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Abstract

Most existing methods on robust neural ma-
chine translation (NMT) construct adversarial
examples by injecting noise into authentic ex-
amples and indiscriminately exploit two types
of examples. They require the model to trans-
late both the authentic source sentence and its
adversarial counterpart into the identical tar-
get sentence within the same training stage,
which may be a suboptimal choice to achieve
robust NMT. In this paper, we first conduct
a preliminary study to confirm this claim and
further propose an Iterative Scheduled Data-
switch Training Framework to mitigate this
problem. Specifically, we introduce two train-
ing stages, iteratively switching between au-
thentic and adversarial examples. Compared
with previous studies, our model focuses more
on just one type of examples at each single
stage, which can better exploit authentic and
adversarial examples, and thus obtaining a bet-
ter robust NMT model. Moreover, we intro-
duce an improved curriculum learning method
with a sampling strategy to better schedule
the process of noise injection. Experimental
results show that our model significantly sur-
passes several competitive baselines on four
translation benchmarks. Our source code
is available at https://github.com/
DeepLearnXMU/RobustNMT-ISDST.

1 Introduction

In recent years, neural machine translation (NMT)
has achieved great success (Sutskever et al., 2014;
Bahdanau et al., 2015; Vaswani et al., 2017). Usu-
ally, the NMT models are trained on clean parallel
corpus and thus achieve promising performance
under clean inputs. However, small perturbations,
such as replacing words in the input sentences, can
mislead the trained model to generate incorrect

∗Work was done when interning at Xiaomi AI Lab.
†Equal Contribution.
‡Corresponding Author.

translations (Belinkov and Bisk, 2018). In real-
world scenarios, it is often required to deal with
such sentences. Thus, it has important academic
value and application prospects to design a robust
NMT model for both clean and noisy inputs.

To reach this goal, some researchers explore
data-oriented approaches focusing on construct-
ing adversarial examples (Cheng et al., 2020; Zou
et al., 2020). Generally, adversarial examples are
used to augment the authentic dataset or fine-tune
an NMT model pre-trained on the authentic dataset
to improve robustness. Although data-oriented ap-
proaches are simple and efficient, they leverage ad-
versarial examples coarsely, as concluded by Wang
et al. (2021a) and Passban et al. (2021), which can
not reach the full potential of these examples.

Besides, researchers also study model-oriented
approaches. Some design additional model com-
ponents to correct noisy inputs (Zhou et al., 2019;
Qin et al., 2021; Wang et al., 2021a). There are
more studies exploring training strategies for ro-
bust NMT, including multi-task learning (Zhou
et al., 2019; Zhang et al., 2020), contrastive learn-
ing (Yang et al., 2019; Lee et al., 2021), and adver-
sarial training (Cheng et al., 2018, 2019).

Despite their success, there still exist two draw-
backs: 1) most existing methods indiscriminately
exploit authentic and adversarial examples within
the same training stage, which is a suboptimal
choice confirmed in our preliminary study; 2) previ-
ous studies on robust NMT adopt a constant noise
ratio to construct adversarial examples during train-
ing, while the determination of noise ratio is a sub-
tle process, i.e., too little noise may lead to poor
robustness and too much noise may also hurt the
model performance (Jiao et al., 2021). Therefore,
dealing with both clean and noisy inputs well for
NMT remains to be a significant but challenging
task.

In this paper, we first conduct a preliminary
study, which reveals that indiscriminately exploit-
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ing authentic and adversarial examples within the
same training stage is suboptimal. Concretely, we
find that this training strategy can not significantly
reduce the source sentence representation (SSR)
discrepancies1 between authentic examples and the
corresponding adversarial examples, resulting in
a suboptimal model training which is reflected by
lower model confidence2 on examples. Based on
this observation, we further propose an Iterative
Scheduled Data-Switch Training Framework for
robust NMT. Under this framework, we train the
model in a two-stage scheme, iteratively switching
between authentic and adversarial examples with
their individual modified training objectives. Dur-
ing training, we introduce an additional Kullback-
Leibler (KL) divergence loss, expecting the model
to make similar predictions on authentic and adver-
sarial datasets. By doing so, at each training stage,
the model not only focuses on one of authentic and
adversarial datasets but also avoids forgetting the
knowledge from the other. Therefore, our model is
able to handle both clean and noisy inputs well.

Furthermore, we introduce curriculum learning
(CL) to better schedule the process of noise in-
jection. Particularly, inspired by the Baby Step
strategy (Wang et al., 2021b) in CL that gradu-
ally exposes more difficult examples to the model
while still involving simple examples, we sample
the noise ratio from a uniform distribution, where
the sampling interval is progressively extended.
Compared with the naive CL strategy of contin-
uously increasing the noise ratio, our strategy is
re-sampling previous simple adversarial examples
which is beneficial to the model generalization.

In summary, our contributions are as follows:

• Through in-depth analyses, we expose the sub-
optimum of indiscriminately exploiting au-
thentic and adversarial examples within the
same training stage, and further propose an
iterative data-switch training framework for
robust NMT.

• Instead of using a constant noise ratio, we
introduce an improved curriculum learning

1We average the word representations from encoder out-
puts to obtain the SSRs. The SSR discrepancies represent the
difference of the source sentence representations between au-
thentic and adversarial examples, and the higher SSR discrep-
ancies correspond to more divergent translations for authentic
and adversarial examples.

2Model confidence represents the predicted probability for
the target ground-truth sentences (Briakou and Carpuat, 2021;
Zhou et al., 2022).

method with a sampling strategy to better
schedule the process of noise injection at each
training stage.

• Empirical evaluations on four translation
benchmarks validate the superiority of our
framework, and in-deep analyses also ver-
ify the effectiveness of various factors on our
framework.

2 Preliminary Study

Indiscriminately exploiting authentic examples and
their adversarial counterparts within the same train-
ing stage is an effective way to build a robust NMT
model. However, it requires the model to overcome
the SSR discrepancy between an authentic exam-
ple (x, y) and its adversarial counterpart (x′, y),
which increases the training difficulty to maximize
P(y|x;θ) and P(y|x′;θ) simultaneously. We argue
it may be a better choice to exploit authentic and
adversarial examples at two training stages, itera-
tively switching between two types of examples.
In such a data-switch training manner, the model
can better benefit from the knowledge of different
stages

To verify our hypothesis, we use Transformer
(Vaswani et al., 2017) as our NMT model and con-
duct a preliminary experiment on the IWSLT14
De⇒En dataset. To be specific, we train the three
models: 1) Transformer. We follow Vaswani et al.
(2017) to train this model on the authentic dataset;
2) Indisc-Model. It indiscriminately exploits au-
thentic and adversarial examples for training within
the same stage. Besides, following Passban et al.
(2021), we introduce a mean square error (MSE)
loss to enforce the corresponding encoder outputs
to be similar; 3) Switch-Model. This model is
trained at two training stages, iteratively switch-
ing between authentic and adversarial examples.
We make an investigation through the two metrics:
1) the Euclidean distances of the SSR between au-
thentic examples and their adversarial counterparts;
2) the model confidence, i.e., log-likelihood values
of target ground-truth sentences.

2.1 Source Sentence Representation
Discrepancy

Intuitively, to obtain high-quality translations, the
SSRs from authentic and adversarial examples are
expected to be similar. Therefore, we first calculate
the Euclidean distances of the SSRs between two
types of examples. As shown in Figure 1, the dis-
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Figure 1: The kernel density estimation visualization
of the SSR distances between authentic examples and
their adversarial counterparts. Here, we average word
representations from encoder outputs to obtain the SSRs.
The authentic examples are from the entire test set, and
the adversarial examples are constructed from them as
mentioned in Section 3.2.

Model SSR Distance Model Confidence
Adv. Aut.

Transformer 2.96 -43.0 -39.2
Indisc-Model 2.36 -41.5 -38.7
Switch-Model 1.69 -41.1 -38.4

Table 1: The averaged sentence-level SSR distances
between authentic examples (Aut.) and their adversarial
counterparts (Adv.), and the model confidence on exam-
ples.

tance distribution of Transformer is far from the Y-
axis, and the distance distribution of Switch-Model
is closer to the Y-axis, while the distribution of
Indisc-Model lies between the above distributions.
These results indicate Switch-Model reduces the
SSR discrepancies well. As reported in Table 1,
we also calculate the averaged sentence-level SSR
distances. Switch-Model achieves the lowest score.
These results, along with the SSR visualization
(See Appendix A.1), further support the above con-
clusion.

2.2 Model Confidence

Higher model confidence generally leads to high-
quality translations (Briakou and Carpuat, 2021;
Zhou et al., 2022). Herein, we calculate the av-
eraged sentence-level log-likelihood values for
authentic and adversarial examples, respectively.
As reported in Table 1, although Indisc-Model
achieves better model confidence than Transformer,
especially on adversarial examples, Switch-Model
still obtains the best scores on both authentic and
adversarial examples. These results indicate that
Switch-Model is trained better on authentic and ad-
versarial examples compared to Indisc-Model.

Figure 2: Diagram of the two training stages in our
framework, where the pink box and blue box denote
the training stages focusing on adversarial examples
(the k-th iteration) and authentic examples (the (k+1)-th
iteration), respectively. (x′, y) is an adversarial example
constructed from its authentic counterpart (x, y) with
curriculum learning mentioned in Section 3.2. Lkl and
Lce denote KL-divergence loss and cross-entropy loss.

3 Methodology

Based on the observations in Section 2, we further
propose an iterative scheduled data-switch training
framework for robust NMT.

3.1 Training Framework
In contrast to the previous work, our framework
introduces two iterative training stages to handle
authentic and adversarial examples, respectively.

As shown in Figure 2, at the training stage fo-
cusing on adversarial examples (the k-th iteration),
we first use the best model at the last training stage
(the (k-1)-th iteration) as initialization, and then
optimize the model on two types of examples using
a modified training objective. Specifically, we addi-
tionally introduce KL-divergence loss into the con-
ventional training objective, expecting the model
predictions on adversarial examples to be close to
those on authentic examples. Formally, the modi-
fied training objective Ladv at this stage is defined
as follows:

Ladv =
∑

(x,y)∈D
(x′,y)∈D′

[− logP(y|x′;θ)

+ αKL(P(y|x′;θ)||P(y|x;θ))],

(1)

where α is a weight factor, θ denotes the model



5269

parameters, (x, y) and (x′, y) denote an authentic
example and its adversarial counterpart, respec-
tively.

Likewise, at the training stage focusing on au-
thentic examples, the modified training objective
Laut is given by

Laut =
∑

(x,y)∈D
(x′,y)∈D′

[− logP(y|x;θ)

+ αKL(P(y|x;θ)||P(y|x′;θ))].

(2)

We conduct training stages for K iterations. In
such an iterative data-switch training manner, the
knowledge of different stages can continuously en-
hance the model in a collaborative way, which has
also been verified in previous studies (Zeng et al.,
2019; Liu et al., 2020b).

3.2 Generate Adversarial Examples with
Curriculum Learning

During training, we generate adversarial exam-
ples on the fly by injecting noise into the source
sentences of the corresponding authentic exam-
ples. Without loss of generality, we inject noise by
performing three common operations with equal
probability: delete, replace, and swap. Note that
our framework is also applicable to other types of
noise.

Previous work on robust NMT pays little atten-
tion to the noise ratio during training. In this work,
we introduce curriculum learning (CL) to schedule
the process of noise injection at each training stage.
Inspired by the Baby Step strategy in CL (Wang
et al., 2021b), at each training step, we sample the
noise ratio from a uniform distribution, where the
sampling interval is progressively extended. By do-
ing so, our sampling strategy re-samples previous
simple adversarial examples during training, which
is beneficial to the model generalization.

The procedure of generating adversarial exam-
ples is presented in Algorithm 1. At the train-
ing step t, we first load a batch of examples and
sample a noise ratio rt from a uniform distribu-
tion U(0, R(t)) (Lines 3-4). Intuitively, a sharp
increase of R(t) may hurt the model optimization.
Therefore, we expect that R(t) increases smoothly.
To this end, we define R(t) as follows:

R(t) =

√
R2

max ×
t

T
, (3)

where Rmax is the maximal noise ratio and T de-
notes the maximal training step number of each

Algorithm 1 Generate Adversarial Examples with
Curriculum Learning for Each Training Stage

Input: Training corpus D, maximal training step
number T , maximal noise ratio Rmax.

1: R(t)← 0
2: for t =1, 2, ..., T do
3: Load a mini-batch Bt from D
4: Sample a noise ratio rt ∼ U(0, R(t))
5: for each example (x, y) in Bt do
6: nt ← ⌈len(x)× rt⌉
7: Perturb nt words in x to generate its ad-

versarial counterpart x′
8: Using (x,y) and (x′,y) to train the model

according to the modified training objec-
tive defined in Equation 1 or Equation 2

9: end for
10: if t % 10K == 0 then
11: Update R(t) by Equation 3
12: end if
13: end for

training stage. Note that the derivative of R(t) de-
creases with the increase of t, which satisfies our
expectations that R(t) increases smoothly (See Ap-
pendix A.2). According to rt, we traverse each
authentic example (x, y) in the current mini-batch
(Line 5) and determine the number nt of perturbed
words in x (Line 6), and then perform three kinds
of operations with equal probability on them to gen-
erate adversarial examples (x′, y) (Line 7). Finally,
we train the model with our modified objective
based on two types of examples (Line 8). For ef-
ficiency, we update R(t) every 10K training step
(Lines 10-12).

4 Experiments

4.1 Setup

Datasets For the small-scale dataset, we use
IWSLT14 German⇒English (De⇒En) corpus,
where the training set comprises 160K sentence
pairs extracted from TED talks, the original vali-
dation set consists of dev2010 and dev2012, and
the clean test set consists of tst2010, tst2011 and
tst2012. For the middle-scale datasets, we use
MTNT3 French⇒English (Fr⇒En) (Michel and
Neubig, 2018) and WMT14 English⇒German
(En⇒De) datasets. The former consists of 2.2M
sentence pairs for training, newsdiscussdev2015 is

3https://pmichel31415.github.io/mtnt/
index.html#data

https://pmichel31415.github.io/mtnt/index.html#data
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used as the original validation set, newstest2014
(NT14) and newsdicusstest2015 (NT15) are used
as the clean test sets. The latter contains 4.5M sen-
tence pairs, and we choose newstest2013 as our
original validation set, and newstest2014 as our
clean test set. For the large-scale dataset, we use
WMT20 Chinese⇒English (Zh⇒En) dataset con-
taining 22M sentence pairs for training and new-
stest2019 (with 1,997 sentence pairs) for validating
and newstest2020 (with 1,418 sentence pairs) for
testing.

Note that in this work, we focus on the perfor-
mance on clean and noisy test sets. Thus we select
the best model according to the hybrid validation
sets, each of which contains the original validation
set and its disturbed counterpart. In addition to
the standard clean test sets, we also evaluate mod-
els on noisy test sets. For the De⇒En, En⇒De
and Zh⇒En translation tasks, we construct the syn-
thetic noisy test sets by performing operations (See
Section 3.2) on a certain ratio of source words in
the original test sets. For the Fr⇒En translation
task, we evaluate models on two social media test
sets with diverse noise: mtnt18 (Michel and Neu-
big, 2018) and mtnt19 (Li et al., 2019), both of
which have been widely used in robust NMT task
(Li et al., 2019).

We also employ BPE (Sennrich et al., 2016) to
split words into subwords. During this process,
the numbers of merge operations are separately set
to 10K, 16K, 32K and 32K for De⇒En, Fr⇒En,
En⇒De and Zh⇒En datasets. Finally, we report
case-sensitive tokenized BLEU (Papineni et al.,
2002) for the De⇒En, En⇒De and Zh⇒En trans-
lation tasks and sacreBLEU (Post, 2018) for the
Fr⇒En translation task.

Training Details We adopt the fairseq4 (Ott et al.,
2019) Transformer as our basic model. We use the
transformer_iwslt_de_en setting for the De⇒En
translation task, and the transformer_wmt_en_de
setting for the En⇒De, Fr⇒En and Zh⇒En trans-
lation tasks, respectively.

As for the model optimization, we use the
Adam optimizer (Kingma and Ba, 2015) with
β1=0.9, β2=0.98 and ϵ=10−9. All experiments
are done on NVIDIA V100 GPUs with mixed-
precision training, where batch sizes are roughly
set to 4K, 8K, 32K, and 32K tokens for the De⇒En,
Fr⇒En, En⇒De, and Zh⇒En translation tasks, re-
spectively. For all datasets, we set the maximal

4https://github.com/fairseq/fairseq

noise ratio Rmax as 0.1 and we tune the weight
factor α∈{0.5, 1.0, 1.5} on our validation sets at
the first training stage, then keep it unchanged in
subsequent stages for efficiency. We determine the
maximal training step number T through an em-
pirical study according to the convergence of the
model at each stage. Specifically, we set T for
the stages focusing on authentic and adversarial
examples to 150K and 200K, respectively.

Baselines In addition to the vanilla Transformer
model (Vaswani et al., 2017), we compare our
model with the following baselines:

• Transformer-FT . It is pre-trained on the au-
thentic dataset and then fine-tuned on the ad-
versarial dataset.

• Transformer-Mixed. This model is trained on
the dataset mixed with authentic and adversar-
ial examples.

• Transformer-Indisc. It indiscriminately ex-
ploits authentic and adversarial examples for
training. Besides, the model predictions be-
tween two types of examples are minimized
via a bidirectional KL-divergence loss (Liang
et al., 2021).

• MTNT (Michel and Neubig, 2018). It is the
first benchmark on the MTNT Fr⇒En dataset.

• AdvST (Cheng et al., 2018). This model is
trained using adversarial stability training
strategy, which enables the encoder and de-
coder to generate similar representations for
the original inputs and their perturbed coun-
terparts

• SwitchOut (Wang et al., 2018). It uses a data
augmentation strategy for training, where the
augmented data is constructed by randomly
replacing words in source and target sentences
with other words.

• DouAdv (Cheng et al., 2019). It generates
discrete adversarial examples with doubly ad-
versarial inputs according to the gradients of
word embeddings.

• MTL (Zhou et al., 2019). It introduces mul-
titask learning into robust NMT, where two
decoders are involved: one learns to denoise
the text and the other generates the final trans-
lations from the denoised text.

https://github.com/fairseq/fairseq
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Figure 3: BLUE (%) scores of our model on the Fr⇒En
validation set with different K. AdvFirst and AutFirst
denote we focus on adversarial and authentic examples
first, respectively.

• ContRec (Xu et al., 2021). This model reduces
the effect of noisy words through a context-
enhanced reconstruction component.

4.2 Effects of Data Order and Iteration
Number K

Under our framework, it should be determined
which type of examples we need to first focus on
and what the appropriate iteration number K is.
We explore their effects in this subsection. To this
end, we train the models focusing on authentic
and adversarial examples first with different K, re-
spectively. The results on the validation sets are
displayed in Figure 3.

Which Type of Examples to First Focus on? As
illustrated in Figure 3, we observe that the model
focusing on adversarial examples first reaches a
competitive result at the 6th iteration, while the
model focusing on authentic examples first needs
9 iterations to obtain a similar result, indicating the
former converges faster to a better result.

What Is the Appropriate Iteration Number K?
Overall, as iteration number K increases, we find
the model performance is improved, whether we
focus on authentic or adversarial examples first.

Based on these results on the validation sets, we
choose to first focus on adversarial examples and
set the iteration number K to 6 for the Fr⇒En
dataset. Similarly, we set K to 5 for all other
datasets.

4.3 Main Results
Results on Clean Test Sets Table 2 shows
the results on clean test sets for the De⇒En,
En⇒De, Zh⇒En tasks, and the results for the
Fr⇒En task are reported in the second and third

Model De⇒En En⇒De Zh⇒En
Transformer 34.82 27.78 26.83

Data-Oriented
Transformer-FT 34.90 27.75 25.76
Transformer-Mixed 34.85 27.72 24.07

Model-Oriented
AdvST (Cheng et al., 2018) — 25.26 —
DouAdv (Cheng et al., 2019) — 28.34 —
Transformer-Indisc 36.59 28.21 26.51
Ours 37.28∗† 28.93∗† 27.45∗†

Table 2: BLEU (%) scores on the clean test sets of four
translation tasks. ‘∗’ and ‘†’ mean the improvements
over Transformer-Indisc and Transformer are signifi-
cantly with p<0.01 (Koehn, 2004).

Model Clean Test Noisy Test

NT14 NT15 mtnt18 mtnt19
Transformer 31.76 31.14 25.67 29.74
MTNT (Michel and Neubig, 2018) 28.90 30.80 23.30 26.20

Data-Oriented
Transformer-FT 32.37 30.71 26.54 29.03
Transformer-Mixed 31.87 30.71 25.44 27.90
SwitchOut (Wang et al., 2018) 29.20 31.10 25.00 28.10

Model-Oriented
MTL (Zhou et al., 2019) — — 24.50 30.30
ConRec (Xu et al., 2021) 30.70 32.40 26.50 29.10
Transformer-Indisc 32.83 31.37 26.42 28.98
Ours 34.11∗† 32.67∗† 28.16∗† 30.77∗†

Table 3: BLEU (%) scores on the Fr⇒En transla-
tion task. ‘∗’ and ‘†’ mean the improvements over
Transformer-Indisc and Transformer are significantly
with p<0.01 (Koehn, 2004).

columns of Table 3. Data-oriented approaches
achieve comparable or worse results compared to
Transformer, indicating data-oriented approaches
may hurt the performance on the standard clean
test sets. Transformer-Indisc is a strong baseline
model. It performs better than Transformer and
achieves promising performance compared to other
baselines, except for the Zh⇒En task. Compared
with the data-oriented and model-oriented base-
lines, our model achieves the best performance
across all datasets. Concretely, our model achieves
+0.59 BLEU improvement than the most competi-
tive contrast model DouAdv on the En⇒De dataset.
For the large-scale Zh⇒En dataset, all related ap-
proaches fail and do not outperform Transformer,
while our model achieves +0.62 BLEU improve-
ment over Transformer. These results fully demon-
strate the superiority of our framework.

Results on Noisy Test Sets To verify the model
robustness, we evaluate models on the synthetic
noisy test sets and the social media test sets, respec-
tively.

The fourth and fifth columns of Table 3 report
the results on the social media test sets. It is worth
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Figure 4: BLEU (%) scores on the synthetic noisy test sets with different noise ratios.

noticing that although we inject finite types of noise
during training, our model still beats other base-
lines on both mtnt18 and mtnt19 test sets, which
shows the better generalization of our model.

For the synthetic noisy test sets, we compare
the performance of all models on the test sets
with different noise ratios. As shown in Figure 4,
Transformer suffers from performance drops un-
der noisy inputs, revealing the vulnerability of the
NMT model. By contrast, data-oriented approaches
perform slightly better than Transformer across
different noise ratios, except for the large-scale
Zh⇒En dataset. We argue the robustness achieved
by data-oriented approaches is restricted because
the Zh⇒En training set is large enough to cover
diverse noises. Additionally, Transformer-Indisc
performs better than data-oriented approaches and
Transformer, showing its strong robustness. Fi-
nally, we find our model consistently outperforms
other baselines across different noise ratios even
under the large-scale data configuration, which con-
firms again that our framework can significantly
enhance the model robustness.

4.4 Source Sentence Representation
Discrepancy and Model Confidence

Following the settings of the preliminary study in
Section 2, we evaluate models using two metrics:
the SSR distances and model confidence. As shown
in Figure 5, the distance distribution of our model is
significantly closer to the Y-axis compared to Trans-
former and Transformer-Indisc, indicating that our
model significantly reduces the SSR discrepancies.
Analogously, we report the averaged sentence-level
SSR distances in Table 4 and visualize the SSRs
for clear understanding (See Appendix A.1), all of
which demonstrate the effectiveness of our model.
Besides, the averaged sentence-level log-likelihood
values presented in Table 4 show that our model ob-

Figure 5: The kernel density estimation visualization of
the SSR distances.

Model SSR Distance Model Confidence
Adv. Aut.

Transformer 2.96 -43.0 -39.2
Transformer-Indisc 2.25 -38.3 -35.8
Ours 0.67 -38.0 -35.6

Table 4: The averaged sentence-level SSR distances
and the model confidence on examples.

tains the highest model confidence on two types of
examples. It implies our model is trained better on
authentic and adversarial examples. In summary,
the results of the two metrics show that our model
can deal with clean and noisy inputs well.

4.5 Effects of Different Types of Noise
To better understand the effects of different types of
noise, we inject only one type of noise into the train-
ing data and the test set respectively, and then in-
spect the performance change of our model. From
Table 5, we arrive at the following conclusions:

(1) The models injecting different types of noise
into the training set perform similarly on the clean
test set. From the first column of Table 5, we ob-
serve that adopting delete and replace operations
separately during training perform slightly better
than our hybrid noise strategy, while adopting swap
operation obtains the worst performance.

(2) When only one type of noise is injected, our
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Model Different Types of Noise

Clean Hybrid Swap Replace Delete
Ours-Hybrid 37.28 34.60 36.56 32.98 33.85
Ours-Swap 36.91 33.54 36.29 31.62 32.63
Ours-Replace 37.54 33.83 35.04 32.97 33.48
Ours-Delete 37.51 34.27 35.78 32.11 34.40

Table 5: The effects of different types of noise on the
IWSLT14 De⇒En dataset. Here, the noise ratios of all
noise test sets are set to 1% and bold indicates the best
result for each noise test set (each column).

model performs better if both training and test sets
are injected with the same type of noise. For ex-
ample, adopting swap operation during training
obtains 36.29 BLEU on the swap noise test set,
while adopting replace and delete operations ob-
tain 35.04 and 35.78 BLEU on the same test set,
respectively.

(3) The performance of the model on the test sets
with different types of noise differs greatly. Com-
paring each column in Table 5, the model performs
worst on the replace noise test set, while the swap
noise has relatively little damage to the model per-
formance.

(4) The hybrid noise strategy we adopt achieves
balanced results. Comparing each row in Table
5, we find that our model with the hybrid strategy
achieves the best results on the hybrid, swap and
replace noise test sets and competitive results on
the rest test sets.

4.6 Ablation Study

To verify the effectiveness of various factors on
our framework, we further compare our framework
with the following variants and present the results
in Table 6:

(1) w/ FNR. In this variant, we directly use a
Fixed Noise Ratio to schedule the process of noise
injection. As reported in Table 6, this variant de-
creases the performance dramatically on both clean
and noisy test sets. It reveals the importance of
scheduling the noise injection with CL.

(2) w/ FSI. In our improved CL method, the sam-
pling interval is progressively extended. In this
variant, we adopt a Fixed Sampling Interval and
the noise ratio is sampled uniformly from it. As
shown in Table 6, using a fixed sampling internal
also leads to the performance degradation.

(3) w/o SS. Inspired by the Baby Step (Wang
et al., 2021b) in CL, we equip CL with a Sampling
Strategy (See Section 3.2). Note that our CL strat-
egy degenerates into the naive CL strategy (the

Model Clean Test Noisy Test

NT14 NT15 mtnt18 mtnt19
Ours 34.11 32.67 28.16 30.77

w/ FNR 32.15 29.93 23.70 27.51
w/ FSI 33.77 31.21 26.25 29.44
w/o SS 33.47 31.37 26.22 30.43
w/o KL 33.09 30.28 25.84 29.05
KL⇒MSE 32.52 30.92 26.62 29.16

Table 6: Ablation study on the Fr⇒En translation task.

variant w/o SS) if we remove the SS component.
The results listed in Table 6 demonstrate the effec-
tiveness of our sampling strategy.

(4) w/o KL. We introduce a KL-divergence loss
to ensure that the model focuses more on one type
of examples at each stage while preventing forget-
ting the knowledge from another type. As shown
in Table 6, compared with the variant w/o KL, this
regularization term indeed enhances the model ca-
pability to cope with both clean and noisy inputs.

(5) KL⇒MSE. In this variant, we replace KL-
divergence loss with the MSE loss on decoder out-
put hidden states. From Table 6, we can observe
that this variant performs better than the framework
without KL-divergence loss (the variant w/o KL)
in 3 out of 4 test sets, showing the importance of
the regularization term. However, compared to the
MSE regularization, the KL-divergence regulariza-
tion is more suitable for our framework.

5 Related Work

To build robust NMT models, researchers have pro-
posed a range of methods, which can be mainly di-
vided into two categories: data-oriented and model-
oriented approaches.

In the first category, how to construct adversarial
examples is a non-trivial problem (Cheng et al.,
2020; Zou et al., 2020). Usually, adversarial ex-
amples are used in two ways: one is to directly
train a robust model using the dataset mixed with
authentic and adversarial examples (Belinkov and
Bisk, 2018; Karpukhin et al., 2019), and the other is
to use adversarial examples to fine-tune the NMT
model pre-trained on authentic examples (Helcl
et al., 2019; Dabre and Sumita, 2019; Berard et al.,
2019; Alam and Anastasopoulos, 2020).

In the second category, some researchers design
additional components for NMT model to correct
noisy inputs (Qin et al., 2021; Wang et al., 2021a;
Xu et al., 2021) or explore fault-tolerant neural
networks(Su et al., 2017; Tan et al., 2018). Mean-
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while, more researchers resort to exploring train-
ing strategies, including multi-task learning (Zhou
et al., 2019; Zhang et al., 2020), contrastive learn-
ing (Yang et al., 2019; Lee et al., 2021), and adver-
sarial training (Cheng et al., 2018, 2019; Liu et al.,
2020a).

In this work, the proposed framework belongs to
the second model-oriented category. In this regard,
most existing methods indiscriminately exploit au-
thentic and adversarial examples within the same
training stage, which are suboptimal confirmed in
our preliminary study. To mitigate this problem, we
propose an iterative scheduled data-switch training
framework for robust NMT, where we introduce
two training stages, iteratively switching between
authentic and adversarial examples. Besides, in-
spired by the successful applications of curriculum
learning (CL) in NMT (Platanios et al., 2019; Xu
et al., 2020; Zhou et al., 2020), we use CL to better
schedule the process of noise injection. Particu-
larly, we equip CL with a sampling strategy, which
is beneficial to the model generalization.

Finally, note that Jiao et al. (2021) introduce
an alternated training to alleviate the performance
drop caused by low-quality back-translation data.
Our work differs from theirs in three aspects: 1) we
aim at building a robust NMT model dealing with
clean and noisy inputs well, while Jiao et al. (2021)
try to prevent the model performance on clean test
sets from being disturbed by synthetic data; 2) we
introduce an improved CL method to better sched-
ule the process of noise injection, which is benefi-
cial to the model performance; 3) in addition to the
conventional cross-entropy objective (Jiao et al.,
2021), we introduce an additional regularization
term to cope with both clean and noisy inputs well.

6 Conclusion

In this paper, we first conduct a preliminary study
to reveal that indiscriminately exploiting authentic
and adversarial examples for robust NMT is sub-
optimal. To achieve better robust NMT, we further
propose an iterative scheduled data-switch train-
ing framework, where we train the model at two
training stages, iteratively switching between au-
thentic and adversarial examples. Moreover, we
introduce curriculum learning with a sampling strat-
egy to schedule the process of noise injection at
each training stage. Extensive experiments show
the superiority of our framework.

In the future, we will introduce more types of

real noise, such as ASR errors, into our framework.
Besides, we plan to apply our framework to other
natural language generation tasks, such as dialogue
generation, so as to verify the generality of our
framework.
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Figure 6: Visualization of the SSRs for authentic examples and the corresponding adversarial examples. Here, we
apply the PCA algorithm to reduce the source sentence representations to the 2-dim ones and visualize them. The
pink and blue dots denote adversarial and authentic examples, respectively.

A Appendix

A.1 Visualization of the Source Sentence
Representations

To understand the source sentence representations
(SSRs) clearly, we apply the PCA algorithm to the
SSRs of authentic and adversarial examples and
visualize the SSRs. Herein, following the settings
of the preliminary study (See Section 2), we aver-
age word representations to obtain the SSRs. The
authentic examples are obtained from the entire
test set of the IWSLT14 De⇒En dataset, and the
adversarial counterparts are constructed from them
as mentioned in Section 3.2.

From Figure 6(a), we observe the SSRs of au-
thentic and adversarial examples extracted from
Transformer scatter differently. The reason behind
this phenomenon is that Transformer is trained only
on the authentic dataset and thus fits bad to adver-
sarial examples, leading to huge SSR discrepancies
between two types of examples.

According to Figure 6(b) and Figure 6(c), which
correspond to the preliminary study in Section 2,
although Indisc-Model reduces the SSR discrep-
ancies between authentic and adversarial exam-
ples well compared to Transformer, Switch-Model,
can further reduce the SSR discrepancies, bring-
ing closer source sentence representations for two
types of examples.

Figure 6(d) and Figure 6(e) are correspond to
the analysis in Section 4.4. Transformer-Indisc
reduces the SSR discrepancies well compared to
Transformer and it achieves competitive results
(See Section 4.3). By contrast, our model can fur-
ther reduce the SSR discrepancies and achieve the
best performances across all datasets (See Section
4.3), which confirms the effectiveness of our frame-
work.

A.2 Definition of the function R(t)

Intuitively, a sharp increase of R(t) may hurt the
model optimization. We expect that R(t) increases

smoothly, hence we define the derivative of R(t)
as

dR(t)

dt
=

c1
R(t)

, (4)

for some constant c1≥0, and R(t) is a non-
decreasing function. The right side of Equation
4 decreases as the training processes, which indi-
cates the derivative of R(t) gradually decreases,
i.e., R(t) increases smoothly. Along with the con-
straint that R(t)≥0 for all t≥0, solving this simple
differential equation, we obtain:∫

R(t)dR(t) =

∫
c1dt

⇒ R(t) =
√
c1t+ c2,

(5)

for some constants c1≥0 and c2≥0. Then, we con-
sider the following constraints:{

R(0) = 0

R(T ) = Rmax,
(6)

where T denotes the maximal training step number
at each training stage, and Rmax denotes the maxi-
mal noise ratio. Combining Equation 5 and 6, the
final formula of R(t) is rewritten as:

R(t) =

√
R2

max ×
t

T
. (7)
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