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Abstract

This paper introduces a new data augmenta-
tion method for neural machine translation that
can enforce stronger semantic consistency both
within and across languages. Our method is
based on Conditional Masked Language Model
(CMLM) which is bi-directional and can be
conditional on both left and right context, as
well as the label. We demonstrate that CMLM
is a good technique for generating context-
dependent word distributions. In particular, we
show that CMLM is capable of enforcing se-
mantic consistency by conditioning on both
source and target during substitution. In addi-
tion, to enhance diversity, we incorporate the
idea of soft word substitution for data augmen-
tation which replaces a word with a probabilis-
tic distribution over the vocabulary. Experi-
ments on four translation datasets of different
scales show that the overall solution results
in more realistic data augmentation and better
translation quality. Our approach consistently
achieves the best performance in comparison
with strong and recent works and yields im-
provements of up to 1.90 BLEU points over the
baseline. 1

1 Introduction

Neural network models have achieved remarkable
results in many fields such as computer vision, nat-
ural language processing, and speech. In order to
obtain adequate expressivity, the models usually
come with a large number of parameters. How-
ever, such models are prone to overfitting if trained
with an insufficient amount of training data. Data
Augmentation (DA) is an effective technique that
has been used in many areas to augment existing
labeled data and boost the performance of machine
learning models. For example, in computer vision,
training data is often augmented by ways such as
horizontal flipping, random cropping, tilting, and

1Our code is available at https://github.com/
netease-youdao/cmlm_da.

color shifting (Krizhevsky et al., 2012; Cubuk et al.,
2018). While DA has become a standard technique
to train deep networks for image processing, it is
relatively under-explored in Natural Language Pro-
cessing (NLP).

The exact mechanisms and theoretical founda-
tions of data augmentation are still under investi-
gation. Most studies show empirically that data
augmentation is effective and provide some intu-
itive explanations. A recent work in the field of
vision (Gontijo-Lopes et al., 2020) demonstrates
that affinity (the distributional shift caused by DA)
and diversity (the complexity of the augmentation)
can predict the performance of data augmentation
methods. However, neither metric can be measured
without completing the entire DA process. There-
fore, it is still challenging to evaluate the goodness
of a DA technique without full-fledged experimen-
tation and it is not clear how the result can be used
to guide the design of data augmentation schemes.

Generally speaking, DA can be classified into
two categories. The first tries to produce realistic
samples that resemble the inherent semantics of
naturally generated data. In areas such as com-
puter vision, this is often achieved via heuristics
that mimic the intrinsic processes that could have
actually happened in the physical world, such as
photometric noise, flipping, and scaling, etc. The
second perturbs the data in a stochastic fashion, re-
sulting in unrealistic samples. Some (e.g., Bishop
(1995)) interpret this as a type of regularization that
boosts model performance by reducing overfitting.
Both are being exploited in NLP.

This paper focuses on lexical replacement meth-
ods that augment the training data by altering ex-
isting sentences in the parallel corpus of a neural
machine translation (NMT) system. We have ob-
served frequently in practice, as well as in literature
(Gao et al., 2019; Fadaee et al., 2017; Kobayashi,
2018; Wu et al., 2019; Dong et al., 2021; Liu et al.,
2021), that augmented data samples that preserve

https://github.com/netease-youdao/cmlm_da
https://github.com/netease-youdao/cmlm_da
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the semantics of the real labeled data increase the
effective training size and are beneficial for model
performance. We call this property semantic con-
sistency. In the case of NMT, the training data
comes in the form of a collection of <source,
target> sentence pairs where source is a sen-
tence in the source language and target its trans-
lation in the target language. Semantic consistency
requires that (1) both source and target are
fluent and grammatically correct in their respec-
tive languages; and (2) target is a high quality
translation of source.

German Es ist ja ganz angenehm, in
eine kleine Klasse zu kommen.

English You know, it’s very pleasant to
walk into a small class.

Case 1 You know, it’s very please to
walk into a small class.

Case 2 You know, it’s very uncomfort-
able to walk into a small class.

Case 3 You know, it’s very enjoy-
able/comfortable to walk into
a small class.

Table 1: Data augmentation examples with varying de-
grees of semantic consistency.

Existing methods augment the training data
using word swapping, removal or substitution
(Artetxe et al., 2017; Lample et al., 2017) on either
source or target, or both. Due to the discrete
nature of language, these transformations are not al-
ways semantic-preserving. Quite often they either
weaken the fluency of source or/and target, or
break their relationships. To illustrate, consider the
example given in Table 1 that shows a sentence pair
from an English-German parallel corpus. Case 1 to
3 are three synthetic English sentences generated
by some DA processes. Both Case 1 and 2 are un-
desirable because the former, although substituting
the word pleasant with a word close in meaning,
is grammatically incorrect, whereas the latter is not
a good translation of the German sentence. Case
3, on the other hand, is a good augmentation that
satisfies the two requirements of semantic consis-
tency.

1.1 Our Contributions

To achieve better augmentation, the generation
process must make better use of context and la-
bel. In this paper, we introduce Conditional

Masked Language Model (CMLM) (Wu et al.,
2019; Ghazvininejad et al., 2019; Chen et al., 2020)
to data augmentation for NMT. A Masked Lan-
guage Model can make use of both left and right
context, and a CMLM is an enhanced version that
can be conditional on more information. CMLM
has been used successfully in tasks such as text clas-
sification (Wu et al., 2019). However, to the best of
our knowledge, its application to text generation,
especially using deep bidirectional models such as
BERT (Devlin et al., 2019), has not been explored.
We demonstrate in this paper that CMLM is a good
technique for generating context-dependent word
distributions. In particular, we show that CMLM
is capable of enforcing semantic consistency by
conditioning on both source and target during sub-
stitution. In addition, to enhance diversity, we com-
bine the soft word substitution approach for DA,
which replaces a word with a probabilistic distri-
bution over the vocabulary (Gao et al., 2019). Ex-
periments on four translation datasets of different
scales show that the overall solution results in more
realistic data augmentation and better translation
quality. Our approach consistently achieves the
best performance in comparison with strong and re-
cent works and yields improvements of up to 1.90
BLEU points over the baseline.

In addition, we introduce an unsupervised
method to measure semantic consistency without
full-fledged training of NMT models, which may
take many days even on GPU clusters. This could
be used to provide an efficient early assessment of
a data augmentation scheme.

2 Related Work

From a technical perspective, previous work on
data augmentation for NLP can be classified as
either context-independent or context-dependent.
Context-independent approaches often apply pre-
determined, easy-to-compute transformations that
depend solely on the word or sentence to be altered.
Not surprisingly, most of them are not semantically
consistent. Wei and Zou (2019) improves perfor-
mance on many text classification tasks through a
set of word level random perturbation operations,
including random insertion, deletion, and swap-
ping. Similar ideas have been applied to NMT,
but the methods differ in how and what to alter.
Swap (Artetxe et al., 2017; Lample et al., 2017)
randomly swaps words in nearby positions within
a window size k and Drop (Iyyer et al., 2015;
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Lample et al., 2017) randomly drops word tokens.
Blank (Xie et al., 2017) replaces the candidate word
with a placeholder token and Smooth (Xie et al.,
2017) replaces it with a word sampled from the fre-
quency distribution of the vocabulary, showing that
data noising is an effective regularizer for NMT.
SwitchOut, introduced in (Wang et al., 2018), for-
mulates the design of a DA algorithm as an opti-
mization problem that maximizes an objective that
encourages two desired properties: smoothness and
diversity. SwitchOut independently replaces words
in both source and target by other words uni-
formly sampled from their respective vocabularies.
Others try to preserve a certain level of seman-
tic consistency by replacing words with their syn-
onyms selected from a handcrafted ontology such
as WordNet (Zhang et al., 2015) or words based on
similarity calculation (Wang and Yang, 2015).

These works do not make use of important con-
text and label information and, in practice, usually
cause a very small or even negative impact on per-
formance. Context-dependent approaches, on the
other hand, modify words, phrases, or the whole
sentence based on their contextual information that
is usually modeled using neural networks. We sum-
marize a few representative ones below.

Fadaee et al. (2017) propose a simple but effec-
tive approach to augment the training data of NMT
for low-resource language pairs. Their work uses
shallow LSTM language models (LM) trained on
large amounts of monolingual data to first substi-
tute a word in source, and then put the corre-
sponding translation in target, using automatic
word alignments and the traditional statistical MT
practice. LMsample (Kobayashi, 2018) proposes
contextual augmentation for text classification by
offering a wide range of substitute words, which
are predicted by a label-conditional bidirectional
language model. Wu et al. (2019) retrofit BERT to
conditional BERT that allows it to augment sen-
tences without breaking the label-compatibility.
The BERT-based solution brings two benefits. First,
BERT’s Transformer core provides a more struc-
tured memory for handling long-term dependen-
cies in text. Second, BERT, as a deep bidirectional
model, is strictly more powerful than the shallow
concatenation of left-to-right and right-to-left mod-
els.

A recent work (Liu et al., 2021) treats a trans-
lation language model as a causal model and per-
forms data augmentation by counterfactual-based

causal inference. Their DA replaces source phrases
according to a masked language model and the
aligned target phrase by a cross-lingual language
model (XLM) (Conneau and Lample, 2019) condi-
tional on the changed source phrase.

Different from their work, we use two separate
CMLMs to augment source and target respectively,
which means that, instead of model prediction,
the condition is always true information for both
CMLMs. We show its superiority in section 5.1.

The way we incorporate augmented data into the
NMT training is drawn from the idea of “soft” word
introduced by SCA (Gao et al., 2019). Basically,
the embedding of a chosen word in a sentence is
replaced by its probabilistic distribution predicted
by a language model. This brings in more diversity
to the DA process. However, Gao et al. (2019) as a
DA solution is based on a uni-directional language
model and is not label-conditional. As we show in
section 4.3 that this is less optimal.

3 Approach

In this section, we present our method in detail.
We first introduce conditional MLM, then we show
how to apply CMLM to data augmentation in neu-
ral machine translation tasks.

Let (X,Y ) be a pair of source and target sen-
tences where X = (x1, x2, . . . , xM ) and Y =
(y1, y2, . . . , yN ) are two sequences of tokens in
source and target languages, with lengths M
and N , respectively. A neural machine trans-
lation system learns the conditional probability
p(y1, y2, . . . , yN |x1, x2, . . . , xM ).

3.1 Conditional MLM
Recall that our goal is to augment NMT’s par-
allel corpus with synthesized data that preserves
the semantics within source and target sentences,
as well as their cross-lingual relations. To this
end, we resort to Conditional MLM for generating
context-dependent word distributions, with which
we then find the best substitutes for a given word.
CMLM is a variation of MLM, which allows fur-
ther fine-tuning of the pre-trained model. It makes
the strong assumption that the masked tokens are
conditionally independent of each other given the
context and predicts the probabilities individually
(Ghazvininejad et al., 2019).

In our case, we apply the following two practices
when instantiating our CMLMs:

• We condition the CMLM on both X and Y .
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Figure 1: The architecture of our CMLM-based soft contextual data augmentation approach.

• During the training of a CMLM, we only mask
out tokens in either X , or Y , but not both.

We call this approach “Conditioning on Both
but Predicting One”, referring to how it treats
the source and target sides in the NMT training.
Specifically, for each sentence pair (X,Y ), we first
concatenate X and Y , then randomly mask 15% of
the words in X , and then train a CMLM to predict
the masked words:

P (xm1 , . . . , xmi | Xu, Y ) (1)

where xmi denotes a masked token and Xu the
unmasked ones within X . For the tokens in the
target sentence, we train a separate CMLM to get
their distribution similarly:

P (ym1 , . . . , ymi | X,Y u) (2)

During the training of an NMT model, both X
and Y are available. Conditioning on the reference
sentence Y allows the model to enforce stronger
consistency between input and label, resulting in
meaningful translations when applied to DA in
NMT. We show in section 5.1, using metrics de-
veloped for translation quality estimation, that this
choice significantly improves the translation qual-
ity of the generated sentence pairs.

Changing X or Y but not both for DA is a de-
liberate choice. Typical modern languages have

diverse vocabularies, with synonyms and semanti-
cally equivalent or close expressions. This already
provides abundant opportunities for semantic-
preserving transformations. Therefore, it is not
necessary to alter X and Y simultaneously. In
section 5.1, we compare our choice with an XLM
(cross-lingual language model) (Conneau and Lam-
ple, 2019) approach which changes X and Y simul-
taneously. The empirical study shows that our ap-
proach can avoid introducing incorrect <source,
target> pairs and improve NMT performance.

3.2 Soft Conditional Contextual DA

Once a CMLM is trained, one could use it to
expand training data for NMT. This is typically
done by replacing words with others predicted
by the language model at the corresponding po-
sitions (e.g., Kobayashi (2018); Wu et al. (2019)).
In our case, since the probability distribution of
the masked words P (xm1 , . . . , xmi | Xu, Y ), or
P (ym1 , . . . , ymi | X,Y u) if we mask out words
in Y , contains information from both backward
and forward contexts, as well as target sentence,
sampling from such distribution could potentially
generate better substitutions for the word on the
masked position. However, such a method could
be expensive: to generate enough samples with
adequate variation, exponentially many candidates
have to be processed.

Instead, inspired by Gao et al. (2019), we take
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a soft approach. In essence, this method works
directly with the word embeddings and uses the ex-
pectation of a word’s embedding over the CMLM’s
output distribution to replace its original embed-
ding. Let w be a candidate word and P (w) its
distribution defined by the CMLM. Note that P (w)
is conditional on the context that we described ear-
lier and is over the entire vocabulary. Suppose E is
the embedding matrix of all the |V | words. We use
EW to denote the embedding vector of a word W .
The embedding of the soft word w is:

ew = EW∼P (w)[EW ] =

|V |∑
j=0

pj(w)Ej (3)

3.3 NMT Training with DA
In this section, we elaborate on the training process
of the NMT model with our DA method. Figure
1 shows the architecture of the scheme. There are
two independently trained CMLMs, one for aug-
menting the encoder, and the other the decoder. The
two CMLMs can be turned on/off independently
and we study the effects in section 5.2.

We use BERT (Devlin et al., 2019) as our
CMLM, for its deep bidirectional natural, and su-
perior capability for handling long-term dependen-
cies. We start by taking a pre-trained multilingual
BERT, and fine-tune it using the method described
in 3.1. The NMT training proceeds as usual, except
that, at each sentence pair (X,Y ), for each word
in X (or Y ), with probability γ we replace its em-
bedding by its soft version defined by Equation 3.
Notice that, our method does not generate any data
explicitly. Rather, we use embedding substitution
to incorporate augmentation directly into the train-
ing process. We study the effect of different values
of γ in section 5.3.

4 Experiments

In this section, we demonstrate the effectiveness of
our method on four datasets with diverse language
variation. They include three relatively small-scale
datasets, {German, Spanish, Hebrew} to English
({De, Es, He}-> En) from the well-known IWSLT
2014, and one large-scale English to German (En-
>De) dataset from WMT14 .

4.1 Data
For IWSLT14 De->En task we follow the same
pre-processing steps and the same train/dev/test
split as in Gao et al. (2019). The training dataset

and validation dataset contains about 160K and 7K
sentence pairs, respectively. Consistent with previ-
ous work, tst2010, tst2011, tst2012, dev2010, and
dev2012 are concatenated as our test data. For Es-
>En and He->En tasks, there are 181K and 151K
parallel sentence pairs in each training set. We
validate on tst2013 and test on tst2014 for these
two tasks. For all IWSLT translation tasks, we
use a joint source and target vocabulary with 10K
byte-pair-encoding (BPE) (Sennrich et al., 2016)
types. For the WMT2014 En-De translation task,
again, we follow Gao et al. (2019) to filter out 4.5M
sentence pairs for training. We concatenate new-
stest2012 and newstest2013 as the validation set
and use newstest2014 as the test set. We use a joint
source and target vocabulary built upon the BPE
with 40k sub-word types. For fair comparison to
previous work, we report tokenized BLEU (Pap-
ineni et al., 2002) scores computed with the multi-
bleu.perl script from Moses.2 To further boost
comparability, we also report detokenized BLEU
scores computed using sacreBLEU (Post, 2018).
(Post, 2018). For all experiments, we performed
significance tests based on bootstrap resampling
introduced by Koehn (2004).

4.2 Model
Our model uses the Transformer architecture,
which is solely based on attention mechanisms
and dominates most of the sequence-to-sequence
tasks. For all IWSLT tasks, we adopt the trans-
former_iwslt_de_en configuration for the NMT
model. Specifically, both the encoder and decoder
consist of 6 blocks, and the source and target word
embedding are shared for the language pair. The
dimensions of embedding and feed-forward sub-
layer are set to 512 and 1024, respectively. The
number of attention heads is set to 4. The default
dropout rate is 0.3. For WMT14 En-De, we use
the default transformer_big configuration for the
NMT model. Specifically, the dimensions of em-
bedding and feed-forward sub-layer are 1024 and
4096, respectively. The NMT models are trained
by Adam (Kingma and Ba, 2015) optimizer with
default learning rate schedule as Vaswani et al.
(2017).

For all tasks, we adopt the BERT-base configura-
tion for the CMLM model, except that the number
of hidden layers is set to 4 to speed up the train-

2https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl
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IWSLT WMT
De->En Es->En He->En En->De

Other Reported Results
Base∗ 34.79 41.58 33.64 28.40
Swap∗ 34.70 41.60 34.25 28.13
Drop∗ 35.13 41.62 34.29 28.29
Blank∗ 35.37 42.28 34.37 28.89
Smooth∗ 35.45 41.69 34.61 28.97
LMsample

∗ 35.40 42.09 34.31 28.73
SCA∗ 35.78 42.61 34.91 29.70
mixSeq† 35.78 41.39 - 29.61

Our Implementations
Base 34.37 41.67 33.76 28.25
CMLMhard 35.76 42.25 34.66 30.01
CMLMsoft 35.93(+1.56) 42.92(+1.25) 35.21(+1.45) 30.15(+1.9)

Table 2: BLEU scores over the test sets. (∗) from Gao et al. (2019). (†) from Wu et al. (2021)

IWSLT WMT
De->En Es->En He->En En->De

Base 33.62 40.87 33.15 27.49
CMLMhard 35.07 41.45 34.01 29.08
CMLMsoft 35.31(+1.69) 42.01(+1.14) 34.51(+1.36) 29.37(+1.88)

Table 3: SacreBLEU scores over the test sets.

ing process. We use the bottom 4 layers of the
pre-trained BERT-base-multilingual-cased model
as the starting point of CMLM fine-tuning. We also
experiment with an entirely randomly-initialized
CMLM model and find that the pre-trained weights
result in faster CMLM training. We follow Devlin
et al. (2019) for the CMLM fine-tuning and use a
triangular learning rate schedule with maximum
learning rate η. The CMLM parameters are also
updated with the Adam optimizer.

4.3 Main Results

We compare our method against several other
strong data augmentation methods, including sev-
eral context-independent approaches such as Swap
(Artetxe et al., 2017; Lample et al., 2017), Drop
(Iyyer et al., 2015; Lample et al., 2017), Blank (Xie
et al., 2017) and Smooth (Xie et al., 2017), and
two context-dependent ones, LMsample (Kobayashi,
2018) and SCA (Gao et al., 2019). We also compare
it against a sentence-level augmentation method,
mixSeq (Wu et al., 2021), which randomly selects
two sentence pairs, concatenates the source sen-
tences and the target sentences, respectively, with
a special label <sep> separating two samples, and
trains the model on such augmented dataset.

Our baseline is the vanilla transformer described
earlier without DA. For comparison, we performed
two sets of data augmentation experiments using
CMLM: (1) CMLMsoft uses the soft approach
described in section 3.2 and follows the training
framework in section 3.3. (2) CMLMhard uses the
conventional hard substitution approach, with the
substitution words generated by sampling from the
CMLMs. Both CMLMsoft and CMLMhard aug-
ment both the encoder and the decoder, and use the
same mask probability γ = 0.25, which we find to
be the optimal configuration. See sections 5.2 and
5.3.

The BLEU and SacreBLEU scores on four trans-
lation tasks are presented in Table 2 and 3, respec-
tively. Both CMLMsoft and CMLMhard are supe-
rior to the base system, with CMLMsoft consis-
tently achieves the best performance on all tasks
and across all comparisons. The CMLM (soft)
approach significantly outperformed the baseline
in Table 2 and Table 3 for all four tasks, with p-
values lower than 0.02. Most remarkably, our DA
improves the baseline by as much as 1.90 BLEU
points on the WMT14 En->De dataset.

In addition to experiments on publicly available
corpora, we also evaluate the scheme on Youdao’s
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production NMT engine, 3 a major multilingual
neural machine translation service that is trained
with data at least three orders of magnitudes larger
than the public corpora. The method achieves simi-
lar consistent improvements. Our DA mechanism
has been built into the production NMT engine,
serving billions of requests each day.

5 Analysis

Our method consists of multiple modules, and we
design several groups of comparative experiments
to analyze their effects.

5.1 Semantic Consistency

Recall that the “soft” substitution approach that we
use works directly with embeddings and does not
generate synthetic data explicitly. The quality of
the DA process depends on the distributions defined
by the two CMLMs (equations 1 and 2). There is no
straightforward metric to measure the distributions
in terms of semantic consistency. Here we propose
a simple sampling-based approach. The intuition
is: if the distribution is used for text generation,
the quality of resulting sentence pairs is a good
indicator of the effectiveness of its role in the DA
process.

Specifically, given a sentence pair (X,Y ), we
randomly replace some tokens from X (resp. Y )
with those sampled from the source (resp. target)
CMLM, resulting in (X ′, Y ) (resp. (X,Y ′)). We
manually inspect a small sample and find that our
method indeed produces sentence pairs that are
generally both fluent in their respective languages
and correct in terms of translation quality. However,
our goal is to have an automatic method that can
be used to assess semantic consistency at large
scale. To this end, we draw on the research in
Quality Estimation (QE) for Machine Translation.
Self-Supervised QE aims to evaluate the quality
of machine-translated sentences without human
labeling, which aligns perfectly with our goal.

Zheng et al. (2021) show that the conditional
probability computed by the CMLM in Equation
2 is a good indicator of translation quality (which
also implies fluency). Specifically, let ym be a word
in the target, the translation quality score of this
word is defined as P (ym | X,Y u) as computed
by the CMLM. The sentence-level quality score is
simply averaging the quality scores over all target
words.

3https://fanyi.youdao.com/

Our case is slightly different. Since we have both
X and Y , we can use the idea of Zheng et al. (2021)
but with a more direct approach: we can compare
the words in X ′ (resp. Y ′) against the original ones
in X (resp. Y ) and compute the accuracy. This
is equivalent to taking expectations over the test
sentences.

Source Acc Target Acc BLEU
MLM 53.5% 44.0% 35.56
XLM 74.8% 70.4% 35.65
CMLM 80.1% 75.5% 35.93

Table 4: The prediction accuracy of source and target,
and BLEU for IWSLT14 German-English translation.

We compare our CMLM-based approach against
the DA results from (1) an XLM-based scheme
in Liu et al. (2021), which alters both X and
Y by treating a translation language model as a
causal model and performing data augmentation
by counterfactual-based causal inference; and (2)
a simple MLM which does not condition on any
portion of Y . All implementations use models with
the same configuration as the CMLM described
in section 4.2, fine-tuned with the same training
data but their individual conditions and objectives.
Table 4 shows the prediction accuracy of masked
words on the 7K IWSLT14 German-English valida-
tion data set. Consistent with the mask probability
during CMLM training, we let the model predict
15% of the words in X or Y . For ease of compar-
ing the final effects on the machine translation task,
Table 4 also shows the BLEU scores measured on
IWSLT14 German-English dataset after applying
the DA method to the NMT engine.

Our CMLM-based solution achieves strong pre-
diction accuracy rates of 80.1% and 75.5% on
source and target sides, respectively, significantly
outperforming the MLM approach by near 30 per-
centage points. This shows that our method is ca-
pable of generating synthetic sentence pairs with
much better translation quality. The improvement
over XLM is milder but still significant, with 5+
percentage points. BLEU scores follow a similar
trend. Recall that we use independent CMLMs to
alter either X or Y but not both, while XLM uses
a single cross-lingual language model to change
both. The results confirm our conjecture that alter-
ing both X and Y simultaneously while preserving
semantic consistency may be too difficult for the
language models. Doing so may introduce too

https://fanyi.youdao.com/
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much noise and hurt translation quality.
This method also provides an efficient way to

assess a data augmentation scheme for NMT. It can
save days or even months of GPU time (for training
NMT models) since computing the word prediction
accuracy rates on a few thousands of sentence pairs
is very fast.

5.2 Encoder vs. Decoder

Our CMLM-based data augmentation method can
be applied to either encoder or decoder, or both. In
this section, we conduct experiments to study the
effects of these choices. We train two CMLMs inde-
pendently. The first is used to augment the encoder,
the latter the decoder. Note that, per our discussion
in section 3.1, the CMLMs, when activated, only
augment one side of the sentence pair. The encoder
(resp. decoder) CMLM mask out words only in X
(resp. Y ), thus replacing their embeddings by their
soft versions.

Table 5 shows the BLEU scores for different
augmentation configurations. It is clear that both
encoder and decoder augmentations are beneficial,
with encoder augmentation obtaining slightly more
gain. The maximum improvement can be achieved
when the method is applied to both.

IWSLT WMT
De-En Es-En He-En En-De

Base 34.37 41.67 33.76 28.25
+Encoder 35.23 42.31 34.66 29.57
+Decoder 34.93 42.13 34.41 29.34
+Both 35.93 42.92 35.21 30.15

Table 5: BLEU scores over the test sets.

5.3 Mask Probability

As mentioned in section 3.2, for each word in X
or Y , we replace its embedding by its soft version
with probability γ. This parameter controls the
extent to which the DA method will exert its ef-
fect. Intuitively, a small value of γ will preserve
the original semantics better while a large value
of γ can bring in more diversity. A balance must
be struck. We experiment with different values,
and Figure 2 shows their influence on BLEU on
the IWSLT14 De-En dataset. The strongest per-
formance is reached with a mask probability of
0.25.

0% 15% 25% 35%
Mask Probability

33.5

34.0

34.5

35.0

35.5

36.0

36.5

B
LE

U

Figure 2: BLEU score for IWSLT14 German-English
with difference mask probability.

5.4 Computation Overhead

Our DA method introduces two additional steps
into the NMT training process: fine-tuning the
CMLMs and augmenting the NMT model. The
actual overhead depends on the scale of the data
sets. In our experiments, IWSLT De-En and WMT
En-De corpora consist of 160K and 4.5M sentence
pairs, respectively. Fine-tuning the CMLMs on the
two corpora takes about 3 and 20 hours, respec-
tively, on a single A40 GPU.

Our training process has the same complexity
as that of SCA (Gao et al., 2019) so they should
have similar computation performance. From our
experiments, the training time on IWSLT dataset in-
creases about 84%, up from 2.5 hours to 4.6 hours,
again on a single A40. The overhead is less signifi-
cant for large corpora. The WMT tasks take 25%
more time to train, up from one day to roughly 32
hours on 4 A40 cards. We see only a 10% increase
in training time when we apply the DA method to
our production NMT engine.

6 Conclusion

In this paper, we advocate performing semantically
consistent data augmentation for neural machine
translation and propose a scheme based on Con-
ditional Masked Language Model and soft word
substitution. We show that a deep, bi-directional
CMLM is capable of enforcing semantic consis-
tency by conditioning on both source and target
during data augmentation. Experiments demon-
strate that the overall solution results in more real-
istic data augmentation and better translation qual-
ity. Our approach consistently achieves the best
performance in comparison with strong and re-
cent works and yields improvements of up to 1.90
BLEU points over baseline.
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