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Abstract

Chinese Grammatical Error Diagnosis (CGED)
suffers the problems of numerous types of
grammatical errors and insufficiency of training
data. In this paper, we propose a string editing
based CGED model that requires less training
data by using a unified workflow to handle vari-
ous types of grammatical errors. Two measures
are proposed in our model to enhance the per-
formance of CGED. First, the detection and
correction of grammatical errors are divided
into different stages. In the stage of error de-
tection, the model only outputs the types of
grammatical errors so that the tag vocabulary
size is significantly reduced compared with
other string editing based models. Secondly,
the correction of some grammatical errors is
converted to the task of masked character in-
ference, which has plenty of training data and
mature solutions. Experiments on datasets of
NLPTEA-CGED demonstrate that our model
outperforms other CGED models in many as-
pects. The project of our approach is available
at https://github.com/xiebimsa/se-cged.

1 Introduction

The traditional methods of Grammatical Error Di-
agnosis (GED) are pipeline-based, which has three
main steps in series, including error detection, se-
lection of candidate corrections, and ranking of
candidate corrections (Lee et al., 2015). With the
wide application of seq2seq models, seq2seq based
GED models are designed to combine error detec-
tion and error correction (Wan et al., 2020; Kiyono
et al., 2019). Considering the low efficiency of
decoding in seq2seq and the uncontrollability of
the generated results, researchers tend to apply the
mode of sequence tagging for GED which outputs
the correction operations instead of direct correc-
tion results.

The sequence tagging based GED methods are
designed based on edit distance algorithms, such as
Levenshtein distance (Levenshtein, 1966), which

produces edit operations that are used to trans-
form one sentence to the other. Because the in-
tersection of an ungrammatical sentence and the
corrected sentence is often large, it is feasible to
transform them to each other based on a few edit
operations. Several string editing based GED meth-
ods for English have been recently proposed, such
as LaserTagger (Malmi et al., 2019), PIE (Awasthi
et al., 2019) and GECToR (Omelianchuk et al.,
2020).

The string editing based GED methods are
highly accurate, controllable and interpretable (Ro-
zovskaya and Roth, 2021; Parnow et al., 2021).
Fine-grained data processing and edit tags design-
ing are crucial. However, the size of the tag vocab-
ulary is generally very large, which makes the cur-
rent string editing based GED methods work better
on closed sets, but difficult to deal with the com-
plexities and long-tail problems on open datasets
(Omelianchuk et al., 2020).

The current string editing based GED methods
are mostly designed for processing English texts.
Compared with English, CGED has to deal with
more types of errors with less training samples (Li
and Shi, 2021). Furthermore, it is difficult to de-
tect Chinese grammatical errors based on explicit
linguistic features due to the complexity and ambi-
guity of Chinese grammars (Rao et al., 2018). Chi-
nese grammatical errors can be corrected by text
edit operations in theory, but there are currently no
papers detailing how to detect and correct Chinese
grammatical errors based on string editing.

In this paper, we propose a string editing based
CGED model, named SE-CGED, which detects
and corrects Chinese grammatical errors based on
text edit operations. The brief description of SE-
CGED and the contributions of our work are pre-
sented below.

1) In SE-CGED, the process of CGED is sep-
arated into three main stages, including
Seq2Edit, string editing, and masked charac-
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ter inference. Detection of grammatical errors,
and correction of different types of errors are
handled in different stages.

2) Because the detection and correction of gram-
matical errors are separated, the size of the
edit tag vocabulary is significantly smaller
than that of other string editing based mod-
els. The smaller size of the tag vocabulary
reduces the difficulty of sequence tagging and
requires less training samples.

3) Based on the difficulty of modification, the
correction of grammatical errors is separated
into two steps to deal with different types of
errors. The correction of some types of gram-
matical errors is uniformly converted to the
task of masked character inference.

4) The existing methods and training data of
masked language model are utilized for
masked character inference, which helps im-
prove the performance of CGED for certain
error types.

This paper is organized as follows: Section 2
briefly reviews the literature on grammatical error
diagnosis and CGED. Section 3 presents the basic
concepts and the workflow of string editing based
Chinese grammatical error diagnosis. Section 4
explains the model training and prediction of our
proposed approach. Section 5 demonstrates the ex-
perimental setting and the experiment results. Sec-
tion 6 discusses the limitations of our methodology
and potential speculations of our works.

2 Background and related works

The target of a GED system is to give a correc-
tion for a sentence with grammatical errors. The
seq2seq generative model is well suited for the
GED task. Models of machine translation have
been adopted in GED and achieved good results
(Hotate et al., 2020). Different from machine trans-
lation, the language of the source sentence and
the target sentence in GED is the same, and there
is a large intersection between the two sequences.
Therefore, the copy mechanism was applied for
GED to reduce the computation of text generation
(Zhao et al., 2019). Lack of training data is a ma-
jor bottleneck for GED systems. To supplement
training data, Ge et al., 2018 tried to use the n-
best results of the seq2seq model to produce more
pairs of correct and incorrect sentences, and Zhou

et al., 2020 constructs training samples based on
the uneven results of different translation models.
However, the man-made training samples are sig-
nificantly different from the real grammatical cases.

The mode of sequence tagging is recently pre-
vailing for GED because it is more efficient in
decoding and can produce more controllable re-
sults, compared with seq2seq models (Sun et al.,
2021). Malmi et al., 2019 proposes LaserTagger, a
general sequence tagging approach that casts text
generation as a text editing task. LaserTagger sets
three types of tags, including ‘keep’, ‘delete’ and
‘P’. ‘P’ can be a word or a phrase that should be
added before the current position. Awasthi et al.,
2019 proposes PIE, a sequence tagging based GED
model. In PIE, the types of edit operations include
‘copy’, ‘append’, ‘delete’ and ‘replacement’. In the
operations ‘append’ and ‘replacement’, the specific
words that used to append or replace should be
indicated. An iterative refinement sequence annota-
tion method is proposed to predict the token level
edit operations. Omelianchuk et al., 2020 proposes
GECToR, a simple and efficient GED sequence
tagger. GECToR specifically defines several tags
of grammatical edit operations. The tag vocabu-
lary size is 5000, including 4971 basic transfor-
mations (token-independent KEEP, DELETE and
1167 token-dependent APPEND, 3802 REPLACE)
and 29 token-independent g-transformations.

3 Introduction of the SE-CGED model

3.1 The workflow of SE-CGED

As shown in Figure 1, the workflow of SE-CGED
has the following main stages.

1) Seq2Edit. Seq2Edit is a sequence tagging
model that outputs a sequence of edit tags
for a sentence. Each edit tag indicates the
edit operation that should be performed on the
corresponding token in the input sentence.

2) String editing. This step is to perform string
editing based on the tag sequence output in
Seq2Edit. According to the types of tags (i.e.,
types of errors), different operations are per-
formed on the tokens. The tokens can be
deleted or transposed, and the tag ‘MASK’
may be added at certain positions.

3) Masked character inference. This step is to
infer what the masked characters should be.
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Figure 1: Workflow of SE-CGED

Grammar
Error

Edit Opera-
tion

Edit
Tags

Other
Tags

Character
redundancy

Deletion D /

Misuse
of character

Replacement R R2

Character
missing

Insertion I I2

Character
disorder

Transposition T1, T2,
I-T2

/

Table 1: Grammatical error types and the corresponding
edit operations in SE-CGED.

4) Iterative correction. In some cases, more than
one iteration of the above steps may be per-
formed to get the final corrections.

3.2 Error types and edit operations

The edit operations are critical for string editing
based methods. The types of edit operations in
SE-CGED are shown in Table 1. Because Chinese
character is the basic unit of Chinese sentences, we
use ‘character’ to represent Chinese character in
the following chapters unless otherwise specified.

Error types: Chinese grammatical errors are

categorized into four types.
1) Character redundancy.
In SE-CGED, redundant characters are labeled

with ‘D’. In the step of string editing, the characters
labeled with ‘D’ will be directly deleted.

2) Misuse of character.
A misused character should be replaced by an-

other character. In SE-CGED, misused characters
are labeled with ‘R’. In the step of string editing, a
character labeled with ‘R’ is converted to a ‘MASK’
tag. The correction of character misusing is per-
formed in the step of masked character inference.
In some cases, a character should be replaced by a
word consisting of more than one characters. How-
ever, the tag ‘R’ doesn’t indicate the number of
characters in the substitute. This problem is han-
dled in the stage of iterative correction.

3) Character missing.
The missing word should be inserted into the

sentence. The token before which a word should
be inserted is labeled with ‘I’. Similar to character
misusing, the correction of character missing is
performed in the step of string editing, masked
character inference and iterative correction.

4) Character disorder.
A character in a wrong position should be moved

to a right position. There are two types of character
disorder.
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a) Disorder of characters within a word or a
phrase, such as “特普朗” (disorder of “特
朗普” (‘Trump’)). A character with such type of
disorder is labeled with ‘T1’ (transposition type 1).

The corresponding correction is to swap the po-
sitions of the first half and the second half of the
sequence labeled with ‘T1’, and it is done in the
step of string editing. Therefore, the number of
consecutive tokens labeled with ‘T1’ is even.

b) Improper collocation between words.
Each character in a word with such type of disor-

der is labeled with ‘T2’ (transposition type 2). To
give a direct correction suggestion for such error,
a tag ‘I-T2’ is given to the token before which the
words labeled with ‘T2’ should be moved to. For
instance, the tagging sequence of“我去了公园
在中午。” (“I went to the park in the noon.”) is
‘O / I-T2 / O / O / O / T2 / T2 / T2 / O’.

In the step of string editing, the subsequence
labeled with ‘T2’ will be moved to the position
before the token labeled with ‘I-T2’.

In the training samples, the tag ‘T2’ and ‘I-T2’
always appear together or neither in a tag sequence.
To ensure that ‘T2’ and ‘I-T2’ also appear together
or neither in the tagging result of a trained Seq2Edit
model, the decoding module of Seq2Edit is de-
signed to output the top scoring tag sequence which
contains both of ‘T2’ and ‘I-T2’ or neither.

Separation of detection and correction: The
correction of character misusing and character
missing is not performed in the step of string edit-
ing. Instead, the character labeled with ‘R’ (or ‘I’)
is replaced (or added) with a ‘MASK’ tag. And in
the step of masked character inference, the replace-
ment of the misused character (or the character to
be inserted) will be given.

In the existing string editing based GED models,
the detection and correction of grammatical errors
are both performed in the step of generating edit
tags. If a misused word is detected, the edit tag
indicates the word that is used to replace it. There
are two main drawbacks of such mode.

• The size of the tag vocabulary is huge, thus a
large amount of training samples are required.

• The correction options are limited.

The above problems can be overcome in SE-
CGED. Because Seq2Edit only gives the types of
grammatical errors, the size of the tag vocabulary
is only 7. The masked character inference based

correction provides more options for correcting the
errors of character missing and misusing.

Iterative correction: Iterative correction is per-
formed for three reasons. 1) some errors may not
be detected in one iteration. 2) new errors may
occur after an iteration of correction. 3) charac-
ter replacement and character insertion may need
many iterations to obtain the result. A maximum
number of iterations can be set, such as 3.

The first two reasons are easy to understand. For
the third one, we take character misusing as an
example. In practical scenarios, a misused charac-
ter sometimes should be replaced by two or more
characters. For example,

• Incorrect: 跟两个方法的比较 (“With the
comparison of the two methods”).

• Correct: 通过两个方法的比较 (“Based on
the comparison of the two methods”).

“跟”(‘with’) is replaced by“通过” (‘based
on’). However, the tag ‘R’ doesn’t contain the
information of how many characters should be used
to replace the misused character. To deal with such
problem, a mechanism of iterative correction is
applied.

i. The token labeled with ‘R’ at the position p is
converted to ‘MASK’ in string editing.

ii. Masked character inference is performed, and
a corrected sentence is obtained.

iii. Seq2Edit is performed again on the corrected
sentence.

iv. If an error still occurs at the position p.

a. The character is labeled with ‘R2’.
b. The token labeled with ‘R2’ is converted

to ‘MASK MASK’ in string editing.
c. Masked character inference is performed,

and a new corrected sentence is obtained.

Based on the procedure of iterative correction,
if the first iteration gives a wrong correction (for
instance,‘跟’ is replaced by‘和’), a second
iteration is run to replace the character with two
characters. Replacing a character with one or two
characters can cover most of the cases of character
misusing. Thus, we do not try to replace a character
with more than two characters.



5339

Tag vocabulary: The tag vocabulary of
Seq2Edit in SE-CGED contains 7 main tags, in-
cluding ‘D’, ‘R’, ‘I’, ‘T1’, ‘T2’, ‘I-T2’ and ‘O’.
The other two tags, ‘R2’ and ‘I2’, are used in the
stage of iterative correction, and they are not con-
sidered in Seq2Edit. Compared with the previous
Seq2Edit models, such as GECToR (Omelianchuk
et al., 2020), the size of tag vocabulary of SE-
CGED is significantly reduced.

3.3 Converting the tags of Damerau
Levenshtein to the tags of Seq2Edit

Figure 2: Seq2Edit tag generation based on Damerau
Levenshtein distance.

Most of the training samples of CGED only con-
tain parallel pairs of incorrect and correct sentences.
Some training data (Rao et al., 2020) gives the steps
of corrections, but they are incompatible with the
tagging system of our approach.

To prepare the training samples of the Seq2Edit
module, we first apply the Damerau Levenshtein
algorithm (Brill and Moore, 2000) to analyze the
difference between ungrammatical sentences and

the corresponding correct sentences, and generates
DL tags which indicates the steps of modifying
the ungrammatical sentence to obtain the correct
one. Then we convert the DL tags to the tags of
Seq2Edit.

There are four types of Damerau Levenshtein
tags, which are ‘delete’, ‘replace’, ‘insert’ and
‘swap’. Some examples of these four tags are given
below (suppose the following operations are used
to transform sentence A to sentence B).

• (‘delete’, 5, 5), to delete the fifth token in A.

• (‘replace’, 5, 6), to replace the fifth token in
A with the sixth token in B.

• (‘insert’, 5, 6), to insert the sixth token in B
before the fifth token in A.

• (‘swap’, 5, 6), to swap the positions of the
fifth token and the sixth token in A.

The pseudo code of converting the DL tags to
the Seq2Edit tags is shown in Figure 2. In the
conversion process, a token may be given more
than one tags. However, in a training sample of
Seq2Edit, a token can only have one tag. To deal
with this problem, an intermediate transformation
is performed to split one parallel pair of incorrect
and correct sentences into two or more training
samples of Seq2Edit, to ensure there is only one tag
for each token. The following steps are performed
to generate the training samples of Seq2Edit based
on a parallel pair of incorrect and correct sentences.

For (x, y), an ungrammatical sentence x and the
corresponding correction y.

(1) Run the algorithm of Seq2Edit Tag Generation
based on x and y.

(2) If there is a token in x has more than one tags,

a. Generate a training sample (x, t1), t1 is
the set of first tags of each token,

b. Modify x based on tags in t1,
c. Rerun the process from step (1).

(3) Otherwise, let (x, t) be a training sample, t is
the set of tags of each token.

4 Training and application of SE-CGED

4.1 Generation of the training data
Training data of Seq2Edit: According to the de-
scription in the previous section, a part of training
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data of Seq2Edit can be generated based on the
Damerau Levenshtein distance of the existing train-
ing samples of CGED. The other part of training
data of Seq2Edit is generated through data augmen-
tation. Different types of synthetic ungrammatical
sentences are created based on our summarized
patterns of grammatical errors as shown in Table 2.

1) Character missing and character redundancy.
Several patterns of character missing and character
redundancy are summarized based on the real train-
ing samples. Table 2 gives three example patterns.
For instance, for the first example pattern of char-
acter missing, a synthetic ungrammatical sentence
is created by removing the character‘了’ after
a verb. Before creating a synthetic sentence, word
segmentation is performed on the original sentence.
We do not remove a character within a word for
creating an error of character missing.

2) For the type of character misusing, a part
of synthetic samples are created by replacing a
word with its synonyms, selected from a synonyms
toolkit which is based on word2vec (Mikolov et al.,
2013) similarity calculations, and the others are cre-
ated by replacing a character with another character
with the similar pronunciation or shape, selected
from a prepared confusion set.

3) For the type of character disorder, most of
the synthetic samples are created by changing the
position of one word, and the others are created by
swapping the positions of two adjacent characters
within a word.

Training data of masked character inference:
The training of masked character inference is per-
formed in the step of masked LM pretraining of
BERT (Devlin et al., 2019). The training samples
of word replacement and word insertion are used
here as part of training samples.

Other training samples are produced by ran-
domly masking words in sentences. One-character
words and two-character words are randomly se-
lected and masked. Besides, two consecutive words
with a high PMI value can also be masked together.
Given two tokens w1 and w2, the PMI of the bi-
gram ‘w1w2’ is:

PMI(w1w2) = log
p(w1w2)

p(w1)p(w2)
(1)

p(w) is the probability of the occurrences of
token w in the corpus.

4.2 Model training and model inference

Model of masked character inference: The task
of masked character inference is performed based
on the masked language model (MLM) of BERT.
During model pre-training of BERT, the task of
masked character inference is performed, but the
task of next sentence prediction is skipped.

MLM consists of a multi-layer transformer en-
coder and a feed-forward neural network. At
the stage of inference, the partially masked se-
quence is fed into MLM to produce a 1*V vector
{C1, C2, ..., CV−1, CV } at each position with to-
ken ‘[MASK]’. Ci is the confidence value of fitting
the ith character in the vocabulary to the targeted
position calculated in equation (2).

Conf(ei = c|x⃗) = softmax(W T
c hi) (2)

ei is a masked character in x⃗ and c is a character
in the vocabulary. hi is the multi-layer transformer
embedding of ei, and Wc is a matrix of parameters
regarding c in the feed-forward neural network.

Model of Seq2Edit: The Seq2Edit model is
built on BERT for sentence embedding and a CRF
layer for sequence tagging. The BERT model used
here is the same as that used in masked character
inference, and the CRF layer is trained based on
the training data of Seq2Edit to learn how to detect
and identify grammatical errors in a sentence.

Seq2Edit is to output a tag sequence L for the
input sentence S. Let S = {s1, s2, ..., sK} and
K is the length of S. U = {u1, u2, ..., uK} is the
embedding result of S from BERT, and ui is the
embedding of si. U is input into the CRF layer and
L = {l1, l2, ..., lK} is the tagging result. li is the
tag for si. The confidence of labeling U with L is
shown in the following equation.

P (L,U) =
K∑
k=1

(H(lk−1,lk) + φ(lk, uk)) (3)

H is the probability transition matrix of tags. H
is 7*7 matrix because there are seven tags in the tag
set. H(lk−1,lk) is the transition probability from tag
lk−1 to tag lk. Additionally, φ(lk, uk) is the score
of labeling uk as lk. φ is a 7*V matrix where V is
the size of the vocabulary and 7 is the size of the
tag set. Both H and φ are randomly initialized and
updated during the training process.



5341

Error Type Ratio in real
training data

Example patterns of grammatical errors

Character
missing

0.275
1) Missing‘了’ after a verb or at the end of a sentence
2) Missing pronoun at the beginning of a sentence
3) Missing a conjunction word

Character
redundancy

0.234
1) Reduplication of an adjective, verb, pronoun or preposition
2) Redundant‘是’ before an adjective or adverb
3) Redundant‘了’ after a verb

Misuse
of character

0.422
1) Misuse of synonyms
2) Misuse of characters with similar pronunciation or shape

Character
disorder

0.069
1) Wrong position of an adverb, conjunction or preposition
2) Wrong order of adjacent verbs and adverbs
3) Disorder of adjacent characters within a verb, adjective or noun

Table 2: Example patterns of synthetic grammatical errors.

Model FPR
Detection Level Identification Level Position Level Correction Level

(Top1 & Top3)
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Flying 0.3257 0.9101 0.8800 0.8948 0.7320 0.6011 0.6601 0.4715 0.3536 0.4041 0.2290
0.2290

0.1575
0.1575

0.1867
0.1867

YD-
NLP

0.2182 0.9357 0.8478 0.8896 0.7711 0.5577 0.6473 0.5011 0.2995 0.3749 0.3386
0.3217

0.1259
0.1333

0.1836
0.1885

Orange-
Plus

0.2606 0.9252 0.8600 0.8914 0.7230 0.6287 0.6726 0.4428 0.3610 0.3977 0.1780
0.0934

0.1536
0.2283

0.1649
0.1325

SE-
CGED

0.2769 0.9111 0.8962 0.9036 0.7059 0.6557 0.6799 0.5060 0.4645 0.4844 0.2331
0.2417

0.2077
0.2186

0.2197
0.2296

Table 3: Performance of different models for CGED.

5 Experiments and Analysis

5.1 Datasets in the experiment

The dataset of NLPTEA-CGED evaluations is used
in our experiment. The training sets and test sets of
NLPTEA-CGED evaluations in the year of 2014 to
2021 are collected. The NLPTEA-CGED data pro-
vides parallel pairs of ungrammatical and correct
sentences, and the ungrammatical samples are col-
lected from essays written by learners of Chinese
as a foreign language. A sentence in the dataset
may not have grammatical errors, or it may have
one or more errors.

In order to make a fair comparison with other
methods, our model was trained and tested based on
the training dataset and test dataset of the NLPTEA-
CGED 2020 evaluation (Rao et al., 2020), and the
performance was compared with the submitted re-
sults of the NLPTEA-CGED 2020 evaluation. Be-

cause the evaluation allows the participants to use
external data, we pretrained our model based on
the training data and test data in the NLPTEA-
CGED evaluation of other years. There are to-
tally 182,486 grammatical errors collected from
NLPTEA-CGED evaluations.

Meanwhile, 247,185 synthetic training samples
are created for Seq2Edit based on the data argumen-
tation method introduced in section 4.1. The source
sentences used for generating synthetic training
samples are collected from The People’s Daily1.
The ratios of different types of synthetic grammat-
ical errors are approximate to the ratios in real
data shown in Table 2. Besides, we took several
measures to make the distribution of synthetic data
close to that of real data. For instance, the errors of
character misusing in NLPTEA-CGED are signifi-
cantly different from those made by Chinese native

1http://paper.people.com.cn
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FPR
Detection Level Identification Level Position Level Correction Level

(Top1 & Top3)
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Itera-
tions

2 0.2704 0.8556 0.8415 0.8485 0.6471 0.6011 0.6233 0.4464 0.4098 0.2730 0.1840
0.1964

0.1639
0.1776

0.1734
0.1865

4 0.2834 0.9091 0.9016 0.9053 0.7051 0.6598 0.6817 0.5052 0.4672 0.4855 0.2340
0.2420

0.2090
0.2202

0.2208
0.2306

5 0.2899 0.9089 0.9021 0.9055 0.7021 0.6611 0.6810 0.5031 0.4689 0.4854 0.2324
0.2413

0.2115
0.2217

0.2215
0.2311

W/O
synthetic

data

0.2117 0.8958 0.8689 0.8821 0.7143 0.6284 0.6686 0.5161 0.4372 0.4734 0.2406
0.2443

0.1940
0.2036

0.2148
0.2221

Table 4: Performance of the ablation study.

speakers, which usually occur between characters
with the similar pronunciation or shape. Foreign-
ers learning Chinese often misuse synonyms or
relevant words. Thus, for the type of character mis-
using, 60% of the synthetic samples are created
by replacing a word with its synonyms, and 40%
are created by replacing a character with another
character with the similar pronunciation or shape,
selected from a prepared confusion set.

5.2 Evaluation metrics and comparison
methods

The performance of grammatical error diagnosis
systems is evaluated from the following aspects.

• Detection-level, to detect whether the state-
ment contains grammatical errors.

• Identification-level, to determine the types of
the grammatical errors.

• Position-level, to determine the position of the
grammatical errors.

• Correction-level, to give the correction of the
grammatical errors.

The measurement method of the above metrics
can be referred to (Rao et al., 2020). We select three
representative models with good performance in
the NLPTEA-CGED 2020 evaluation as the com-
parison models, including Flying, YD-NLP and
Orange-Plus. FLYing has the highest F1 score, YD-
NLP has the highest precision score, and Orange-
Plus are more balanced between the precision and
recall rate. The maximum numbers of iterations
in SE-CGED was set to 3. The performance of
different models is shown in Table 3.

Our proposed model, SE-CGED, achieves a bet-
ter performance in the identification level, and a
much better performance in the position level and
correction level. The performance of the position
level does not decay much compared with that of
the identification level because the Seq2Edit mod-
ule gives the type and position of the grammatical
errors at the same time. Meanwhile, our method
is more balanced in terms of accuracy and recall,
compared with the comparison methods, in which
the recall rates are significantly lower.

5.3 Ablation analysis

The structure of our method is pipeline based, and
all the stages are indispensable. Therefore, the ab-
lation analysis in our experiment was performed
by making minor adjustments to the model. Firstly,
the maximum numbers of iterations was set to 2, 4
and 5 respectively in the stage of iterative correc-
tion. Secondly, synthetic data was not used to train
the module of Seq2Edit. The results of ablation
analysis are shown in Table 4.

When the number of iterations is set to 2, the per-
formance is significantly reduced compared with
that when the number of iterations is 3. The rea-
son is that lots of errors have not been detected or
corrected after two iterations. On the other hand,
iterations more than 3 lead to a slight improvement
in performance, but the improvement is very lim-
ited. Thus, it is reasonable to set the number of
iterations to 3. Training the model without the syn-
thetic data leads to lower recall rates. Out synthetic
training data is helpful to detect errors that do not
appear in the real training corpus.
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6 Conclusions

In this paper, we proposed a phased string edit-
ing based approach for Chinese grammatical errors
diagnosis. The detection and correction of gram-
matical errors are performed based on edit tags and
masked character inference. In this way, differ-
ent types of grammatical errors can be handled in
the same way, and the training data is significantly
reduced. Experiments on the dataset of NLPTEA-
CGED evaluations show our proposed approach
performs better than the traditional methods in per-
formance and speed.

Because of the complexity of Chinese grammars,
there are still many deficiencies in our current work,
and the detection of error type and location is not
accurate. In future research, we will further im-
prove the rationality of data argumentation and
make the synthetic error samples more consistent
with practical grammatical errors. In addition, we
will try to import linguistic features to further im-
prove the detection and correction of Chinese gram-
matical errors.
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