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Abstract

Despite the revolutionary advances made by
Transformer in Neural Machine Translation
(NMT), inference efficiency remains an obsta-
cle due to the heavy use of attention operations
in auto-regressive decoding. We thereby pro-
pose a lightweight attention structure called
Attention Refinement Network (ARN) for speed-
ing up Transformer. Specifically, we design a
weighted residual network, which reconstructs
the attention by reusing the features across lay-
ers. To further improve the Transformer effi-
ciency, we merge the self-attention and cross-
attention components for parallel computing.
Extensive experiments on ten WMT machine
translation tasks show that the proposed model
yields an average of 1.35× faster (with al-
most no decrease in BLEU) over the state-of-
the-art inference implementation. Results on
widely used WMT14 En→De machine transla-
tion tasks demonstrate that our model achieves
a higher speed-up, giving highly competitive
performance compared to AAN and SAN mod-
els with fewer parameter numbers1.

1 Introduction

Transformer (Vaswani et al., 2017) has become
the dominant approach in the NMT literature,
which achieves superior translation performance
and efficiency due to its well-designed attention
mechanism. The highly parallelizable architec-
ture enables Transformer to capture the dependency
among positions over the entire sequence parallelly
for a faster training step. However, the inference
efficiency remains a bottleneck for Transformer. In
inference, Transformer follows an auto-regressive
generation paradigm and generates the target words
one by one on the decoder side. The heavy use of
dot-product attention operations even further slows
Transformer efficiency. In addition, there are a

1https://github.com/
Kaixin-Wu-for-Open-Source/ARN
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Figure 1: The information transformation between the
input and output after through a sub-layer F , where
Xl+1 = Xl + F(Xl)

Figure 2: The cosine similarity of the input and out-
put for every sub-layer over validation set on WMT14
En→De translation task. “Enc”, “Dec”, “SA”, “CA”,
“FFN” represent Encoder, Decoder, Self-attention,
Cross-attention and Feed-forward network, respectively.
Darker cells denote more similar.

large number of attention sub-layers in the multi-
layer stacked Transformer, which makes it prone
to redundancy. As shown in Figure 2, we observe
redundant computation in Transformer attention
sub-layer, especially the attention in the decoder.
This inspires us to explore a lightweight attention
structure to speed up Transformer decoding.

Many efforts have been dedicated to accelerat-
ing the decoding process of Transformer. AAN

(Zhang et al., 2018) adopts an average strategy
to avoid computing the correlations over the en-
tire input word. However, this method requires
a complicated network and only focuses on the
decoder-side self-attention. SAN (Xiao et al., 2019)
reuses the attention results among layers, but it
requires a model to learn which layers should be
allowed to share. Besides, another representative

https://github.com/Kaixin-Wu-for-Open-Source/ARN
https://github.com/Kaixin-Wu-for-Open-Source/ARN
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approach (Gu et al., 2017; Guo et al., 2019; Wang
et al., 2019) follows another line to abandon the
auto-regressive generation property and produces
target sequences in parallel, thus it fails to model
the word dependencies.

We investigate an alternative lightweight atten-
tion structure for Transformer acceleration. As
shown in Figure 3, the main idea is to reconstruct
the attention via a weighted combination of high-
level and low-level features, rather than the stan-
dard dot-product function. The two parts represent
the attention results of the current layer and its pre-
vious layer, respectively. This weight, a learned
matrix under the guidance of the two input features,
which determines how many low-level features can
be selected to fuse. Consequently, we refer to our
model as Attention Refinement Network, or ARN in
short. Our combination process is computationally
inexpensive, which allows us to employ less com-
putation to obtain the attention results of adjacent
layers and combine them to approximate the origi-
nal attention results. ARN structure can be viewed
as a weighted residual network, which acquires the
attention results by reusing the features across lay-
ers. This way introduces low-level features into
the attention sub-layer to further enhance model
confidence, which is an improvement over SAN

(Xiao et al., 2019). In addition, this method can be
applied to both self-attention and cross-attention
on the decoder side and we merge the above two
components to further improve decoding efficiency.
Moreover, ARN structure is simple and it is easy
to implement. As another “bonus”, ARN requires
fewer parameters, so it is faster to train and main-
tains a smaller memory footprint.

Extensive experiments on ten WMT translation
tasks show that ARN achieves an average of 1.35×
faster with performance on par with a strong base-
line. Compared to AAN and SAN baselines, our
model gives a higher speed-up as well as highly
competitive performance with fewer parameter
numbers on widely used WMT14 En→De transla-
tion tasks.

2 Standard Transformer Attention

Standard Transformer follows the popular encoder-
decoder paradigm, which consists of a 6-layer en-
coder and a 6-layer decoder. The overall archi-
tecture only contains stacked attention and feed-
forward networks (FFN) in Transformer. There are
three types of attention mechanisms: the encoder-

side self-attention, the decoder-side self-attention
and the cross-attention. On the encoder side, each
layer follows the order of operations that could be
defined as: self-attention → FFN. Similarly, the
decoder side follows the way: self-attention →
cross-attention → FFN.

The attention model in Transformer is scaled
dot-product attention. See Figure 3 (a) for an illus-
tration of the standard attention. The input of atten-
tion is a tuple of (Ql,Kl, Vl), where Ql ∈ Rm×d

and Kl, Vl ∈ Rn×d are the matrices of correspond-
ing queries, keys and values of the l-th layer. For
encoder or decoder self-attention, m = n repre-
sents the source or target sequence length. For
cross-attention, m and n are the target sequence
length and source sequence length, respectively. d
is the dimension of the hidden representation. We
first compute the attention distribution via a scaled
dot-product and softmax operations.

Al = Sim(Ql,Kl)

= Softmax(
Ql ·Kl

T

√
d

)
(1)

where Al is an m × n matrix, which represents
the degree of relevance between different positions
of queries and values. The ouput of attention is a
weighted sum of values, and it can be defined as:

Fl = Al · Vl (2)

where Ql,Kl, Vl are all generated by a linear trans-
formation. In self-attention (encoder or decoder),
the three parts share the same source, which comes
from the output of its previous layer. While in
cross-attention, the difference is that the Kl and Vl

from the output of encoder side. Fl is the attention
results of the l-th attention sub-layer, which is then
fed into the next sub-layer.

Note that the matrix multiplications in Eq. 1
and Eq. 2 are computationally expensive. This
is even worse for inference because the operation
is repeated until an end symbol is reached due to
the auto-regressive generation property. We also
compute the cosine similarity of the input and out-
put for every sub-layer in Transformer. Figure 1
is the definition of a sub-layer F and Figure 2
shows the similarity results. As can be seen that
the input and output of the attention sub-layer are
very similar, especially the attention in the decoder.
Specifically, we observe that the decoder-side self-
attention presents the highest similarity compared
to other sub-layers, followed by the cross-attention.
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(a) Standard Transformer Attention
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(b) Attention Refinement Network (ARN)

Figure 3: Comparison of the standard attention model and ARN model

Most of their similarities are more than 90%, and
some even more than 95%. All these show the
possibility of removing redundant computation in
Transformer and lead us to learn a lightweight at-
tention structure.

3 Attention Refinement Network (ARN)

The proposed method for speeding up Transformer
concentrates on the decoder-side attention because
the decoder is the bottleneck of Transformer
inference.

Overall Architecture. The proposed ARN

module is shown in Figure 3 (b). We assume that
the decoder contains L = M × N layers. The
decoder is simply divided into M parts equally,
and each part contains N layers. For each ARN

module, the bottom layer is the dot-product
attention same as used in standard Transformer,
and the next N − 1 layers are the lightweight
attention composed of the two inputs. One is an
approximate attention result of the current layer
by reusing the attention weights within adjacent
layers, and the other is the up-sampled attention
results from its previous layer. Since the upper
layer contains more semantic information, we
refer to the two inputs high-level features and
low-level features, respectively. α is a learned
weight matrix, which is used to represent the
fusion degree of low-level features. In contrast to

Figure 3 (a), ARN reconstructs the attention via a
feature fusion of the two input sources to replace
the original dot-product attention. ARN can be
regarded as a weighted residual network, which
sums to obtain the attention results by reusing
the features across layers. The ARN module is
applied to both self-attention and cross-attention
for speeding up Transformer.

3.1 The Model
Weighted Residual Network. For each ARN

module, the attention is reconstructed via a
weighted sum of the two input sources.

Fl+i = F̃l+i + α⊗ Fl+i−1 (3)

for i ∈ [1, N − 1]

where F̃l+i and Fl+i−1 are the high-level features
and low-level features, respectively. Fl+i−1 is the
attention results of the previous layer, and we reuse
it as our low-level features of the current layer. ⊗
denotes the element-wise multiplication. F̃l+i is
defined as:

F̃l+i = Al+i · Vl+i

= Al · Vl+i

(4)

where Al denotes the attention weights of the l-
th layer, its calculation process is shown in Eq.
1. Previous work show that the attention weights
are redundant and the adjacent layers share simi-
lar distributions (Michel et al., 2019; Behnke and
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Figure 4: Merging self-attention and cross-attention in
ARN decoder layer.

Heafield, 2020; Xiao et al., 2019). Thus, we reuse
the attention weights of adjacent lower layers to
construct the high-level features. α is a learned ma-
trix, which is obtained from the following process:

α = G(Fl+i−1, F̃l+i)

= ReLU(
Wα

l+i · Max(Fl+i−1, F̃l+i)√
d

)
(5)

Here, Max(·) is an element-wise operation
and Wα

l+i is a learnable parameter. According
to Eq. 5, α is a sparse weight matrix obtained
from the supervision of high-level and low-level
features. This weight matrix highlights important
semantic information of low-level features, and it
determines how many low-level features can be
selected for fusion. In other words, the upper layer
features can be refined through the fusion of the
lower layer important features iteratively.

Merging Self-attention and Cross-attention.
For the self-attention and cross-attention in a
decoder layer, the formula can be simply defined
as:

Fl = Ql + SelfAttn(Ql)+CrossAttn(Q̃l, R) (6)

where Q̃l = Ql + SelfAttn(Ql), Ql is the input of
l-th layer and R denotes the hidden reprensentation
of encoder. As shown in Figure 2, the input and
output of attention sub-layer in the decoder are very
similar, especially the self-attention. Thus, we can
regard that Q̃l ≈ Ql, the Fl can be rewritten as
follows:

Fl = Ql+SelfAttn(Ql) + CrossAttn(Ql, R)︸ ︷︷ ︸
merge for parallel computing

(7)

The Eq. 7 provides the conditions for us to do
parallel computing. The merging process is shown

Model Complexity per Step

Decoder self-attention O(n · d2 + n2 · d)
Decoder self-attention ARN O(n2 · d)
Cross-attention O(m · d2 +m2 · d)
Cross-attention ARN O(m2 · d)

Table 1: Computation complexity of different attention
structures in a decoding step. m and n are the source
sentence length and target sentence length, d is the di-
mension of the hidden representation.

in Figure 4. Original cross-attention relies on the
output of self-attention and it needs to wait until
self-attention calculation is completed. We thereby
merge the self-attention and cross-attention into
a single one to further improve the decoding effi-
ciency. This way is faster because the model can
compute the attention results of self-attention and
cross-attention simultaneously. Thus, the formula
Eq. 2 and Eq. 4 can be rewritten as follows:

Fl = FS
l + FC

l

= AS
l · V S

l +AC
l · V C

l

(8)

F̃l+i = [AS
l ;A

C
l ] · [V S

l+i;V
C
l+i] (9)

Here, FS
l , FC

l , AS
l , AC

l , V S
l , V C

l represent
self-attention results, cross-attention results, self-
attention weights, cross-attention weights, self-
attention values and cross-attention values of the
l-th layer, respectively. [; ] denotes the concatenate
operation. The main idea is that we sum the self-
attention and cross-attention representations as a
whole to decode in ARN model, instead of comput-
ing them separately. Similarly, the Eq. 5 also share
the strength of parallelization.

3.2 Decoding Complexity

We investigate how the ARN accelerates Trans-
former compared to the original dot-product at-
tention. For each decoding step, the self-attention
first connects all positions with a constant num-
ber of sequentially executed operations (Eq. 1,
O(n · d2)), and then obtains atention results via
a weighted sum operations (Eq. 2, O(n2 · d)).
Thus, the computation complexity of self-attention
is O(n · d2 + n2 · d). Similarly, the cross-attention
is O(m · d2 + m2 · d). The ARN model is fast
because the weighted combination process (Eq. 3
and Eq. 5) are all element-wise operations, which
require less computation and the Eq. 4 occupies a
major computation. The self-attention and cross-
attention adopting ARN method are O(n2 · d) and
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O(m2 · d), respectively. See Table 1 for the de-
tails. In particular, m and n are smaller than the
representation dimensionality d, which is most of-
ten the case with sentence representations used by
NMT models. Moreover, the self-attention and
cross-attention components are merged for higher
parallelization. All these enable the ARN model to
enjoy greater decoding efficiency.

4 Experiments

4.1 Experimental Settings
Datasets. We evaluate our proposed model on
WMT14 and WMT17 translation tasks. The details
follow as:

• WMT14 En→{De, Fr}. For En→De task, we
choose newstest2013 as validation set and
newstest2014 as test set. For En→Fr task,
we validate the system on the combination
newstest2012 and newstest2013 as validation
set and test it on newstest2014.

• WMT17 En↔{Fi, De, Cs, Ru}. For validation,
we concatenate the data of newstest2014-2016.
For test, we choose newstest2017.

Table 2 shows the statistics of these datasets. For
all datasets, we tokenize every sentence with
Moses tokenizer (Koehn et al., 2007) and use byte
pair encodings (BPE) with 32K split operations
for subword segmentation (Sennrich et al., 2015).
We remove sentences with more than 250 subword
units. For WMT14 En→De translation task, we
share the source and target vocabularies. We
report the case-sensitive tokenized BLEU using
multi-bleu.perl

Implementation Detail. For all machine
translation tasks, our systems are based on an
open-source implementation of fairseq-py2. We
replicate the model setup of Vaswani et al. (2017).
The standard implementation of Transformer
baseline consists of a 6-layer encoder and a
6-layer decoder. The embedding size and FFN
hidden size are 512 and 2048, respectively. The
number of attention heads is set to 8. Dropout
and label smoothing are used as regularization,
both set to 0.1. We adopt Adam (Kingma and Ba,
2014) optimizer with an adaptive learning rate
schedule as described in Vaswani et al. (2017), the
warmup step and learning rate are 4K and 7×e−4,

2https://github.com/pytorch/fairseq

Source Lang. Train Set Valid. Set Test Set
sent. word sent. word sent. word

WMT14 En→De 4.5M 220M 3000 110K 3003 114K
En→Fr 35M 2.2B 26K 1.7M 3003 155K

WMT17

En↔Fi 2.6M 108M 8870 330K 3002 110K
En↔De 5.9M 276M 8171 356K 3004 128K
En↔Cs 52M 1.2B 8658 354K 3005 118K
En↔Ru 25M 1.2B 8819 391K 3001 132K

Table 2: Data statistics (# of sentence pairs and # of
words, M=million, B=billion, K=kilo)

respectively. All experiments are trained on 8
NVIDIA Tesla V100 GPUs with mixed-precision
training and a batch size of 4096 tokens per GPU.
For widely used WMT14 translation tasks, all
models are trained for 100K steps as provided by
Vaswani et al. (2017). For all WMT17 tasks, we
stop training until the model no longer improves
on the validation set. We average parameters
of the last 5 checkpoints to obtain the final
model. In inference, all models are decoded with
half-precision on a single V100 GPU. By default,
the batch size of decoding is set to 1 for avoiding
invalid computations on padding. The beam size
is 4 and length penalty is set to 0.6. All speed
testing are based on the state-of-the-art inference
implementation of Transformer with attention
caching3.

4.2 Baselines
We compare our proposed ARN model with the
following baselines:

• Transformer(Vaswani et al., 2017) is the
most widely-used NMT system with self-
attention mechanism.

• AAN(Zhang et al., 2018) is a classic
lightweight attention NMT model, which
leverages an average attention network for in-
ference acceleration.

• SAN(Xiao et al., 2019) is another lightweight
attention NMT model via sharing attention
results among layers. For convenience, we
simply adopt the sharing strategy per 2 layers,
which can maintain a relatively high speed-up
at the trade-off on BLEU performance.

We re-implement all the above baseline systems,
and their experimental settings are consistent with
our ARN model.

3An engineering optimization technique, which cache the
attention output of previous positions and then reuse it in
following steps.

https://github.com/pytorch/fairseq
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Model BLEU ∆BLEU Speed ∆Speed #Param
Transformer 27.34 0.00 110.55 0.00% 58.7M
ARN2 27.35 +0.01 134.91 +22.04% 55.0M
ARN3 27.26 -0.08 149.89 +35.59% 53.7M
ARN6 26.86 -0.48 159.62 +44.39% 52.4M

Table 3: BLEU scores [%] and translation speeds (to-
ken/sec) on WMT14 En→De task for different sharing
policies. ARNn means that adopt a ARN strategy every
n layer.

Source Lang. Model BLEU ∆BLEU Speed ∆Speed

WMT14
En→De Transformer 27.34 0.00 110.55 0.00%

ARN 27.26 -0.08 149.89 +35.59%

En→Fr Transformer 39.73 0.00 106.18 0.00%
ARN 39.56 -0.17 149.58 +40.87%

WMT17

En→Fi Transformer 21.50 0.00 107.49 0.00%
ARN 21.47 -0.03 144.62 +34.54%

Fi→En Transformer 25.06 0.00 110.13 0.00%
ARN 25.14 +0.08 149.24 +35.51%

En→De Transformer 28.66 0.00 109.02 0.00%
ARN 28.46 -0.20 147.38 +35.19%

De→En Transformer 34.56 0.00 115.37 0.00%
ARN 34.38 -0.18 151.56 +31.37%

En→Cs Transformer 23.94 0.00 111.03 0.00%
ARN 23.62 -0.32 148.77 +33.99%

Cs→En Transformer 29.94 0.00 111.14 0.00%
ARN 29.92 -0.02 145.62 +31.02%

En→Ru Transformer 30.69 0.00 110.40 0.00%
ARN 30.24 -0.45 146.99 +33.14%

Ru→En Transformer 34.22 0.00 106.72 0.00%
ARN 33.94 -0.28 148.67 +39.31%

Avg. Transformer 29.56 0.00 109.80 0.00%
ARN 29.40 -0.16 148.23 +35.00%

Table 4: BLEU scores [%] and translation speeds (to-
ken/sec) on WMT14 and WMT17 translation tasks.

Model BLEU ∆BLEU Speed ∆Speed #Param
Transformer 27.34 0.00 110.55 0.00% 58.7M
AAN 27.16 -0.18 116.47 +5.36% 70.7M
SAN 27.17 -0.17 131.72 +19.15% 55.0M
ARN 27.26 -0.08 149.89 +35.59% 53.7M

Table 5: Comparison of different attention models on
WMT14 En→De translation task.

4.3 Main Results
We test our approach on the widely used WMT14
En→De translation task. Table 3 reports the vari-
ous results of BLEU scores and translation speeds,
which adopt the simple sharing policy with ARN

structure. The speed-up of the ARN3 model is
1.35× with almost no decrease in BLEU. The
ARN3 is our ARN baseline system in the follow-
ing sections. The BLEU will drop significantly if
more layers are shared, but ARN model can provide
a higher acceleration gain. On the other hand, our
model requires fewer parameter numbers compared
to Transformer baseline. This result shows that the
original Transformer attention does have redun-
dant computation, and simplifying it can achieve
greater decoding efficiency. To further verify the ef-
fectiveness of our proposed approach, we conduct

Model w/o KD w/ KD
BLEU ∆BLEU BLEU ∆BLEU

Transformer (teacher) 27.34 0.00 27.92 0.00
AAN 27.16 -0.18 27.89 -0.03
SAN 27.17 -0.17 27.62 -0.30
ARN 27.26 -0.08 27.95 +0.03

Table 6: ARN applying in knowledge distillation on
WMT14 En→De translation task.

20K 40K 60K 80K 100K
4

5

6

Update Steps

L
os

s

Transformer
ARN

Transformer
ARN

Figure 5: Convergence visualization. Loss vs. update
steps on WMT14 En→De translation task (solid marked
lines are training loss, hollow marked lines are valida-
tion loss).

experiments on ten WMT large-scale translation
tasks. As shown in Table 4, the ARN significantly
improves the speed for all these translation tasks,
its speed-up is 1.35× faster on average. Also, the
BLEU only drops 0.16, a very slight decline. More-
over, ARN achieve a stable speed-up, ranging from
31.02% to 40.87%. These results indicate that the
ARN model is robust and can further improve the
decoding efficiency on widely-range translation
tasks.

In addition, we empirically compare the AAN

and SAN models on WMT14 En→De translation
task shown in Table 5. The three systems present
a similar BLEU compared to Transformer base-
line. Notably, ARN model achieves the highest
speed-up with fewer parameter numbers. Although
AAN, SAN and ARN can offer different degrees of
decoding acceleration gains, they still suffer from
slight performance degradation shown in Table 4
and Table 5. We use the most popular sequence-
level knowledge distillation (KD) (Kim and Rush,
2016) for better performance and the Transformer
baseline serves as our teacher model. As shown in
Table 6, the KD method enables all three attention
models get the performance improvements consis-
tent with the Transformer baseline. Furthermore,
the performance gap is close between ARN and
Transformer baseline, and our model presents a
strong generalization ability compared to AAN and
SAN baselines.



5115

Model BLEU ∆BLEU Speed ∆Speed #Param

Transformer 27.34 0.00 110.55 0.00% 58.7M
+ Self-attention ARN 27.39 +0.05 117.45 +6.24% 56.7M
+ Cross-attention ARN 27.33 -0.01 127.58 +15.40% 56.7M
+ Both ARN 27.27 -0.07 131.87 +19.29% 54.7M

+ Merging 27.26 -0.08 149.89 +35.59% 53.7M

Table 7: Ablation study on WMT14 En→De translation task.
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Figure 6: Speed (token/sec) and ∆Speed [%] vs. beam size, batch size and source sentence length, translation length
vs. source sentence length on WMT14 En→De translation task.

5 Analysis

Analysis on Convergency. As shown in Figure
5, we plot the loss curves of standard Transformer
and ARN model on the training and validation sets,
respectively. The two systems converge stably and
both of their loss curves maintain a high degree of
similarity. They also present similar performance
in BLEU as shown in Table 3. All of these verify
that the original attention in Transformer can be
replaced with an ARN structure and there is no
negative impact on model performance.

Ablation Study. To verify the acceleration
contributions as well as the performance loss
of different components in ARN model, we
make an ablation study. As shown in Table 7,
the ARN method adopted by the self-attention
component achieves a speed-up of 6.24%, while
15.40% for cross-attention. This is because the
original cross-attention operation is heavy for its
long encoder representation (V ) and applying
the ARN method can bring greater decoding
efficiency. When applying the ARN method to
both self-attention and cross-attention components,
the speed-up is 19.29%. It can achieve a higher
acceleration gain (35.59%) when further merging
self-attention and cross-attention components.
Also, there is almost no effect on BLEU adopting
the above different methods.

Sensitivity Analysis on Speed. We plot
translation speed (in token/sec) and speed-up (in
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Figure 7: Different source sentence lengths vs. BLEU
on WMT14 En→De translation task.

∆Speed [%]) as function of beam size, batch size
and source sentence length. As shown in Figure 6,
the ARN model can achieve relatively significant
speed-up with the different beam sizes and batch
sizes. However, the acceleration gains drop slightly
with increasing beam size and batch size. This is
because the speed-up will be weakened under the
large matrix operation of the GPU. In addition,
our model is robust and it gets the consistent
improvement under the various source sentence
length. Furthermore, both the Transformer baseline
and our proposed model generate translations with
similar lengths as shown on the right in Figure 6.
This finding suggests that the acceleration gain
comes from the well-designed model structure, not
the translation length.

Analysis on Translation Quality. It is well-
known that the NMT model is difficult to handle
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# Model BLEU ∆BLEU Speed ∆Speed #Param

1 Transformer (6 + 6) 27.34 - 110.55 - 58.7M

2 Deep encoder, shallow decoder Transformer (12 + 2) 27.38 0.00 224.48 0.00% 60.7M
3 + Decoder self-attention ARN 27.59 +0.21 233.04 +3.81% 60.2M
4 + Decoder cross-attention ARN 27.32 -0.06 247.33 +10.18% 60.2M
5 + Decoder both ARN 26.83 -0.55 250.37 +11.15% 59.5M
6 + Merging 26.82 -0.56 260.73 +16.15% 59.4M
7 + Encoder ARN (using ARN2) 27.19 -0.19 235.12 +4.74% 57.7M

Table 8: ARN applying in deep encoder, shallow decoder Transformer on WMT14 En→De translation task.

long-distance dependencies and the issue of
under-translation (Tu et al., 2016; Zheng et al.,
2019) is prone to occur when translating long
sentences. For this, we study the ARN model
performance with the different input of sentence
lengths as shown in Figure 7. Interestingly, the
proposed model performs well when dealing with
the longest sentences. Specifically, our model
shows relatively poorly on shorter sentences
but significantly better performance on longest
sentences. This suggests that certain features have
a great influence on model performance when
translating long sentences, and the phenomenon
indicates that ARN structure can better capture the
long-distance dependency through the fusion of
high-level and low-level features iteratively.

Deep Encoder, Shallow Decoder Trans-
former. Standard Transformer suffers from
heavy inference cost due to the multi-layer stacked
decoder (6-layer). A popular solution is to balance
the encoder and decoder depths for speeding up
Transformer (Kasai et al., 2020). We rebuild the
Transformer with a deep encoder (12-layer) and a
shallow decoder (2-layer) as a stronger baseline.
As shown in Table 8, the balanced baseline (12/2)
is more than 2× faster without loss in BLEU
with similar parameter numbers. When applying
ARN method to self-attention and cross-attention
on the decoder side, it achieves 3.81% (line 3)
and 10.18% (line 4) speed-up, respectively. Also,
there is no negative impact on BLEU. The BLEU
even increases by 0.21 for adopting ARN on the
decoder-side self-attention. Interestingly, the
BLEU drop significantly if applying ARN to both
self-attention and cross-attention (line 5 and line
6). This is because the decoder is shallow with less
parameter redundancy, which enables the model
very sensitive when ARN is applied both to the
two components. In contrast to the decoder, that
encoder suffers from more severe redundancy in

the balanced baseline, and the BLEU almost no
drop with a higher reduction of parameters (line
7). To summarize, our ARN balanced baseline can
achieve a speed-up of 2.24× without sacrificing
performance compared to standard Transformer
baseline (line 4 vs. line 1).

6 Related Work

Standard Transformer suffers from the high infer-
ence cost due to the auto-regressive generation
schema and the heavy use of dot-product atten-
tion operations. A classic solution is to generate
the entire target sequence at one time by using
non-autoregressive inference method (Gu et al.,
2017; Guo et al., 2019; Wang et al., 2019). This
way offers high decoding efficiency but it is hard
to train. Another representative solution adopts a
local attention strategy (Kitaev et al., 2020; Belt-
agy et al., 2020) or simplifies attention structure
(Katharopoulos et al., 2020), which can effectively
reduce the computation of attention module. But
these works are designed for acceleration of very
long sequence tasks (e.g., image generation, auto-
matic speech recognition, etc.). NMT inference
acceleration methods have been investigated for
years, including knowledge distillation (Hinton
et al., 2015; Kim and Rush, 2016; Lin et al., 2020;
Wang et al., 2021), vocabulary selection (L’Hostis
et al., 2016; Sankaran et al., 2017; Shi and Knight,
2017), low-precision computation (Micikevicius
et al., 2017; Quinn and Ballesteros, 2018; Aji and
Heafield, 2020), kernel fusion (Wu et al., 2021),
LayerDrop (Fan et al., 2019) and etc. Compared
with the above methods, our work follows another
line of work to learn a lightweight attention NMT
model and prove its effectiveness.

Zhang et al. (2018) show that the self-attention
network is not necessary and a simple averaging
is enough. Compared with the above method, our
network structure is simple and it is easy to im-
plement. We improve both the self-attention and
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cross-attention components. Xiao et al. (2019) ob-
serve that the most attention distributions are simi-
lar and thus share these distributions among layers.
This method can be regarded as a structure pruning
for Transformer, which may lead to model perfor-
mance degradation. Our approach, which fuses
low-level features to further enhance model con-
fidence, is an improvement over this method. Li
et al. (2021) propose the compressed attention net-
work that simplifies the transformer architecture
to achieve a higher parallelism. This method can
be regarded as an equivalent transformation of the
Transformer structure, it is orthogonal to our re-
search.

ARN structure can be viewed as a weighted resid-
ual network, which acquires the attention results
by reusing the features across layers. The main
idea is similar to (He et al., 2020), but our ARN
is different in both motivation and network struc-
ture. To our knowledge, we are the first to design a
residual network for NMT decoding acceleration,
proposing the combination of the features across
layers for reconstructing the attention.

7 Conclusion

We have investigated ARN, an alternative
lightweight attention structure for faster inference
of Transformer. Experiments on a range of WMT
translation tasks show that ARN offers a significant
speed improvement over a strong Transformer base-
line without sacrificing translation performance.
Results on widely used WMT14 En→De machine
translation tasks demonstrate that our model can
simultaneously deliver superior acceleration and
translation performance with fewer parameters,
compared to previous work like AAN and SAN.
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