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Abstract
Knowledge representation learning is a key
step required for link prediction tasks with
knowledge graphs (KGs). During the learn-
ing process, the semantics of each entity are
embedded by a vector or a point in a feature
space. The distance between these points is
a measure of semantic similarity. However,
in a KG, while two entities may have simi-
lar semantics in some relations, they have dif-
ferent semantics in others. It is ambiguous
to assign a fixed distance to depict the vari-
ant semantic similarity of entities. To allevi-
ate the semantic ambiguity in KGs, we design
a new embedding approach named OpticE,
which is derived from the well-known physi-
cal phenomenon of optical interference. It is a
lightweight and relation-adaptive model based
on coherence theory, in which each entity’s
semantics vary automatically regarding differ-
ent relations. In addition, a unique negative
sampling method is proposed to combine the
multimapping properties and self-adversarial
learning during the training process. The ex-
perimental results obtained on practical KG
benchmarks show that the OpticE model, with
elegant structures, can compete with existing
link prediction methods.

1 Introduction

Knowledge graphs (KGs) consist of sets of triplets
that can represent real-world concepts, common
sense information or facts. Each triplet (h, r, t) in-
dicates a directional relation r from the head en-
tity h to the tail entity t. WordNet (Miller, 1995),
Freebase (Bollacker et al., 2008) and Wikidata
(Vrandečić and Krötzsch, 2014) are the most well-
known KGs with tremendous numbers of entities
and relations. These KGs play important roles in
a range of areas, such as natural language process-
ing tasks (Cao et al., 2021), question answering ap-
plications (Bosselut et al., 2021) and recommenda-
tion systems (Shao et al., 2021). Research on KGs
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is thriving in both academic and industrial commu-
nities.

Link prediction is a fundamental problem when
addressing KGs. To learn the hidden patterns
from the observed triplets, extensive investigations
have been performed to embed entities and re-
lations into a continuous semantic space; this is
known as KG embedding learning (Rossi et al.,
2021). Among these embedding models, from a
mathematical perspective, TransE (Bordes et al.,
2013), TransH (Wang et al., 2014) and TransR
(Lin et al., 2015) are translation-based models
that use translation transformations to character-
ize the existence of triplets. Other methods (e.g.,
RESCAL (Nickel et al., 2011) and DistMult (Yang
et al., 2015)) tackle this problem with matrix or
tensor multiplication. Recently, the embedding
problem has been discussed in the complex do-
main (e.g., ComplEx (Trouillon et al., 2016), Ro-
tatE (Sun et al., 2019) and HAKE (Zhang et al.,
2020)). These methods have achieved great perfor-
mance on related tasks. While our models are dis-
cussed in the complex domain, they are designed
under an interference framework.

The semantic ambiguity caused by multimap-
ping relations was ignored in most previous meth-
ods. As illustrated in Figure 1 (a), the seman-
tics of New York and Washington D.C. are simi-
lar under the relation Located_in, while they are
quite different under the relation Capital_of be-
cause New York is not a capital. Previous methods
such as TransE and RotatE suffer from this ambi-
guity problem. As shown in Figure 1 (b), it is dif-
ficult to disambiguate New York from Washington
D.C. for the relation Capital_of in RotatE. To al-
leviate this problem, TransH utilizes a hyperplane
to project entities into independent semantic space.
RatE (Huang et al., 2020) integrates a semantic
matching method with an extra relation-adaptive
matrix. Instead of relying on extra settings, we
tackle this problem by the intrinsic attribute of the
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rotational semantic space.
We are motivated by the optical interference

phenomenon (bright or dark fringes appear after
the superposition of two beams of light), because
(i) it is intuitive to simulate positive cases and
negative cases utilizing distinct dark and bright
fringes; and (ii) since coherence theory in the
complex field is sufficiently sophisticated, it can
play a theoretical guiding role. As OpticE is one
type of rotation-based model, it can be illustrated
with the rotation transformation shown in Figure
1 (c). The entities New York and Washington D.C.
are mapped into different relation-adaptive orbits
with the same phase difference. The two entities
are close to each other in the orbit of Located_in,
while in the orbit of relation Capital_of they no
longer overlap. By embedding entities into orbits
with different semantic densities, OpticE can take
control of the similarity of entities regarding spe-
cific relations. Generally, multimapping relations
map entities into small-radius orbits in dense se-
mantic space, while one-to-one relations rely on
large-radius orbits in sparse semantic space to dis-
tinguish entities. This will be verified in our exper-
iments.

To optimize OpticE effectively, we optimize
self-adversarial sampling (Sun et al., 2019) by in-
tegrating a Bernoulli filtering process. The pro-
posed method can leverage the high efficiency of
self-adversarial sampling and reduce the perfor-
mance loss caused by false negative labels. Tested
on WN18, FB15k, WN18RR and FB15k-237, the
widely recognized benchmark datasets for link pre-
diction, the lightweight OpticE model is compa-
rable to the previous rotation-based models. Op-
ticE’s ability to adapt to multimapping relations is
also verified in our experiments. Our contributions
can be summarized as follows:

• Coherence theory is introduced into the KG
reasoning task for the first time to make the
embeddings of KGs in a complex field more
intuitive and understandable.

• A relation-adaptive amplitude modulation
technique, which is simple, effective and
lightweight, is developed to alleviate the mul-
timapping problem in KGs.

• A novel negative sampling method is pro-
vided to train our model precisely and effec-
tively; this approach can be generally applied
to other models.

2 Related Work

All the typical related works are listed in Table 1
with their model realizations and complexities in
terms of the number of utilized parameters. They
are divided into two groups according to whether
they are calculated in a real or complex number
field.

Real number field models. The most impor-
tant and influential model is TransE (Bordes et al.,
2013), which takes relations as translation transfor-
mation by simply assuming that h + r = t. How-
ever, its expressiveness is limited, especially when
representing a multimapping relation. TransH
(Wang et al., 2014) exploits an extra projection
transformation and manages to eliminate the ambi-
guity in TransE. DistMult (Yang et al., 2015) uses
a semantic matching method while ignoring the di-
rectionality of the relations.

Complex field models. ComplEx (Trouillon
et al., 2016) utilizes complex numbers in KG em-
beddings and achieves great performance. It can
be considered a complex version of DistMult, but
it overcomes the shortcomings of DistMult via tail
conjugation. RotatE (Sun et al., 2019) surpasses
all the previous models by rotation transforma-
tion; similar to TransE, the model assumes that
h◦r = t and suffers from the same ambiguity prob-
lem. Based on RotatE, RatE (Huang et al., 2020)
defines a relation-specific weight Wr with an extra
8 parameters per relation to solve the ambiguity
problem. HAKE (Zhang et al., 2020) employs a
hierarchical structure simulated by a modulus, but
the model is complicated and difficult to train.

OpticE (ours) belongs to the category of com-
plex field models and provides a novel way to
solve the semantic ambiguity problem in RotatE.
Like RatE and TransH, it has a relation-adaptive
strategy that can retrieve each entity’s different se-
mantics. However, our strategy is much simpler
due to the use of a relation-modulated amplitude.
In the aspect of negative sampling, we adopt multi-
ple negative sampling (Trouillon et al., 2016) and
self-adversarial strategy (Sun et al., 2019) in our
model, but optimize the process with a Bernoulli
distribution (Wang et al., 2014) according to the
multimapping relations.

3 The Coherence Theory-Based Model

In this part, we briefly introduce coherence theory
in §3.1. In §3.2, we provide three ways to modu-
late an interference model and demonstrate the ad-
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Figure 1: Illustration of OpticE. (a) A toy example is given. (b) RotatE is unable to disambiguate New York from
Washington D.C. for the relation Capital_of. (c) The entities New York and Washington D.C. are mapped into
different relation-adaptive orbits with the same phase difference.

Table 1: KG embedding models and their storage complexities of parameters, where ◦ denotes the Hadamard
product, || · ||1/2 denotes the L1 or L2 norm, and ⊙ denotes a specific weighted product defined in RatE. k is the
dimensionality. Ne and Nr are the numbers of entities and relations.

Model Score function Parameters Complexity
TransE −||h+ r− t||1/2 h, r, t ∈ Rk O(Nek +Nrk)
TransH −||(h−w⊤

r hwr)+dr − (t−w⊤
r twr)||22 h, t,dr,wr ∈ Rk O(Nek + 2Nrk)

DistMult h⊤diag(r)t h, r, t ∈ Rk O(Nek +Nrk)

ComplEx Re(h⊤diag(r)t) h, r, t ∈ Ck O(2Nek + 2Nrk)
RotatE −||h ◦ r− t||1 h, r, t ∈ Ck, |ri| = 1 O(2Nek +Nrk)
RatE −||h⊙W(r) ◦ r− t||1 h, r, t ∈ Ck,W ∈ R2×4 O(2Nek+Nr(k+8))

HAKE −||hm ◦ rm − tm||2− hm, rm, tm,hp, rp, tp ∈ Rk O(2Nek + 2Nrk)λ|| sin((hp + rp − tp)/2)||1
OpticE (ours) −||⟨Mr(h),M

′
r(t)⟩||1

h and t are light sources, O(Nek + 3Nrk)M(·) is modulator

vantage of the proposed OpticE. In §3.3, the model
training process is introduced with the proposed
Bernoulli self-adversarial sampling method.

3.1 Interference under Coherence Theory
Optical interference is a common phenomenon in
physics that can be interpreted formally by the
superposition of waves in coherence theory. We
briefly introduce this theory. More details can be
found in (Hecht, 2016).

Monochromatic harmonic light can be repre-
sented as a point in the complex field as

E = A exp [iφ], (1)

where φ is the phase and A is the amplitude (or
modulus). The intensity of the light synthesized
by E1 and E2 can be defined as

I = ⟨E1, E2⟩
= A2

1 +A2
2 + 2A1A2 cos (φ1 − φ2).

(2)

If and only if A1 = A2 and phase difference is π,
the intensity tends to be 0, which is called total de-
structive interference. In our models, we utilize
this state to indicate positive triplets in KGs.

3.2 The Proposed Models
Based on the coherence theory, we take the enti-
ties as a series of light sources and the relations
as a type of modulation performed on their phases
and the amplitudes. Then, the existence of triplets
can be indicated by the intensity of the lights after
superposition.

To be more intuitive, we modify Equation (2) as

I = A2
1 +A2

2 − 2A1A2 cos (φ1 − φ2). (3)

Then, the total destructive interference condi-
tion becomes A1 = A2 and φ1 = φ2. Given
a triplet (h, r, t) ∈ G, each entity consists of k
(k is the dimension) light sources. By extending
Equation (1), the head entity can be represented
as h = [E1

h, E
2
h, · · · , Ek

h], and the tail entity is
represented as t = [E1

t , E
2
t , · · · , Ek

t ]. The score
function is

fr(h, t) = −||⟨Mr(h),M
′
r(t)⟩||1,

where Mr(·) is the modulation operates on the
head or the tail, and ⟨Mr(h),M

′
r(t)⟩ is a list of
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Algorithm 1 Bernoulli self-adversarial sampling

Require: A KG G, the given true triplet (h, r, t) ∈
G, the number of negative samples n. For each
relation in KG, we first get the statistics about
hpt and tph (hpt is the average number of
head entities per tail entity; tph is the average
number of tail entities per head entity).

Ensure: The negative sample set S and
p(h′i, r, t

′
i).

1: p = hpt
hpt+tph // probability to corrupt the tail

2: ϵ ← U(0, 1) // ϵ uniformly generated from
(0, 1]

3: if ϵ < p then
4: while |S| < n do
5: S ← S ∪ (h, r, t′) // to corrupt the tail
6: end while
7: else
8: while |S| < n do
9: S ← S ∪ (h′, r, t) // to corrupt the head

10: end while
11: end if
12: for the i-th sample (h′i, r, t

′
i) ∈ S ,

its weight p(h′i, r, t
′
i) can be obtained from

Equation (4).

the synthesized intensities of each dimension cal-
culated by Equation (3). The larger the score func-
tion value is, the more likely (h, t, r) is the pos-
itive case. When the total destructive interfer-
ence condition is met, the score reaches its maxi-
mum 0.

In this paper, three ways are designed to modu-
late the entities. They are summarized as pOpticE,
aOpticE and OpticE models.

(i) pOpticE with only phase modulation. The
amplitudes of eahc light sources are fixed at 1. A
relation only modulates the corresponding phase.
Specifically, we have

Mr(h) = exp [i(φh + φh
r )]

M′
r(t) = exp [i(φt + φt

r)].

The modulator provides a phase delay φh
r to the

head and φt
r to the tail; then, the score function is

fr(h, t) = ||2− 2 cos(φh + φr − φt)||1,

in which φr = φh
r − φt

r is the phase difference
added to the head’s phase by relation r. Then, the
phase modulation process can be simplified as

Mr(h) = exp [i(φh + φr)]

M′
r(t) = exp [i(φt)].

Similar to other rotation-based models, our mod-
els can infer symmetric, anti-symmetric, inver-
sion and composition relations because all these
models rely on the modulated phase difference
(φh + φr − φt).

(ii) aOpticE with additional entity-adaptive
amplitudes. The amplitudes of the sources are de-
termined by the specific entities themselves. Then,
we obtain

Mr(h) = Ah exp [i(φh + φr)]

M′
r(t) = At exp [i(φt)].

Similar to RotatE, the amplitudes of the entities
in aOpticE remain unalterable under different rela-
tions.

(iii) OpticE with relation-adaptive amplitude
modulation. The amplitudes of the sources are
determined by the entities and relations, simulta-
neously. We have

Mr(h) = Ar,h exp [i(φh + φr)]

M′
r(t) = Ar,t exp [i(φt)],

in which Ar,h and Ar,t are the amplitudes of the
entities modulated by the relations. In this paper,
we provide a specific format of Ar,h and Ar,t to
map the entities into relation-adaptive rotational
orbits with different semantic density:

Ar,h = 1 + λ cos(φh + ϕr)

Ar,t = 1 + λ cos(φt + ϕ′
r),

where λ ∈ (0, 1) is the coefficient. For OpticE,
the amplitudes, which fluctuate between [1−λ, 1+
λ], are controlled by different relations through the
extra parameters ϕr and ϕ′

r.
OpticE is a lightweight model with high stor-

age efficiency, as demonstrated in Table 1. By
reusing phase parameters φh and φt in Ar,h and
Ar,t, only 2Nr ∗ k (Nr is the number of rela-
tions) extra parameters are needed. However, for
other rotation-based models like aOpticE, we need
Ne ∗k (Ne is the number of entities) parameters to
represent the amplitudes. The number of parame-
ters is reduced by (Ne−2Nr)∗k, where Nr ≪ Ne

in KGs.

3.3 Training
Negative sampling is essential to train the mod-
els well. This approach is an effective method de-
rived from word embedding (Mikolov et al., 2013)
and has been proven powerful for KG embedding
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Table 2: Statistics of the datasets. The last column is
the number of the observed triplets in each test, valida-
tion and training set.

Dataset Ne Nr # Te./Val./Tr.
FB15k 14,951 1,345 59k / 50k / 483k
WN18 40,943 18 5k / 5k / 141k

FB15k-237 14,541 237 20k / 18k / 272k
WN18RR 40,943 11 3k / 3k / 87k

(Huang et al., 2020; Krompaß et al., 2015; Sun
et al., 2019). Similar to (Sun et al., 2019), the self-
adversarial sampling method is used:

L =− log σ(γ + fr(h, t))

−
n∑

i=1

p(h′i, r, t
′
i) log σ(−fr(h′

i, t
′
i)− γ),

where (h′i, r, t
′
i) is the i-th negative sample of the

true triplet (h, r, t), γ is a fixed margin and σ is the
sigmoid function. In OpticE and pOpticE, fr(h, t)
need to be reduced by a proper times to fit the
value of γ. Furthermore,

p(h′i, r, t
′
i) =

expαfr(h
′
i, t

′
i)∑

j expαfr(h
′
j , t

′
j)

(4)

is the weight of the i-th negative sample, where α
is the adversarial temperature. According to Equa-
tion (4), negative samples with higher scores are
assigned with higher weights during the training
phase. This is an effective way to filter out high-
scoring negative samples and lower their scores ef-
ficiently. Apparently, this technique is better than
assigning the same average weight to each sample.

However, there are obvious defects in the self-
adversarial sampling methods above. During the
sampling process, those missing true triplets to
be predicted will inevitably suffer from a severe
penalty if they are sampled, which will undermine
the prediction accuracy. Here, we take advantage
of the Bernoulli sampling strategy described in
(Wang et al., 2014) to reduce the chance of sam-
pling false negative samples. Instead of replacing
the head and tail uniformly, we use a Bernoulli dis-
tribution to decide whether to corrupt the head or
the tail. For example, given a triplet (Biden, na-
tionality, the U.S.), since nationality is a many-to-
one relation, it is safer to change the entity the U.S.
to obtain a negative sample than altering entity
Biden. In Algorithm 1, the process of the Bernoulli
self-adversarial sampling method is clarified.

4 Experiments

In this part, the experimental conditions are elabo-
rated, and the performance of the proposed mod-
els is compared. Different negative sampling
methods are tested. Finally, we examine the
effects of the amplitude of OpticE. All the ex-
periments are conducted on an NVIDIA-v100
GPU. The code for this paper is available on
https://github.com/guixiangyu1/OpticE.

4.1 Experimental Settings
Four widely used datasets,FB15k (Bordes et al.,
2013), WN18 (Bordes et al., 2013), FB15k-
237 (Toutanova and Chen, 2015) and WN18RR
(Dettmers et al., 2018), are benchmark datasets in
our experiments. All these datasets contain plenty
of multimapping instances. The statistics of these
datasets are presented in Table 2. The models are
trained on the training set and tested on the test set.

• FB15k contains tremendous entities and mul-
timapping relations from real-world settings
and is extracted from Freebase (Bollacker
et al., 2008).

• WN18 is extracted from WordNet (Miller,
1995) and is designed to manipulate the se-
mantic relations between words and phrases.

• FB15k-237 is a subset of FB15k. To avoid
the data leakage problem in FB15k, dupli-
cate triplets and direct links are removed in
FB15k-237.

• WN18RR is a subset of WN18. WN18RR
follows the same processes as FB15k-237.

Hyperparameters. During the training process,
Adam (Kingma and Ba, 2014) is used to opti-
mize OpticE. Grid search is used and the range
of hyperparameters is set as follows: the batch
size b ∈ [512, 1024, 2048], the number of em-
bedding dimensions k ∈ [500, 1000, 1500, 2000],
the temperature for Bernoulli self-adversarial sam-
pling α ∈ [0.5, 1.0], the negative sample size
n ∈ [50, 100, 200, 256] and the margin γ ∈
[6, 9, 12, 15]. All amplitudes and phases are initial-
ized uniformly. The range of the phases is [0, 2π).

Evaluation. All the models are tested their link
prediction performance with three standard eval-
uation metrics: the mean reciprocal rank (MRR),
mean rank (MR) and hits at N (Hits@N). Given
a true test triplet, its head entity or tail entity is

https://github.com/guixiangyu1/OpticE
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Table 3: Link prediction results on FB15k and WN18. We take TransE results from (Nickel et al., 2016), and
DistMult results from (Kadlec et al., 2017). Other results are extracted as benchmarks from the corresponding
original papers.

Method FB15k WN18
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE - ..463 .297 .578 .749 - .495 .113 .888 .943
DistMult 42 .798 - - .893 655 .797 - - .946

HolE - .524 .402 .613 .739 - .938 .930 .945 .949
ComplEx - .692 .599 .759 .840 - .941 .936 .945 .947

ConvE 51 .657 .558 .723 .831 374 .943 .935 .946 .956
RotatE 40 .797 .746 .830 .884 309 .949 .944 .952 .959
RatE 24 .810 .724 .859 .898 180 .950 .944 .953 .962

pOpticE 42 .792 .742 .823 .881 290 .948 .940 .952 .960
aOpticE 45 .788 .736 .822 .879 362 .946 .940 .952 .958
OpticE 39 .804 .756 .837 .889 261 .951 .946 .955 .961

Table 4: Link prediction results on FB15k-237 and WN18RR. The results of [♠] are taken from (Dettmers et al.,
2018). Other results are extracted as benchmarks from the corresponding original papers.

Method FB15k-237 WN18RR
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE 357 .294 - - .465 3384 .226 - - .501
DistMult [♠] 254 .241 .155 .263 .419 5110 .43 .39 .44 .49
ComplEx [♠] 339 .247 .158 .275 .428 5261 .44 .41 .46 .51

ConvE [♠] 244 .325 .237 .356 .501 4187 .43 .40 .44 .52
RotatE 177 .338 .241 .375 .533 3340 .476 .428 .492 .571
HAKE - .346 .250 .381 .542 - .497 .452 .516 .582
RatE 172 .344 .261 .382 .541 2860 .488 .441 .506 .590

pOpticE 183 .329 .232 .366 .525 3182 .477 .435 .491 .559
aOpticE 186 .340 .244 .377 .536 3510 .473 .425 .489 .563
OpticE 151 .359 .264 .398 .550 1930 .497 .453 .512 .585

corrupted and we rank all the candidate triplets
by their scores from fr(h

′, t) or fr(h, t′). These
ranks are calculated by filtering out all the cor-
rect triplets except the one to be predicted. Higher
MRR, Hits@N and lower MR suggest better per-
formance.

4.2 Main Results

The existing state-of-the-art models are compared
with ours in terms of link prediction. They are
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), HolE
(Nickel et al., 2016), ConvE (Dettmers et al.,
2018), RotatE (Sun et al., 2019), HAKE (Zhang
et al., 2020) and RatE (Huang et al., 2020).

In Tables 3 and 4, the main results obtained
on the link prediction task are listed. RotatE sur-
passes all the previous models by simultaneously
modeling different kinds of relations in KGs, in-
cluding symmetry, antisymmetry, inversion and
composition (Sun et al., 2019). HAKE, RatE and
our OpticE can be considered members of the
RotatE family because they all employ the rota-
tion transformation approach and are capable of
representing the four types of relations described

above. By optimizing the hierarchy and ambiguity
aspects, HAKE and RatE outperform RotatE to a
large extent. According to the results, by mapping
entities into different relation-adaptive semantic
spaces, OpticE is comparable to these two models
and even exceeds them in terms of most evaluation
metrics.

The performances of different modulation
styles are also compared. pOpticE (with only
phase modulation) can complete the link pre-
diction task well to some extent. By assign-
ing trainable amplitudes decided by entities, aOp-
ticE optimizes the corresponding outcomes. Op-
ticE, with relation-adaptive modulated amplitude,
greatly surpasses aOpticE in four datasets, which
verifies that it is beneficial to use relation-adaptive
amplitude modulation rather than entity-adaptive
amplitude modulation.

4.3 Performance for Different Relation Types

We further investigate the performance of OpticE
when processing prediction tasks with different re-
lation types. According to the general classifica-
tion method given by (Wang et al., 2014), the rela-
tions are classified into one-to-one, one-to-many,
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Table 5: Performance on FB15k-237 for different relation types. TransE and RotatE are trained according to the
code released by (Sun et al., 2019) with their best configurations.

Head Prediction (MRR) Tail Prediction (MRR)
Relation Type 1-to-1 1-to-M M-to-1 M-to-M 1-to-1 1-to-M M-to-1 M-to-M

TransE .491 .453 .085 .255 .481 .074 .741 .361
RotatE .501 .472 .092 .261 .488 .075 .748 .368

OpticE (ours) .505 .484 .113 .285 .499 .073 .777 .390

Table 6: Performance of RotatE and OpticE with different negative sampling methods. For FB15k-237, the nega-
tive sample size is set to 256. For WN18RR, the negative sample size is set to 100. Other conditions remain the
same.

FB15k-237 WN18RR
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

RotatE(uni.) 186 .295 .203 .326 .479 3226 .471 .425 .487 .564
RotatE(adv.) 178 .335 .238 .374 .531 3338 .477 .429 .493 .574

RotatE(badv.) 179 .337 .241 .374 .531 3267 .478 .430 .496 .578
OpticE(uni.) 152 .348 .254 .385 .537 2267 .486 .442 .501 .568
OpticE(adv.) 168 .354 .260 .390 .541 2890 .488 .445 .504 .570

OpticE(badv.) 151 .359 .264 .398 .550 1930 .497 .453 .512 .585
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Figure 2: Visualization of several entities on FB15k-
237. The Mid of h1 and h2 are /m/04ztj and /m/07tg4;
the Mid of t1 and t2 are /m/08mbj5d and /m/0bwfn.

many-to-one and many-to-many types. The re-
sults obtained by OpticE on the FB15k-237 dataset
are given in Table 5 and compared with those of
TransE and RotatE.

We can see that OpticE achieves improvements
for almost all types of relations, except the one-
to-many tail prediction relations for which all the
methods obtain low MRR scores. It is difficult
to predict the ‘many’ parts of one-to-many and
many-to-one relations. This is in line with the
common sense notion that ‘many’ indicates more
uncertainty. By employing relation-adaptive am-
plitudes, OpticE alleviates this problem to some
extent.

4.4 Analysis of Negative Sampling Methods

We apply different negative sampling methods to
OpticE and RotatE and record the results in Table
6. Uniform sampling (uni.), self-adversarial sam-
pling (adv.) and Bernoulli self-adversarial sam-
pling (badv.) are alternated in the models dur-
ing the test. These methods are evaluated based
on the results in Table 6. During the sampling
phase, Bernoulli sampling can decrease the chance
of sampling false negative samples. As indicated
in the table, compared with adv. and uni. sam-
pling, models with badv. sampling achieve the
best result. From the perspective of models, Op-
ticE outperforms RotatE with the same negative
sampling method, which proves the excellent rep-
resentation ability of OpticE.
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Figure 3: Distribution histogram of the amplitudes. (a) For Student (many-to-one) and Campuses (one-to-one), we
take the average amplitude of their heads and calculate the corresponding relative frequency. (b) For Institution1

(many-to-many) and Institution2 (one-to-one), we take the average amplitude of their tails and calculate the
corresponding relative frequency.

4.5 Analysis Regarding the Amplitude

To verify the effects of the amplitude, we monitor
and visualize it in OpticE. we visualize the heads
and tails on FB15k-237 with several relations, as
shown in Figure 2. In Figure 3, we test the ampli-
tude distribution of different kinds of relations.

Visualization of relation-adaptive amplitudes
in OpticE. In Figure 2, all the entities are mapped
into a 2D space with the data of their first 500 di-
mensions, based on a complex coordinate system.
To make the property of the amplitude more obvi-
ous, we take the logarithm operation on the ampli-
tudes. Since the amplitudes and moduli are less
than 1, the smaller radii in the figure will actually
indicate larger amplitudes or moduli. The num-
bers in the parentheses are (hpt : tph) of the rela-
tions.

In Figure 2(a) and (b), (c) and (d), RotatE
mixes entities in the same space while OpticE
can distinguish them by different relations. The
radii under one-to-one relations (Institution2

and Campuses) are smaller in OpticE, which
means the entities are mapped into sparse semantic
space with larger amplitudes. In Figure 2(e) and
Figure 2(f), although Yale is the head entity of both
relations, entity Yale is mapped into sparse seman-
tic space by relation Campuses (one-to-one) and
dense semantic space by relation Student (many-
to-one). A similar situation occurs with UMich
on Institution1 and Institution2. These visu-
alizations prove that OpticE can tackle the seman-
tic ambiguity problem with relation-adaptive am-
plitudes.

Distribution of amplitudes of different rela-

tions. The relation between the values of am-
plitudes and the multimapping properties of the
relation is investigated. As illustrated in Figure
3, the amplitudes of injective (one-to-one) rela-
tions (Campuses and Institution2) are larger
than those of noninjective relations (Student and
Institution1). The reason is that for multimap-
ping relations, the semantics of entities overlap
with each other. Then with smaller amplitudes
in a dense semantic space, similar semantics are
more convenient to express. For the one-to-one
relations, entities are exclusive and there are se-
mantic gaps between them. With larger ampli-
tudes in a sparse semantic space, each entity can
disambiguate with each other more easily. These
attributes are also demonstrated in Figure 2, show-
ing that multimapping relations have smaller radii
(red points) and one-to-one relations with larger
ones (blue points).

5 Conclusion

We embed KGs with a novel optic interference
perspective to tackle the link prediction problem.
Guided by coherence theory, we explore three
kinds of modulation methods and analyze their
properties theoretically. With our proposed neg-
ative sampling method, OpticE achieves the best
score in comparison with other translation- and
rotation-based models. Its ability to disambiguate
entities in multiple mapping relations is verified
experimentally. The results suggest that we can al-
leviate semantic ambiguity in rotation-based mod-
els by mapping entities into relation-adaptive or-
bits with different semantic densities.
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A More Details about Coherence Theory

Given E1 = A1e
iφ1 and E2 = A2e

iφ2 , after the
superposition of the two light waves, the formed
synthetic light is

E =A1e
iφ1 +A2e

iφ2

=A1 cosφ1 +A2 cosφ2

+ i(A1 sinφ1 +A2 sinφ2).

Then, we have

||E||2 =(A1 cosφ1 +A2 cosφ2)
2

+ (A1 sinφ1 +A2 sinφ2)
2

=A2
1 +A2

2 + 2A1A2 cos (φ1 − φ2).

The final intensity is I = 1
2 ||E||

2. For conve-
nience, the coefficient 1

2 is ignored. The synthetic
light intensity of two coherent lights can be noted
as

I = ⟨E1, E2⟩
= A2

1 +A2
2 + 2A1A2 cos (φ1 − φ2).

To be more intuitive, we modify the intensity as

I = ||E1 − E2||2

= A2
1 +A2

2 − 2A1A2 cos (φ1 − φ2).

Then, the phase difference between φ1 and φ2 is
important during the process (k ∈ Z):

I =


(A1 +A2)

2, φ1 − φ2 = (2k + 1)π,

A2
1 +A2

2, φ1 − φ2 = (
1

2
+ k)π,

(A1 −A2)
2, φ1 − φ2 = 2kπ.

When cos (φ1 − φ2) = 1, the intensity reaches its
maximum as (A1 +A2)

2. When cos (φ1 − φ2) =
0, the interference effect disappears, and intensity
is the sum of the individual intensities as A2

1 +A2
2.

The extreme case is total destructive interfer-
ence, in which the waves tend to cancel, and the
intensity tends to be zero. This extreme case oc-
curs only if A1 = A2 and φ1 = φ2 (suppose
φ1, φ2 ∈ (0, 2π]).
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Figure 4: Distribution histogram of the phases of _sim-
ilar_to in WN18RR and spouse in FB15k-237.

B Reasoning in Symmetric Relations

OpticE can infer symmetric, anti-symmetric, inver-
sion and composition relations. We give the proof
for symmetric relations here, and others are omit-
ted in this paper.

For a symmetric relation r with two positive
cases, (h, r, t) and (t, r, h), to satisfy the coher-
ence condition of phase matching,

φh + φr − φt = 2k1π

φt + φr − φh = 2k2π,

where k1 and k2 ∈ Z . By adding the formulas
above, we can obtain

φr = (k1 + k2)π = kπ,

in which k ∈ Z . Specifically, φr = ±π and 0 in
OpticE.

The phase properties inherited from the rota-
tion models are tested. Compared with translation
models, e.g., TransE, rotation transformation mod-
els are able to represent symmetric relations. For
instance, when (h, r, t) and (t, r, h) are both posi-
tive cases, it is trivial for TransE to set r to 0. How-
ever, for OpticE, the period of the phase takes ef-
fect with a phase φr = kπ. This is verified in
Figure 4, in which the phase of the symmetric re-
lation _similar_to and spouse is distributed around
±π and 0.


