the c0% easiest training samples, and T represents
the duration of curriculum learning.1

3.3.2 Introducing Unlabeled Data for Dual
Reinforcement Learning

Since the training process of dual reinforcement
learning only leverages natural language utterance
and does not need the corresponding logical ex-
pression, in addition to using utterances from the
supervised dataset L, we further improve the per-
formance of the models by introducing unlabeled
utterances U .

Different from the previous work (Cao et al.,
2019) where unlabeled data is constructed by man-
ually defined rules, we leverage off-the-shelf para-
phrase generation models (see in Appendix.D)
which generate synonymous sentences from ex-
isting utterances in the supervised dataset L. Ac-
cording to our observation, since the paraphrase
generation models are trained on paraphrase gen-
eration datasets that are different from the datasets
we use, the generated synonymous sentence is not
particularly similar to the original one, and the logi-
cal expressions corresponding to the two sentences
are different in most cases. Thus, it is reasonable

1In practice, curriculum learning has no effect on LE2NL,
so we only apply it to NL2LE.
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# PL # FOL TOTAL
Training 871 1,037 1,908
Validation 128 145 273
Test 264 282 546
Total 1,263 1,464 2,727

Table 2: Statistics of the Chinese-PL/FOL dataset.

to treat the generated sentences as unlabeled data.
The experiments in § 5 also demonstrate the effec-
tiveness of this method.

3.3.3 Stable Dual Reinforcement Learning
In practice, we find that the training process easily
collapses when the models are trained with only
the rewards from dual reinforcement learning. To
keep the training stable and prevent the models
from crashing, we adopt the following method:
Introducing Supervisor We pre-train both of the
models with the supervised dataset L before dual
reinforcement learning starts (the pre-training of
NL2LE refers to § 3.3.1). Moreover, after each
update according to Eq.(2) and Eq.(5), the models
are trained with the labeled data again, i.e., both
of the models are trained with dual reinforcement
learning and supervised learning alternately.
Reward Baseline To cope with high variance in
reward signals, we generate k intermediate outputs
as mentioned in § 3.1 and re-define reward signals
by introducing a reward baseline to stabilize the
training process. Here, we take the average of
rewards within samples per input as the reward
baseline. Thus, the final validity reward R′

val and
reconstruction reward R′

rec are as follows:

R′
val(ei | s) = Rval(ei | s)−

1

k

k∑
i=1

Rval(ei | s)

R′
rec(s | ei) = Rrec(s | ei)−

1

k

k∑
i=1

Rrec(s | ei)

4 Dataset Collection

To compensate for the paucity of labeled data in
this field and verify the effectiveness of our pro-
posed framework, we construct a dataset containing
natural language and PL/FOL pairs. In the previous
work (Levkovskyi and Li, 2021), the authors define
templates first and then obtain samples by filling
slots. However, the resulting dataset is limited by
the lack of diversity of templates. Crowdsourc-
ing is another option but is not applicable for this
task, since professional knowledge about PL/FOL

is required. Therefore, we use expert annotation to
ensure the quality and diversity of the dataset.

The annotation team consists of 8 Chinese grad-
uate students who are familiar with PL/FOL. If
the annotators are required to construct data with-
out any reference, this will introduce inevitable
troubles and labeling errors, since PL/FOL is not
intuitive to humans. Aiming to reduce nontrivial
human labor and ensure the quality of the dataset,
the data collection process consists of the follow-
ing steps: We first obtain PL/FOL exercise sets
and exam papers that require students to convert
natural language into PL/FOL from Baidu Wenku2.
Then, the annotators are asked to organize these ex-
ercises in a uniform format. Each sample consists
of three parts: natural language sentence s, sym-
bolic definition d, and logical expression e (see in
Table 7). This is slightly different from the English-
FOL dataset where the symbolic definition is not
included. We believe that the introduction of sym-
bolic definition is beneficial because it helps to
reach agreement among annotators. After that, the
annotators are encouraged to rewrite existing data
to obtain more challenging data, i.e., some sam-
ples have only slight differences in utterances, but
their corresponding logical expressions are totally
different.

In this way, we obtain a total of 2,727 samples
consisting of 1,263 PL and 1,464 FOL with the
corresponding utterances and symbolic definitions.
To establish human performance and conduct con-
sistency assessments, we ask an additional 3 un-
dergraduate and 2 graduate students who have ac-
quired basic knowledge of PL/FOL to provide log-
ical expressions given natural language sentences
and symbolic definitions from the entire test set.
The detailed statistics of the dataset are shown in
Table 2.

5 Experiments

In the experimental section, we investigate the fol-
lowing research questions: 1) How is the overall
performance of Dual-(m)T5 in comparison to com-
petitors? 2) How does Dual-(m)T5 perform on
other types of logical expressions? 3) What is the
optimal ratio of unlabeled data to labeled data? 4)
Are all the components in Dual-(m)T5 necessary?
5) Which samples are not yet well processed by the
model? 6) Can the logical expressions generated
by Dual-(m)T5 help downstream tasks?

2One of the largest online platforms for sharing documents.
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5.1 Setup

Datasets. 1) English-FOL (Levkovskyi and Li,
2021) is generated by pre-defined templates and
contains natural language utterances paired with
FOL. We follow the training/validation/test splits
as Levkovskyi and Li (2021). 2) Chinese-PL/FOL
The details of our dataset have been introduced in
§ 4. Since symbol definition only appears in this
dataset, we concatenate it with the original input,
i.e., natural language sentence in the prime module
and logical expression in the dual module. Due
to the small amount of training data, PL and FOL
are trained together. 3) ATIS (Dahl et al., 1994)
consists of queries about flight information and
logical expressions in lambda-calculus syntax. For
fairness in model comparison, we keep the same
preprocessing settings as (Dong and Lapata, 2018;
Cao et al., 2019).
Baselines. To verify the effectiveness of our ap-
proach on English-FOL and Chinese-PL/FOL, we
reproduce several strong baselines as there are not
many existing works on these two datasets. For
ATIS, we directly compare our method with state-
of-the-art works. Refer to Appendix.C for details.
Metrics. We follow the previous work (Levkovskyi
and Li, 2021) and take Exact Match (EM) as the
evaluation metric.

5.2 Overall Results

We compare our method with competitors on dif-
ferent datasets in Table 3. From the results, we
conclude that: 1) Our models outperform the com-
petitors on both of the datasets, and is not affected
by language, which shows the effectiveness and
robustness of our models. 2) Even without addi-
tional unlabeled data, our models outperform the
competitors only with the labeled data, which indi-
cates that our approach is also available in scenar-
ios without unlabeled data. 3) By introducing the
unlabeled data, the performance of the models is
further improved, and the improvement on Chinese-
PL/FOL is more obvious than that on English-FOL
as the amount of the labeled data in English-FOL
is enough for the training and the performance is
hardly improved by using the unlabeled data, while
the unlabeled data can be used to compensate for
the paucity of the labeled data on Chinese-PL/FOL.

5.3 Generalization on Lambda-Calculus

To verify that our framework is still effective on
other types of logical expressions, we compare our

method with previous works on ATIS without us-
ing unlabeled data in fairness. From the results
shown in Table 4, we see that our method has bet-
ter performance over the previous works on ATIS,
which demonstrates the generality of our approach
to other types of logical expressions. This is mainly
attributed to the model-based validity reward that
is not limited to the specific form of the logical
expression, and our framework is suitable for any
kind of logical expression without modification.

5.4 Experiments on Semi-supervised Setting

To investigate whether unlabeled data benefits the
framework and the optimal ratio of unlabeled data
to labeled data, we keep a part of the training set
as fully labeled data and leave the rest as unlabeled
data where only utterances are used. We change
the ratio of unlabeled data to labeled data, and the
results on English-FOL are shown in Table 5. The
results show that the performance of the models
does not improve constantly when the amount of
unlabeled data is increased. We conclude that a
proper ratio of unlabeled data is crucial and it is
related to the number of parameters in the model.
A model with more parameters tends to perform
better with more unlabeled data. On the contrary,
when a model with few parameters is trained with
a large amount of unlabeled data by dual reinforce-
ment learning, it may converge to a wrong equilib-
rium state to adapt to the unlabeled data and forget
what has been learned from the labeled data, which
leads to poor performance.

5.5 Ablation Study

To evaluate the effectiveness of each component in
Dual-(m)T5, we perform an ablation analysis on
English-FOL. From the results shown in Table 6,
we conclude that: 1) Dual reinforcement learning
without the validity reward even gets worse results
than the T5 baseline, which indicates that the va-
lidity reward is critical and indispensable in dual
reinforcement learning. 2) Curriculum learning
improves EM but not significantly. Therefore, the
value of curriculum learning is mainly to stabilize
the training process rather than improve the perfor-
mance. 3) The model-based validity reward in dual
reinforcement learning has certain advantages over
the rule-based validity reward (Cao et al., 2019),
which indicates the effectiveness of our approach.



5425

Method English-FOL Chinese-PL/FOL
PL FOL TOTAL

Human Performance - 87.94 79.92 84.07
ATT (Luong et al., 2015) 65.70 39.39 36.88 38.10
GPT-2 (Radford et al., 2019) 85.32 56.04 61.74 58.97
GPT-2-large (Radford et al., 2019) 90.03 - - -
Text2log (Levkovskyi and Li, 2021) 89.54 - - -
(m)T5-small (Raffel et al., 2019; Xue et al., 2021) 89.95 64.02 58.87 61.35
(m)T5-base (Raffel et al., 2019; Xue et al., 2021) 91.30 70.08 61.35 65.57
Dual-(m)T5-small (Ours) 90.98 64.77±0.47 61.70±0.58 63.19±0.52

+ generated unlabeled data 91.06 70.83±0.78 63.83±0.75 67.22±0.75
Dual-(m)T5-base (Ours) 92.65 70.45±0.31 63.12±0.29 66.67±0.15

+ generated unlabeled data 92.83 75.00±0.94 68.44±0.73 71.61±0.83

Table 3: EM on the test set of English-FOL and Chinese-PL/FOL. (Dual-)T5 and (Dual-)mT5 are used on English-
FOL and Chinese-PL/FOL, respectively. Generated unlabeled data represents the unlabeled data obtained by
paraphrase generation models in § 3.3.2.

Method EM
TISP (Zhao and Huang, 2015) 84.2
Seq2tree (Dong and Lapata, 2016) 84.6
ASN+SUPATT (Rabinovich et al., 2017) 85.9
Tranx (Yin and Neubig, 2018) 86.2
Coarse2fine (Dong and Lapata, 2018) 87.7
Transformer (Ge et al., 2019) 87.7
ATTPTR + Dual (Cao et al., 2019) 88.6
TreeGen (Sun et al., 2020) 89.1
Dual-T5-base (Ours) 89.5

Table 4: EM on the test set of ATIS.

Method Labeled:Unlabeled EM
Dual-T5-small - 78.32

+ unlabeled data 1:1 79.34
+ unlabeled data 1:2 79.27
+ unlabeled data 1:3 78.37
+ unlabeled data 1:4 77.93

Dual-T5-base - 87.01
+ unlabeled data 1:1 88.94
+ unlabeled data 1:2 89.22
+ unlabeled data 1:3 89.34
+ unlabeled data 1:4 88.76

Table 5: EM on the test set of English-FOL. It fixes the
number of labeled samples (20% of the training set) and
varies the ratio of unlabeled data to labeled data.

5.6 Error Analysis

For error analysis, we present three typical bad
cases of Chinese-PL/FOL in Table 7. In Case 1, the
model inverts cause and effect, indicating that the
ability of causal reasoning needs to be enhanced.
Case 2 requires the model to have the capability
of coreference resolution, while Dual-(m)T5 does
not have this ability yet. Case 3 shows that some
errors are due to one utterance may correspond to
multiple correct logical expressions, while there is
only one annotated ground truth3. Such a problem

3In Case3, the ground truth is closer to the meaning of the
utterance than the prediction, but the latter is an equivalent
representation of the ground truth.

Method EM
T5-small 89.95

w/ curriculum 90.09
w/ dual (w/o Rval

e , w/ Rrec
s ) 89.23

w/ dual (w/ rule-based Rval
e , w/ Rrec

s ) 90.44
w/ dual (w/ model-based Rval

e , w/ Rrec
s ) 90.88

T5-base 91.30
w/ curriculum 91.41
w/ dual (w/o Rval

e , w/ Rrec
s ) 90.87

w/ dual (w/ rule-based Rval
e , w/ Rrec

s ) 91.96
w/ dual (w/ model-based Rval

e , w/ Rrec
s ) 92.51

Table 6: Ablations on the test set of English-FOL.

exists in all three datasets and has been ignored by
previous works. To compensate for this, we per-
form manual statistics on the incorrect prediction
results of Dual-mT5-base on the test set of Chinese-
PL/FOL. About 5.2% of errors are due to the above.
We think this may be solved by defining a series of
equivalence transformation rules. We leave this for
future work.

5.7 Improvements to Downstream Tasks

To further demonstrate the value of the generated
logical expressions, we take Natural Language In-
ference (NLI) as a downstream task. NLI involves
reading a pair of sentences and judging the rela-
tionship between their meanings, such as entail-
ment, neutral and contradiction. We explore if
additional logical expressions improve the model’s
performance on the NLI task. We conduct experi-
ments on the Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015). The back-
bone model is BERT (Devlin et al., 2019) which
concatenates two sentences (s1 and s2) with speci-
cal tokens as input, and uses the representation of
[CLS] token for text classification. In practice,
we concatenate the logical expressions (e1 and e2)



5426

Chinese-PL/FOL
Natural Language Utterance
Xiao Ming lives alone because he is not married.
Symbolic Definition
A(x): x lives alone; B(x): x is married; a: Xiao Ming
Ground Truth
¬B(a) → A(a)
Prediction
A(a) → ¬B(a)
Natural Language Utterance
The dark night has given me a pair of black eyes,
but I use them to find the light.
Symbolic Definition
A(x, y): x give me y; B(x, y): i use x to find y;
a: dark night; b: black eyes; c: light
Ground Truth
A(a, b) ∧B(b, c)
Prediction
A(a, b) ∧B(a, c)
Natural Language Utterance
Not everyone who can play football can play basketball.
Symbolic Definition
A(x): x can play football; B(x): x can play basketball;
x: person
Ground Truth
¬∀x(A(x) → B(x))
Prediction
∃x(A(x) ∧ (¬B(x)))

Table 7: Case study of Dual-(m)T5-base on Chinese-
PL/FOL. Text in red and brown represents the difference
between the prediction and ground truth.

corresponding to the sentences (s1 and s2) on the
input, i.e, [CLS] s1 e1 [SEP ] s2 e2 [SEP ]. We
vary the amount of training data from 10k to 100k
and the results are shown in Fig.2.

As shown in the results, the model has better per-
formance by introducing logical expressions when
the amount of training data is not large. As the
amount of training data increases, the role of logi-
cal expressions gradually decreases. We conclude
that the generated logical expression explicitly rep-
resents the logical information contained in the
sentences and is suitable for the NLI task in low-
resource scenarios as a supplementary.

6 Related Works

Parsing Natural Language into PL/FOL Logic
expressions are commonly written in standard-
ized mathematical notation, and learning this no-
tation typically requires many years of experience.
Barker-Plummer et al. (2009) study why students
find translating natural language sentences into
FOL hard and systematically categorize the prob-
lems encountered by students. Bansal (2015) pro-
poses a rule-based framework that leverages the
Part-of-speech structure of natural language sen-
tences. Limited to the manually defined rules and

Figure 2: Accuracy on the dev and test set of the SNLI
dataset.

a small amount of experimental data, the system
only works under a specific setting. With the de-
velopment of deep learning, neural approaches al-
leviate the need for manually defining lexicons.
Singh et al. (2020) examine the capability of neural
models on parsing FOL from natural language sen-
tences. They propose to disentangle the representa-
tions of different token categories while generating
FOL and use category prediction as an auxiliary
task. Unfortunately, they do not release the dataset
they construct. Levkovskyi and Li (2021) release
a dataset containing English-FOL sentence pairs
and set up a baseline encoder-decoder model, but
the dataset is not challenging for it is generated by
templates, and vanilla models obtain high scores.
Dual Learning Dual learning is first proposed to
improve neural machine translation (NMT) (He
et al., 2016). The author makes full use of mono-
lingual corpus to improve the effectiveness of the
model through dual learning. Xia et al. (2017)
introduce a probabilistic duality term to serve as
a data-dependent regularizer to better guide the
dual supervised learning. Since then, the idea of
dual learning has been applied in various tasks,
such as Question Answering/Generation (Tang
et al., 2017), Open-domain Information Extrac-
tion/Narration (Sun et al., 2018), Semantic Parsing
with lambda calculus (Cao et al., 2019, 2020), and
Emotion-Controllable Response Generation (Shen
and Feng, 2020).

7 Conclusion

In this paper, we introduce Dual-(m)T5, an ef-
fective dual reinforcement learning framework for
parsing natural language into PL/FOL. A novel re-
ward mechanism is proposed to avoid manually
defining the validity reward in RL. An effective
training strategy is further proposed to stabilize the
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training process. Experimental results show that
the proposed method outperforms competitors on
several datasets. By introducing logical expres-
sions, we further enhance the existing NLI model.
In addition to the technical contribution, a new
dataset called Chinese-PL/FOL is constructed to
aid further research in this field.
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A Algorithm

Algorithm 1 Training Scoring Model
Input: Supervised dataset L = {⟨s, e⟩}; number
of nucleus sampling k; Fine-tuned NL2LE model
Output: scoring model

1: P ← {},N ← {}
2: for all ⟨s, e⟩ ∈ L do
3: P ← P ∪ {⟨s, e⟩}
4: Given s, fine-tuned NL2LE model gener-

ates k logical expressions {ei} via nucleus
sampling

5: for all ei ∈ {ei} do
6: if ei ̸= e then
7: N ← N ∪ {⟨s, ei⟩}
8: end if
9: end for

10: end for
11: repeat
12: Update scoring model w.r.t. Eq.(10)
13: until scoring model converges

B PL and FOL

FOL represents entities and actions in natural lan-
guage through quantified variables and consists of
predicates which take variables as arguments and
attach semantics to variables (Blackburn and Bos,
2005), while PL is a relatively simple logical ex-
pression and does not deal with quantified variables.
Formally, a predicate P (v1; v2; ...; vn) in PL/FOL
is an n-ary function of variables vi that are com-
bined through logical connectives: logical and (∧),
logical or (∨), logical not (¬), logical implication
(→), logical equivalent (↔). What’s more, there
are two types of quantifiers for FOL: universal (∀)
which specifies that sub-formula within its scope
is true for all instances of the variable and exis-
tential (∃) which asserts existence of at least one
instance represented by a variable under which the
sub-formula holds true.

C Baselines

English-FOL and Chinese-PL/FOL

• ATT (Luong et al., 2015). ATT represents
attention-based Seq2seq model.

• Text2log (Levkovskyi and Li, 2021). Text2log
is the latest work on converting natural lan-
guage to FOL. This approach is only appli-

Algorithm 2 Full Training Process
Input: Supervised dataset L = {⟨s, e⟩}; Unsuper-
vised dataset U = {s′}; number of nucleus sam-
pling k; hyper parameters α and β; curriculum
training batches T
Output: NL2LE model

1: // Pre-train NL2LE and LE2NL models
2: Fine-tune NL2LE model with ⟨s, e⟩ from L

and curriculum learning based on Eq.(11)
3: Fine-tune LE2NL model with ⟨e, s⟩ from L
4: repeat
5: // Dual reinforcement learning
6: Get mini-batch {s} from L ∪ U
7: for all s ∈ {s} do
8: NL2LE model generates k logical expres-

sions {ei} for s via nuclelus sampling
9: for all ei ∈ {ei} do

10: Obtain validity and reconstruction re-
ward for ei

11: end for
12: end for
13: Update ΘNL2LE and ΘLE2NL w.r.t. Eq.(2)

and Eq.(5) respectively
14: // Supervisor Guidance
15: Get mini-batch {⟨s, e⟩} from L
16: Fine-tune NL2LE model with {⟨s, e⟩}
17: Fine-tune LE2NL model with {⟨e, s⟩}
18: until NL2LE model converges

cable to English-FOL since a character-level
recurrent neural network is leveraged.

• GPT-2 (Radford et al., 2019). GPT-2 is a huge
transformer-based model trained on massive
datasets and achieves state-of-the-art results
on several language modeling datasets in a
zero-shot setting when it is proposed. We
experiment with different sizes of GPT. Since
there is no GPT-large for Chinese, it is vacant
in the experiment.

• T5 (Raffel et al., 2019) / mT5 (Xue et al.,
2021). T5 refers to the “Text-to-Text Trans-
fer Transformer” which converts several NLP
tasks to Text-to-Text task, and mT5 is a multi-
lingual version of T5.

ATIS

• TISP (Zhao and Huang, 2015) An incremental
semantic parser that is guided by subtyping
and polymorphism.
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• Seq2tree (Dong and Lapata, 2016) Seq2tree
is a method based on an attention-enhanced
encoder-decoder model.

• ASN+SUPATT (Rabinovich et al., 2017) This
work introduces abstract syntax networks, a
modeling framework for code generation and
semantic parsing.

• Tranx (Yin and Neubig, 2018) Tranx uses a
transition system based on the abstract syntax
description language for the target meaning
representations.

• Coarse2fine (Dong and Lapata, 2018)
Coarse2fine generates meaning sketches first
and then predicts missing details to obtain
full meaning representations.

• Transformer (Ge et al., 2019) Transformer is
a deep learning model that adopts the mech-
anism of self-attention and is originally pro-
posed for machine translation.

• ATTPTR + Dual (Cao et al., 2019) It is the
first work to propose the use of dual learning
for semantic parsing, and is the basis of our
work.

• TreeGen (Sun et al., 2020) TreeGen uses the
attention mechanism of Transformer to alle-
viate the long-dependency problem and intro-
duces an Abstract Syntax Tree (AST) reader
to combine grammar rules and the AST struc-
ture.

D Implemention Details

We use Pytorch4 library for implementing an auto-
differentiable graph of our computations. For pre-
training, (m)T5-small/base are trained with an
AdamW optimizer (Loshchilov and Hutter, 2018)
initialized with a learning rate of 1e-3/1e-4 with a
decay rate of 1e-3/1e-2 respectively. For dual re-
inforcement learning, models are trained with an
AdamW optimizer initialized with a learning rate of
1e-5 with a decay rate of 1e-3 for (m)T5-small/base.
The batch size is fixed to 8, and the max input and
output sentence length are set to 128. Since the
size of the test set for the Chinese-PL/FOL dataset
is small, we repeat each experiment using 3 dif-
ferent random seeds and report the median num-
ber and standard deviation to avoid small sample

4https://pytorch.org

instability in the results obtained. Training runs
until the performance on validation set does not
improve. We use PEGASUS (Zhang et al., 2020)
fine-tuned for paraphrasing5 for english paraphras-
ing, and RoFormer-Sim (Su, 2021) 6 for chinese
paraphrasing. For each natural language utterance
in the datasets, we generate one synonymous sen-
tence as unlabeled data.7 Our models run on a
computer with Intel(R) Xeon(R) Gold 6230R CPU,
4 GeForce RTX 3090, 64GB of RAM, and Ubuntu
20.04.

E Error Analysis on English-FOL and
ATIS

The bad cases of English-FOL and ATIS are pre-
sented in Table 8. We select two typical bad cases
from two datasets respectively. From case 1 of
English-FOL, we can find that there are some la-
beling errors in the dataset. The prediction is com-
pletely correct while the ground truth is wrong. The
error in case 2 is due to the fact that the English-
FOL dataset does not clearly indicate what the pred-
icate is, which leads to a slight difference between
the prediction and the ground truth.8 For ATIS,
the model makes a small mistake in case 1, which
indicates that the model is not good enough to han-
dle the details. The error in case 2 is also caused
by the predicate not explicitly indicating. If the
predicate can be unified, we believe that the model
can answer correctly.

5https://huggingface.co/tuner007/
pegasus_paraphrase

6https://github.com/ZhuiyiTechnology/
roformer-sim

7Generating top-k (k ≥ 1) synonymous sentences for each
natural language utterance leads to poor performance because
the unlabeled data is too similar to each other.

8In contrast, our dataset clearly points out what the predi-
cate is, effectively solving this problem.

https://pytorch.org
https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/tuner007/pegasus_paraphrase
https://github.com/ZhuiyiTechnology/roformer-sim
https://github.com/ZhuiyiTechnology/roformer-sim
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English-FOL
Natural Language Utterance
All people are welcome.
Ground Truth
exists x1.(_all(x1) & _people(x1) & _welcome(x1))
Prediction
all x1.(_people(x1) → _welcome(x1))
Natural Language Utterance
Every database accepts parentheses.
Ground Truth
all x1.(_database(x1) →
exists x2.(_parenthesis(x2) & _accept(x1,x2)))
Prediction
all x1.(_database(x1) →
exists x2.(_parenthes(x2) & _accept(x1,x2)))

ATIS
Natural Language Utterance
What city does al0 fly out of?
Ground Truth
lambda $0 e ( and ( city $0 ) ( exists $1 ( and ( flight $1 )
( airline $1 al0 ) ( from $1 $0 ) ) ) )
Prediction
lambda $0 e ( and ( city $0 ) ( exists $1 ( and ( flight $1 )
( airline $1 al0 ) ( to $1 $0 ) ) ) )
Natural Language Utterance
List the st0 airport.
Ground Truth
lambda $0 e ( and ( airport $0 ) ( loc:t $0 st0 ) )
Prediction
lambda $0 e ( and ( airport $0 ) ( located at $0 st0 ) )

Table 8: Case study of Dual-(m)T5-base on English-
FOL and ATIS. Text in red and brown represents the
difference between the prediction and ground truth.


