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Abstract

Multi-modal neural machine translation
(MNMT) aims to improve textual level
machine translation performance in the
presence of text-related images. Most of
the previous works on MNMT focus on
multi-modal fusion methods with full visual
features. However, text and its corresponding
image may not match exactly, visual noise
is generally inevitable. The irrelevant image
regions may mislead or distract the textual
attention and cause model performance degra-
dation. This paper proposes a noise-robust
multi-modal interactive fusion approach with
cross-modal relation-aware mask mechanism
for MNMT. A text-image relation-aware
attention module is constructed through the
cross-modal interaction mask mechanism,
and visual features are extracted based on
the text-image interaction mask knowledge.
Then a noise-robust multi-modal adaptive
fusion approach is presented by fusion the
relevant visual and textual features for machine
translation. We validate our method on the
Multi30K dataset. The experimental results
show the superiority of our proposed model,
and achieve the state-of-the-art scores in all
En-De, En-Fr and En-Cs translation tasks 1.

1 Introduction

Multi-modal Neural Machine Translation (MNMT)
aims to optimize the conventional text-only ma-
chine translation systems by using multi-modal
information (eg., image, video, sound), which
has received growing research attentions in the
fields of CV and NLP, recently. A reasonable
assumption is that visual information is helpful
to improve textual-level machine translation (El-
liott et al., 2017; Barrault et al., 2018; Ye and Guo,
2022), and many studies have been carried out to
conduct the benefits of image for NMT (Caglayan

∗Corresponding author.
1https://github.com/nlp-mmt/Noise-robust-Text2image-

Mask

et al., 2019; Yin et al., 2020; Li et al., 2021a). As
expected, the fusion of visual information actually
improves the performance of machine translation
(Caglayan et al., 2019).

Most existing MNMT methods mainly focus
on how to design a excellent multi-modal fusion
framework to bridge the semantic gap between im-
age and text, while visual noise is often ignored.
Unfortunately, it is often difficult to obtain the
image that exactly match the textual information.
What is worse, image information and textual infor-
mation may even be weakly correlated with each
other. Visual noise is generally unavoidable(Li
et al., 2022; Yao and Wan, 2020). As shown in
Figure 1 (left), objects such as old man, brown
hat and bench included in the image, these visual
objects correspond to the ’old man’, ’brown hat’
and ’bench’ in the source sentence, which is the
useful visual information for machine translation.
However, the image also contains some irrelevant
visual information ( e.g., tree, flower, grasse) for
the source sentence, the mismatched visual-textual
information may distract the multi-modal fusion
and then lead to machine translation performance
decay. Therefore, it is necessary to consider noise-
robust text-image fusion problem for MNMT.

How to effectively and efficiently extract use-
ful visual information is one of the core issues of
MNMT, there are three main multi-modal fusion
methods: 1) Multi-modal attention mechanism,
such as cross-modal interactive attention mecha-
nism (Kwon et al., 2020; Song et al., 2021; Zhao
et al., 2021) and adaptive feature selection mech-
anism (Wang and Xiong, 2021; Zhao et al., 2022;
Li et al., 2022) between visual features and textual
features. 2) Multi-modal Transformer fusion meth-
ods, which utilizes Transformer to encode textual
features and visual features separately (Takushima
et al., 2019; Nishihara et al., 2020), and then a
multi-head cross-modal attention mechanism (Yao
and Wan, 2020; Gain et al., 2021; Li et al., 2021a) is
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Figure 1: An example of an En→Fr translation that
illustrates the need to consider for image noise in the
translation model.

adopted to integrate them. 3) Gating fusion meth-
ods (Yin et al., 2020; Lin et al., 2020; Li et al.,
2021b), which are leveraged to ensure both textual
semantic representations and visual semantic rep-
resentations are consistent with each other. Above
existing methods mainly focus on designing multi-
modal feature fusion architectures by leveraging
visual information to enhance traditional machine
translation, however, visual noise problem is ig-
nored.

This paper endeavors to address visual noise-
robust multi-modal fusion problem for MNMT, we
attempt to explore robust multi-modal interactive
fusion strategy with cross-modal relation-aware
mask mechanism for MNMT in Transformer frame-
work. Concretely, a text-image relation-aware at-
tention module is constructed in the visual trans-
former encoder by cross-modal interactive mask
mechanism, and the visual features are extracted
based on text-to-image interactive mask knowledge.
Then a noise-robust multi-modal fusion approach
is adopted to integrate visual features into seq2seq
framework more efficiently and effectively. Com-
paring with previous works, the major contribu-
tions of our paper are three-fold.

• A noise-robust multi-modal fusion approach
is proposed with cross-modal relation-aware
mask for MNMT. To the best of our knowl-
edge, it is the first attempt to explore mask-
based multi-modal representation for MNMT.

• A text-image relation-aware module is con-
structed with cross-modal interaction masking
mechanism to obtain text-image interaction
mask knowledge for noise-robust multi-modal
representation and fusion in noisy scenes.

• The extensive experimental results show that
our proposed model outperforms other state-
of-the-art MNMT approaches and signifi-
cantly improves machine translation perfor-
mance on En-De, En-Fr and En-Cs translation

tasks. Furthermore, we emphasize the inter-
pretability of the model, the in-depth analysis
of the experimental results show the effective-
ness of our proposed method.

2 Related Work

MNMT Early attempts mainly focused on RNN-
based encoder-decoder architecture with attention
(Huang et al., 2016; Calixto et al., 2017; Delbrouck
and Dupont, 2017). Recently, Transformer-based
seq2seq framework has achieved significant im-
provement for MNMT. Zhao et al. (2021) utilized
object detection features with an additional region-
dependent attention mechanism to fusion visual
regional features and textual features; Nishihara
et al. (2020) presented a supervised cross-modal
attention module to align textual features and vi-
sual features; Song et al. (2021) employed a co-
attention graph updating module at each Trans-
former encoder layer to align multi-modal features.
Yao and Wan (2020) used multi-modal Tranformer
to align both visual features and textual features;
Yin et al. (2020) proposed a graph-based MNMT
approach to extract multi-model features through
text-image gating attention mechanism; Lin et al.
(2020) adopted a gating mechanism to fuse visual
features extracted by a dynamic context-guided
capsule network;

All the above methods focus on multimodal fea-
ture fusion methods, and they assume that visual in-
formation is closely related to textual information,
which heavily restricts their robustness. However,
text and its corresponding image may not match
exactly, visual noise is generally inevitable. In this
work, we systematically investigate whether mask-
ing visual noise helps machine translation.

Mask Strategy Mask strategy is one of the most
effective ways of representation learning, which
has been widely used in vision and textual pre-
training models. We summarize the existing mask
strategies in the three aspects as follows: 1) Vision
mask-based pre-trained models (Li et al., 2021c;
Peng and Harwath, 2022; Xie et al., 2021), the
main purpose is to mask image patch-level for bet-
ter visual robust-representation learning. 2) Textual
mask-based pre-trained models (Joshi et al., 2020;
Fu et al., 2022; Devlin et al., 2019), the tokens of
the input sentences are randomly masked, and then
are predicted in decoder, which aims to generate
more fine-grained textual representations. 3) Cross-
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Figure 2: The overview of our proposed model, which consists of four components: (a) the image encoder to
encode visual information with cross-modal interactive attention mask mechanism based on Transformer encoder;
(b) the source sentence encoder to encode textual information; (c) the cross-modal gated fusion module to fuse
helpful visual features and textual features; (d) the decoder to generate target translation conditioned on encoded
textual features with helpful visual information;

modal mask-based pre-trained models (Li et al.,
2020; Zhou et al., 2021; Shin et al., 2022), both
text tokens and vision tokens are randomly masked,
which aims to learn multimodal representations
between vision and language in a pre-training man-
ner. The mask strategy has been shown effective
in many pre-training representation learning tasks.
Inspired by Li et al. (2021c), in this work, we try
to exploit the mask strategy to address the noise-
robust multi-modal fusion problem for MNMT.

3 Methodology

In this section, we introduce our proposed noise-
robust multi-modal neural machine translation ap-
proach, as illustrated in Figure 2. Our proposed
model is based on the structure of Transformer,
which contains four subnetworks, 1) source sen-
tence encoder, 2) image encoder with robust mask-
ing matrix, 3) cross-modal gated fusion module
and 4) target sentence decoder.

Without loss of generality, input words are em-
bedded via traditional embedding layer with po-
sition embedding. As an example, denote by
xj = {xj1, · · ·, x

j
n} and vj as the j-th data-pair

of source sentence input and its corresponding im-
age, respectively, where n is the source length
of xj . Formally, the source sentence representa-
tion Ex

j and visual representation Ev
j are calculated

as Ex
j = Embx(xj) and Ev

j = Embv(vj), where,
Embx is the textual embedding layer with both
word embedding and position embedding, Embv is
the visual feature extraction layer with Resnet-101,
Ex
j ∈ Rn×d1 and Ev

j ∈ Rm×m×d2 .

3.1 Source Sentence Encoder

As shown in the middle part of Figure 2, our en-
coder is employed the same as the conventional
multi-head Transformer encoder, and each en-
coder layer is composed of two sublayers: 1) self-
attention layer and 2) position-wise feedforward
network (FFN) layer. Concretely, we first employ
the multi-head self-attention module is used here
by taking the sourece textual representation as a
query/key/value matrix to establish word-to-word
interconnections, which can be expressed as,

Hl
xj

= Multihead(Ex
j ,E

x
j ,E

x
j ) (1)

= Concat(head1
j , · · · , headMj ) (2)



5101

where, M denotes the number of heads,
Multihead(·) is a multi-head attention layer, l =
{0, · · · , 3} is the Transformer layer index. For-
mally, the output of Multi-head attention is com-
puted as follows:

head
c∈[1,M ]
j =

n∑
k=1

αik(Ex
jk

WV
j,c) (3)

where n is the source length of xj , the weight coef-
ficient of αik is calculated by the softmax function:

αik = softmax
(

(Ex
ji

WQ
j,c)(Ex

jk
WK

j,c)
T

√
d

)
(4)

where αik is the dot-product attention matrix of
the textual features and multi-modal features, WV

j,c,
WQ

j,c, WK
j,c are parameter matrices.

Then the position-wise Feed-Forward neural net-
work is used to update the state of each position of
the sequence for produce Fl

xj
as follows:

Fl
xj

= FFN(Hl
xj

) (5)

3.2 Image Encoder with Robust Masking
Matrix

As shown in the left part of Figure 2, our image
encoder layer is composed of two sublayers: 1) con-
ventional Transformer encoder and 2) cross-modal
visual encoder with mask. To reduce the number
of parameters of the proposed model, we only use
a single Transformer layer in image encoder.

3.2.1 Conventional Transformer Encoder for
Visual

The image feature is extracted by the pretrained
Resnet-101 models, and the image spatial feature
is 7×7×2048-dimensional vector with 49 local
spatial region features of each image. And we
then transfer them into a 49× d feature matrix by
linear transformation, where d denote the word-
embedding-dimensional. Then, an internal relation-
ship is established between the 49 image regions,
concretely, we generate the contextual representa-
tions Hvj of the 49 local spatial region features by
a conventional Transformer-encoder, which can be
expressed as,

Hvj = Multihead(Ev
j ,E

v
j ,E

v
j ) (6)

Fvj = FFN(Hvj ) (7)

Figure 3: cross-modal interaction attention mask mech-
anism module.

3.2.2 Cross-modal mask mechanism for visual
presentation

Inspired by Li et al. (2021c), in this section, we
will introduce the proposed cross-modal visual en-
coder with mask module. Specifically, to mask
irrelevant visual information before cross-modal
fusion, we propose a cross-modal interaction atten-
tion mask mechanism, as shown in figure 3. First,
cross-modal interaction of textual features and vi-
sual features is performed to compute the corre-
lations between 49 regional features and textual
features as follows:

Matrixvj = softmax
(Fvj × (Fl

xj
)T

√
d

)
(8)

Matrixxj = softmax
(Fl

xj
× (Fvj )

T

√
d

)
(9)

where, Matrixvj ∈ R49×n denotes the attention of
49 local region features to each word of the paired
source sentence, Matrixxj ∈ Rn×49 denotes the
attention of each word of the source sentence on
the 49 local regions of the paired image.

Then we interactively compute Matrixvj and
Matrixxj as follows,

Maskj = Matrixvj ×Matrixxj (10)

where, Maskj denotes the correlation matrix be-
tween the 49 local regions of the image and corre-
sponding source sentences.

The mask matrix is generated according to the
importance of the local region information of the
image, which we set a threshold probr to control
the image region that needs to be masked. Thus we
have that

mr =

{
1, probr ≥ p, (r = {1, 2, · · · , 49})
0, probr < p

(11)

where, p is a hyper-parameter, which is leveraged
to mask unimportant visual region features, and it
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Multi30K En→De
Model Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

Existing MNMT Systems

VMMT (Calixto et al., 2019) 37.7 56.0 30.1 49.9 25.5 44.8
VAG-NMT (Zhou et al., 2018) - - 31.6 52.2 28.3 48.0
Del+Obj (Ive et al., 2019) 38.0 55.6 - - - -
DCCN (Lin et al., 2020) 39.7 56.8 31.0 49.9 26.7 45.7
MNMT+SVA (Nishihara et al., 2020) 39.9 58.1 - - - -
OVC+Lv (Wang and Xiong, 2021) - - 32.4 52.3 28.6 48.0
WRA-guided (Zhao et al., 2021) 39.3 58.3 32.3 52.8 28.5 48.5

Our Transformer-Based Systems

Transformer (NMT) (Vaswani et al., 2017) 40.96 58.35 32.59 51.21 29.16 48.37
Doubly-ATT (Arslan et al., 2018) † 41.44 59.08 33.15 52.34 29.22 48.41
Multimodal self-att (Yao and Wan, 2020) † 41.50 58.52 32.51 51.33 29.10 48.48
Gated Fusion MNMT (Yin et al., 2020) † 41.58 58.88 33.01 51.90 30.04 48.95

Our model 42.56 59.98 35.09 54.51 31.09 50.46

Table 1: Comparison results on Multi30k En→De task on BLEU and METEOR metrics. † means to reproduce
previous multi-modal fusion method based on our Transformer systems. Best results are highlighted in bold.

is a scalar. Our strategy ensures that each image
always presents the most relevant visual region to
the corresponding source textual. Then convert the
image area of mr = 0 to false, and mr = 1 to true,
which we construct a mask knowledge matrix.

Finally, we employ cross-modal visual encoder
with mask to obtain effective visual information,
thus we have

Ĥvj = Multihead-mask(Fvj ,Fvj ,Fvj )(12)

F̂vj = FFN(Ĥvj ) (13)

where Multihead-mask(∗) denote the self-attention
with mask knowledge, the purpose of Multihead-
mask is to mask weakly correlated visual informa-
tion.

3.3 Cross-modal Gated Fusion Module

In this section, we employ cross-modal gated fu-
sion method to fuse textual features and extracted
helpful visual features, which is a popular multi-
modal fusion method for many recent MNMT, as
shown in Figure 2. Formally, we have that

Ω = Sigmoid(WΩF̂vj + UΩFxj ) (14)

Hgj = Fxj + ΩF̂vj (15)

where, WΩ and UΩ are trainable model parameters.
The final output Hgj is directly fed into our target
sentence decoder (See Figure 2 right) to predict the
translation.

4 Experiments

Datasets: We conduct experiments on En→De,
En→Fr and En→Cs tasks of the widely used
Multi30K 2 benchmark dataset, in which the train-
ing and validation sets contains 29k and 1014 text-
image pairs, respectively. Furthermore, we adopt
four test sets to evaluate our MNMT model, 1) the
Test2016 test set with 1,000 examples contained
in Multi30K; 2) the Test2017 test set with 1,000
examples in WMT2017, which contains more diffi-
cult source sentences to translate and understand;
3) we also use ambiguous COCO dataset as out-
domain test data, which contains 461 examples
with ambiguous verbs and encourages to use image
for disambiguation; and 4) the Test2018 test set
contains 1071 instances with more entity words
and more low frequency words.

Data Pre-processing: We directly use the pre-
processed sentence pairs via byte pair encoding
(BPE) segmentation with 6k bpe vocabulary, the re-
sulting vocabulary sizes of each language pair were
5,644→5,876 tokens for En→De, 5,644→5,684 to-
kens for En→Fr, 5,644→5,972 tokens for En→Cs.
For each image, which is extracted through the
pre-trained Resnet-101 model, the spatial features
are 7x7x2048-dimensional vectors with 49 local
spatial region features.

Metrics: We evaluate the quality of translations
with two metrics, 1) 4-gram BLEU metrics (Pap-

2https://github.com/multi30k/dataset
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Multi30K En→Fr
Model Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

Existing MNMT Systems

VAG-NMT (Zhou et al., 2018) - - 53.8 70.3 45.0 64.7
Del+Obj (Ive et al., 2019) 59.8 74.4 - - - -
DCCN (Lin et al., 2020) 61.2 76.4 54.3 70.3 45.4 65.0
OVC+Lv (Wang and Xiong, 2021) - - 54.2 70.5 45.2 64.6
WRA-guided (Zhao et al., 2021) 61.8 76.3 54.1 70.6 43.4 63.8

Our Transformer-Based Systems

Transformer (NMT) (Vaswani et al., 2017) 60.33 75.64 53.45 71.57 43.61 65.72
Doubly-ATT (Arslan et al., 2018) † 60.94 75.99 53.63 71.56 44.78 65.35
Multimodal self-att (Yao and Wan, 2020) † 61.44 75.77 54.56 71.62 44.59 65.08
Gated Fusion MNMT (Yin et al., 2020) † 61.24 76.26 54.15 71.77 44.29 64.91

Our model 63.24 77.54 55.48 72.62 46.34 67.40

Table 2: Comparison results on the En→Fr translation task on the Multi30k dataset.

ineni et al., 2002), which measures the quality of
translations in terms of accuracy and fluency. 2)
METEOR metrics (Denkowski and Lavie, 2014),
which takes into account both precision and recall
for translation quality.

4.1 Settings
We conduct our proposed models based on Trans-
former framework, with only stack 4-layer encoder-
decoder, so the amount of parameters required by
our model is small. Concretely, we set the dimen-
sions of the encoder and decoder hidden states at
dmodel=128, the inner-layer of feed-forward net-
work is set as dffn=256. The learning rate is set to
0.005. The max tokens is set to 4096, the learning
rate is varied under a warmup-updates with 2,000
steps, and the label smoothing with value set as 0.1.
We use adam optimizer with β1, β2 = (0.9, 0.98).
We adopt 4 heads here and the dropout is set to 0.3
to avoid the over-fitting. The width of beam size
is set to 5. We train our models on a single GTX
3090 GPU with fp16.

4.2 Baseline Models
To empirically verify the advantages of our pro-
posed MNMT model, we show the performance of
the following recent state-of-the-art MNMT mod-
els for comparison on the En→De and En→Fr
translation task, namely: VMMT (Calixto et al.,
2019), VAG-NMT (Zhou et al., 2018), Del+Obj
(Ive et al., 2019), DCCN (Lin et al., 2020),
MNMT+SVA (Nishihara et al., 2020), OVC+Lv

(Wang and Xiong, 2021), WRA-guided (Zhao et al.,
2021). Furthermore, to more fairly demonstrate the
superiority and validity of our proposed model, we

reproduce the recent state-of-the-art methods for
comparison based on the same parameter settings
and training equipment, we experiment with the fol-
lowing: 1) Gated Fusion MNMT (Yin et al., 2020):
An efficient multi-modal fusion method to enhance
machine translation. 2) Multimodal self-att (Yao
and Wan, 2020): A image-aware multi-modal trans-
former model is proposed to extract image informa-
tion to improve machine translation performance.
3) Doubly-ATT (Arslan et al., 2018): At the de-
coder, the visually evoked attention weights and
the source language attention weights are added up
as doubly-attention weights.

4.3 Results on the En→De Translation Task
As shown in Table 1, we present experimental re-
sults of our proposed model and other SOTA mod-
els on the En→De translation task. We summarize
and compare the existing models in the three as-
pects as follows:

1) Compare with Existing MNMT Systems: Ex-
perimental results show that our proposed model
outperforms existing SOTA models, and enhances
BLEU and METEOR metrics by 3∼4 points on
most of the test sets. The underlying reason is that
our proposed method can effectively filter vision
noise contained in the image.

2) Compare with Text-to-text NMT: Our MNMT
model outperforms NMT baselines significantly
on BLEU and METEOR metrics, which enhances
about 2 points on all test sets. This indicates that
our proposed MNMT model can utilize image in-
formation to improve machine translation.

3) Compare with Reproduce Methods: As we
can observe that our proposed methods achieves
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Test2016 Test2017 MSCOCO
p BLEU METEOR BLEU METEOR BLEU METEOR

Multi30K En→De

p = 0 41.40 59.19 34.37 53.77 30.01 50.17
p = 0.01 41.45 59.02 34.73 54.00 30.77 50.12
p = 0.015 41.68 59.40 34.69 54.13 30.96 50.39
p = 0.02 42.58 59.98 35.09 54.51 31.09 50.46
p = 0.025 41.71 59.62 33.68 53.39 30.82 50.27
p = 0.03 40.99 58.75 33.44 53.47 30.36 49.66

Multi30K En→Fr

p = 0 61.16 76.33 54.49 72.51 44.91 65.81
p = 0.01 62.29 76.77 55.31 72.34 44.87 65.46
p = 0.015 62.67 76.96 55.36 73.00 45.48 66.76
p = 0.02 63.24 77.54 55.48 72.62 45.82 67.17
p = 0.025 62.57 76.84 55.39 72.46 46.34 67.40
p = 0.03 62.14 76.99 54.89 72.63 45.62 66.31

Table 3: Ablation study on hyper-parameter p on the
En→Fr and En→De tasks.

a significant improvement over the SOTA method
on all the evaluation metrics, which demonstrates
that masking irrelevant visual information helps
improve translation performance.

4.4 Results on the En→Fr Translation Task

To explore the robustness of the proposed model,
we also guide experiments on the Multi30K En→Fr
translation task, the results are illustrated in Table
2. Concretely, we draw the following interesting
conclsions:

First, comparing with existing models, our pro-
posed model still achieves significant improvement
on two evaluation metrics, which is consistently
with the result of the En→De task. In addition,
comparing with text-only NMT baseline models,
MNMT with image information achieves superior
results, which demonstrates that our MNMT model
can effectively and efficiently interact with visual
information to enhance machine translation.

Second, reproducing recent competitive meth-
ods based on the same NMT strong baseline model
on En→Fr task, results are shown in Table 2. It is
obviously that our method outperforms the SOTA
methods and achieves strong competitive results
among all the existing MNMT models. The results
on the En→Fr translation task once again demon-
strate the effectiveness and generalizability of the
proposed method.

4.5 Ablation Study

To further determine the effectiveness of our pro-
posed method, we show the following sets of abla-
tion experiments on both the En→Fr and En→De
tasks, 1) Ablation study on hyper-parameter p; 2)
Ablation study on different components of model.

Figure 4: Examples of attention maps on the En→De
task. (a) Gated fusion (Ω visualize): attention weights
for visual information and source sentences. (b) src-tgt
attention: source and target sentence attention weights
with visual guidance.

Ablation study on hyper-parameter p As
shown in Table 3, we report the effect of hyper-
parameter p on model translation performance,
where p represents the threshold that controls the
effective visual similarity weights. We summarize
several interesting conclusions:

First, in general, it can be observed that at p =
0.02, the experimental results of the proposed
model on most test sets achieve the best results
on the En→De and En→Fr tasks. Furthermore,
gradually increase or decrease the threshold p, it
is obvious that the experimental results also gradu-
ally decrease on the BLEU and METEOR metrics.
We consider that there are two main reasons. On
the one hand, with the decrease of the threshold p,
the masked noise information decreases, and the
captured visual information contains more noise,
and the introduction of noise leads to a decrease in
the performance of the model. On the other hand,
with the increase of the threshold p, more visual
information is masked, and even a lot of helpful
visual information is masked, which causes the
performance of the model to decline.

Secend, in more detail, when the threshold p =
0, which means that the model fuses all visual in-
formation, compared with NMT model, our model
achieves better translation performance, but there
are no significant BLEU and METEOR gains. The
prove the assumption that masking visual noise
information helps improve machine translation.

Ablation study on different components of
model To investigate the effectiveness of differ-
ent components in our proposed MNMT model, we
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Test2016 Test2017 MSCOCO
BLEU METEOR BLEU METEOR BLEU METEOR

Multi30K En→De

Complete model 42.58 59.98 35.09 54.51 31.09 50.46
MNMT_rg 41.85 59.76 34.24 54.16 29.91 50.11
MNMT_re 41.96 59.59 34.37 53.94 30.68 50.21
MNMT_rvm 41.53 59.01 34.56 53.89 30.33 50.00

Multi30K En→Fr

Complete model 63.24 77.54 55.48 73.00 46.34 67.40
MNMT_rg 62.49 76.78 55.34 72.34 46.06 66.68
MNMT_re 62.85 77.37 55.41 72.84 45.73 67.30
MNMT_rvm 62.22 76.94 55.06 72.14 45.57 66.67

Table 4: Ablation study on different components of model on the En→Fr and En→De tasks. MNMT_rvm means
to remove cross-modal visual encoder with mask, MNMT_re means to remove conventional Transformer encoder,
MNMT_rg means to remove cross-modal gated fusion module.

En→Cs

Test2016 Test2018

Model BLEU METEOR BLEU METEOR

Our model 35.09 33.52 31.40 31.26
Transformer (NMT) 32.70 32.34 27.62 29.03
Doubly-ATT (Arslan et al., 2018) † 33.25 32.28 29.12 29.87
Multimodal self-att (Yao and Wan, 2020) † 33.12 32.01 28.75 29.51
Gated Fusion MNMT (Yin et al., 2020) † 33.77 32.24 29.43 29.41

Table 5: Experiment results on En→Cs task.

Figure 5: Examples of successful translation with re-
move of visual noise. Improved translations are high-
lighted in color.

further conduct experiments to compare with the
following variants models in Table 4:

1) Effectiveness of cross-modal gated fusion.
The result in row 2 indicates that removing the
gated fusion leads to a significant performance de-
cline on BLEU and METEOR metrics. It suggests
that gated fusion is an efficient method for fusing
multimodal features, which is helpful in order to
enhance translation performance.

2) Effectiveness of conventional Transformer en-
coder. To verify the usefulness of establishing
the intra-modal correspondences before interacting
with multimodal features, we remove the conven-
tional Transformer encoder component. The result

in row 3 shows that this change causes a light per-
formance drop. The underlying reason is the lack
of visual contextual semantic information in visual
information without intra-modal correspondences.

3) Effectiveness of cross-modal visual encoder
with mask. To construct this variant, we directly re-
move the cross-modal visual encoder and then em-
ploy gated fusion to incorporate full visual features
and textual features. Apparently, the performance
drop reported in line 4 demonstrates the validity
of our proposed cross-modal visual encoder with
mask module. Furthermore, it also validates our hy-
pothesis that masking irrelevant visual information
before fusing multimodal features is favourable to
improve translation performance.

4.6 Visual analysis

As shown in Figure 4, to further understand and
verify our model, we visualize the gated fusion
and src-tgt attention weights. 1) Gated fusion: the
results show that our model can effectively focus
on the consistent visual regions corresponding to
the source text. 2) Src-tgt attention: useful visual
information as a bridge can effectively align source
and target sentences to help translation.

4.7 Results on the En→Cs Translation Task

We further verify the effectiveness and general-
ization of the proposed method on the En→Cs
task, the results shown in Table 5. Our model still
achieves excellent performance compared with all
baselines, which again proves that our model is
effective and general for different language pairs.
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4.8 Case Study

As shown in Figure 5, we further confirm the ef-
fectiveness of our proposed method. It can be ob-
served that the two words ’light fixture’ and ’pink
rose’ can be correctly translated by the MNMT
model, while the MNMT_rvm model is not fully
translated, and the NMT model is translated incor-
rectly. The underlying reason is that the complete
image information introduces noise into MNMT
model and distracts the model. This reveals that
the proposed encoder is able to learn more efficient
representations.

5 Conclusion

In this paper, we propose a noise-robust mul-
timodal interactive fusion approach with cross-
modal relation-aware mask mechanism to address
image noise in MNMT. Experiment results and
analysis on three benchmark translation tasks
demonstrate the effectiveness and superiority of
our proposed method. Further ablation experiments
demonstrate that masking irrelevant visual informa-
tion helps machine translation. In future work, we
will continue to explore how to more effectively
remove noisy information in vision.

Acknowledgments

This work was supported by National Key
Research and Development Program of China
(No. 2020AAA0107904). National Natural
Science Foundation of China (Nos. 61866020,
61732005), Key Research and Development Pro-
gram of Yunnan Province (Nos. 202203AA080004,
202103AA080015). Natural Science Foundation
Project of Yunnan Science and Technology Depart-
ment (No. 2019FB082)

References

Hasan Sait Arslan, Mark Fishel, and Gholamreza Anbar-
jafari. 2018. Doubly attentive transformer machine
translation. arXiv:1807.11605.

Loïc Barrault, Fethi Bougares, Lucia Specia, Chiraag
Lala, Desmond Elliott, and Stella Frank. 2018. Find-
ings of the third shared task on multimodal machine
translation. In THIRD CONFERENCE ON MA-
CHINE TRANSLATION (WMT18), volume 2, pages
308–327.

Ozan Caglayan, Pranava Madhyastha, Lucia Specia,
and Loïc Barrault. 2019. Probing the need for visual

context in multimodal machine translation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4159–4170, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Iacer Calixto, Qun Liu, and Nick Campbell. 2017. Incor-
porating global visual features into attention-based
neural machine translation. In: Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen,
Denmark, September 9–11, 2017, pp. 992–1003.
doi:10.18653/v1/d17-1105.

Iacer Calixto, Miguel Rios, and Wilker Aziz. 2019. La-
tent variable model for multi-modal translation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6392–
6405, Florence, Italy. Association for Computational
Linguistics.

Jean-Benoit Delbrouck and Stéphane Dupont. 2017. An
empirical study on the effectiveness of images in
multimodal neural machine translation. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 910–919,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the ninth
workshop on statistical machine translation, pages
376–380.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Desmond Elliott, Stella Frank, Loïc Barrault, Fethi
Bougares, and Lucia Specia. 2017. Findings of the
second shared task on multimodal machine transla-
tion and multilingual image description. In: Pro-
ceedings of the Conference on Machine Transla-
tion (WMT), Volume 2: Shared Task Papers, pages
215–233.

Zhiyi Fu, Wangchunshu Zhou, Jingjing Xu, Hao Zhou,
and Lei Li. 2022. Contextual representation learning
beyond masked language modeling. arXiv preprint
arXiv:2204.04163.

Baban Gain, Dibyanayan Bandyopadhyay, and Asif Ek-
bal. 2021. Experiences of adapting multimodal ma-
chine translation techniques for hindi. In Proceed-
ings of the First Workshop on Multimodal Machine
Translation for Low Resource Languages (MMTLRL
2021), pages 40–44.

https://doi.org/10.18653/v1/N19-1422
https://doi.org/10.18653/v1/N19-1422
https://doi.org/10.18653/v1/P19-1642
https://doi.org/10.18653/v1/P19-1642
https://doi.org/10.18653/v1/D17-1095
https://doi.org/10.18653/v1/D17-1095
https://doi.org/10.18653/v1/D17-1095


5107

Po-Yao Huang, Frederick Liu, Sz-Rung Shiang, Jean
Oh, and Chris Dyer. 2016. Attention-based multi-
modal neural machine translation. In Proceedings of
the First Conference on Machine Translation: Vol-
ume 2, Shared Task Papers, pages 639–645.

Julia Ive, Pranava Madhyastha, and Lucia Specia. 2019.
Distilling translations with visual awareness. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6525–
6538, Florence, Italy. Association for Computational
Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Soonmo Kwon, Byung-Hyun Go, and Jong-Hyeok Lee.
2020. A text-based visual context modulation neural
model for multimodal machine translation. Pattern
Recognition Letters, 136:212–218.

Bei Li, Chuanhao Lv, Zefan Zhou, Tao Zhou, Tong
Xiao, Anxiang Ma, and JingBo Zhu. 2022. On vision
features in multimodal machine translation. arXiv
preprint arXiv:2203.09173.

Gen Li, Nan Duan, Yuejian Fang, Ming Gong, and
Daxin Jiang. 2020. Unicoder-vl: A universal encoder
for vision and language by cross-modal pre-training.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 11336–11344.

Jiaoda Li, Duygu Ataman, and Rico Sennrich. 2021a.
Vision matters when it should: Sanity checking multi-
modal machine translation models. In: Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 8556–8562.

Jiaoda Li, Duygu Ataman, and Rico Sennrich. 2021b.
Vision matters when it should: Sanity checking mul-
timodal machine translation models. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 8556–8562, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Zhaowen Li, Zhiyang Chen, Fan Yang, Wei Li, Yousong
Zhu, Chaoyang Zhao, Rui Deng, Liwei Wu, Rui
Zhao, Ming Tang, et al. 2021c. Mst: Masked self-
supervised transformer for visual representation. Ad-
vances in Neural Information Processing Systems,
34.

Huan Lin, Fandong Meng, Jinsong Su, Yongjing Yin,
Zhengyuan Yang, Yubin Ge, Jie Zhou, and Jiebo Luo.
2020. Dynamic context-guided capsule network for
multimodal machine translation. In Proceedings of
the 28th ACM International Conference on Multime-
dia, pages 1320–1329.

Tetsuro Nishihara, Akihiro Tamura, Takashi Ninomiya,
Yutaro Omote, and Hideki Nakayama. 2020. Su-
pervised visual attention for multimodal neural ma-
chine translation. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4304–4314.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Puyuan Peng and David Harwath. 2022. Self-
supervised representation learning for speech using
visual grounding and masked language modeling.
arXiv preprint arXiv:2202.03543.

Andrew Shin, Masato Ishii, and Takuya Narihira. 2022.
Perspectives and prospects on transformer architec-
ture for cross-modal tasks with language and vision.
International Journal of Computer Vision, pages 1–
20.

Yuqing Song, Shizhe Chen, Qin Jin, Wei Luo, Jun
Xie, and Fei Huang. 2021. Enhancing neural ma-
chine translation with dual-side multimodal aware-
ness. IEEE Transactions on Multimedia.

Hiroki Takushima, Akihiro Tamura, Takashi Ninomiya,
and Hideki Nakayama. 2019. Multimodal neural ma-
chine translation using cnn and transformer encoder.
In Proceedings of the 20th International Conference
on Computational Linguistics and Intelligent Text
Processing (CICLING 2019).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Dexin Wang and Deyi Xiong. 2021. Efficient object-
level visual context modeling for multimodal ma-
chine translation: Masking irrelevant objects helps
grounding. In Thirty-Fifth AAAI Conference on Arti-
ficial Intelligence, AAAI, pages 2–9.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jian-
min Bao, Zhuliang Yao, Qi Dai, and Han Hu. 2021.
Simmim: A simple framework for masked image
modeling. arXiv preprint arXiv:2111.09886.

Shaowei Yao and Xiaojun Wan. 2020. Multimodal
transformer for multimodal machine translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4346–
4350.

Junjie Ye and Junjun Guo. 2022. Dual-level interactive
multimodal-mixup encoder for multi-modal neural
machine translation. Applied Intelligence, pages 1–
10.

https://doi.org/10.18653/v1/P19-1653
https://doi.org/10.18653/v1/2021.emnlp-main.673
https://doi.org/10.18653/v1/2021.emnlp-main.673


5108

Yongjing Yin, Fandong Meng, Jinsong Su, Chulun
Zhou, Zhengyuan Yang, Jie Zhou, and Jiebo Luo.
2020. A novel graph-based multi-modal fusion en-
coder for neural machine translation. In: Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 3025–3035.

Yuting Zhao, Mamoru Komachi, Tomoyuki Kaji-
wara, and Chenhui Chu. 2021. Word-region
alignment-guided multimodal neural machine trans-
lation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing.

Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara,
and Chenhui Chu. 2022. Region-attentive multi-
modal neural machine translation. Neurocomputing.

Mingyang Zhou, Runxiang Cheng, Yong Jae Lee, and
Zhou Yu. 2018. A visual attention grounding neural
model for multimodal machine translation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3643–
3653, Brussels, Belgium. Association for Computa-
tional Linguistics.

Mingyang Zhou, Luowei Zhou, Shuohang Wang,
Yu Cheng, Linjie Li, Zhou Yu, and Jingjing Liu.
2021. Uc2: Universal cross-lingual cross-modal
vision-and-language pre-training. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4155–4165.

https://doi.org/10.18653/v1/D18-1400
https://doi.org/10.18653/v1/D18-1400

