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Abstract

In knowledge-grounded dialogue generation,
pre-trained language models (PLMs) can be ex-
pected to deepen the fusing of dialogue context
and knowledge because of their superior abil-
ity of semantic understanding. Unlike adopt-
ing the plain text knowledge, it is thorny to
leverage the structural commonsense knowl-
edge when using PLMs because most PLMs
can only operate plain texts. Thus, linearizing
commonsense knowledge facts into plan text
is a compulsory trick. However, a dialogue is
always aligned to a lot of retrieved fact candi-
dates; as a result, the linearized text is always
lengthy and then significantly increases the bur-
den of using PLMs. To address this issue, we
propose a novel two-stage framework SAKDP.
In the first pre-screening stage, we use a rank-
ing network PriorRanking to estimate the rel-
evance of a retrieved knowledge fact. Thus,
facts can be clustered into three sections of dif-
ferent priorities. As priority decreases, the rel-
evance decreases, and the number of included
facts increases. In the next dialogue genera-
tion stage, we use section-aware strategies to
encode the linearized knowledge. The power-
ful but expensive PLM is only used for a few
facts in the higher priority sections, reaching
the performance-efficiency balance. Both the
automatic and human evaluation demonstrate
the superior performance of this work.

1 Introduction

Dialogue systems strive to facilitate human-like di-
alogue responses (Chen et al., 2017). One essential
precondition for generating high-quality dialogue
is a sufficient cognition of the contextually-relevant
knowledge besides the literal surface. The dialogue
is grounded on both the given user query and the
context-related knowledge (Yu et al., 2020). For ex-
ample, given a query ‘Are you thirsty?’, rather than
‘Yes/No’, a meaningful response should have more
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Figure 1: An example of linearizing knowledge.

information, such as ‘Yes, and I’m going to drink
some water.’ (context-related knowledge →thirsty
causes drinking water).

Seeking information from external sources is
a feasible way to enhance the machine’s cogni-
tion of knowledge (Dinan et al., 2019; Zhou et al.,
2021b). As for the choice of knowledge source, the
structural commonsense knowledge (Speer et al.,
2017) is a proven option, which consists of a lot of
knowledge facts that are frequently used in daily
life. As shown in Figure 1, a commonsense knowl-
edge base consists of various triplets, where each
triplet is a real-world fact. Commonsense knowl-
edge can contribute to many aspects of the open-
domain dialogue generation, such as the semantic
understanding (Young et al., 2018), reasoning (Liu
et al., 2019), topic transition (Zhong et al., 2021).
Meanwhile, pre-trained language models (PLMs)
(Vaswani et al., 2017) can learn a lot of implicit
knowledge from the massive pretraining data (Sun
et al., 2019, 2021; Zhou et al., 2021c). Hence, an-
other feasible way is to transfer the knowledge hid-
den in PLMs to the dialogue generation (Henderson
et al., 2020). Prior works have shown PLMs can
significantly promote the generation of high-quality
dialogue responses (Wolf et al., 2019; Zhang et al.,
2020b; Wang et al., 2020; Zhang et al., 2021), styl-
ized responses (Yang et al., 2020), etc.
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A model can simultaneously adopt the aforemen-
tioned two ways to take a step further. Knowl-
edGPT (Zhao et al., 2020) adopted a BERT (De-
vlin et al., 2019) to select text knowledge and a
GPT2 (Radford et al., 2019) to generate responses.
KE-Blender (Cui et al., 2021a) can implicitly infer
knowledge by fine-tuning Blender (Roller et al.,
2021) with text knowledge. Nonetheless, most
PLMs can only process plain texts, which makes it
hard to infuse the structural knowledge (Zhao et al.,
2021). As a compromise, linearizing structural
knowledge into plain text is a compulsory trick (Li
et al., 2021a). The linearized knowledge text is
much more verbose than the original, bringing new
challenges in commonsense knowledge-grounded
dialogue generation. A dialogue session is often
paired with a lot of commonsense fact triplets; for
example, in Reddit dataset (Zhang et al., 2020a),
the average number of 1/2-hop facts is 98.6/782.2,
respectively. As shown in Figure 1, linearizing
a fact into text often requires 5+ tokens. Thus,
lengthy linearized text can significantly aggravate
the burden of Transformer-based PLMs1 and of-
ten exceeds the limits of most general PLMs (e.g.,
512/1024 tokens).

According to our empirical study, fact candidates
retrieved for a dialogue query are always redundant,
where most responses (98.25%) use no more than
3 facts, but 77.65 facts are given on average. In-
spired by such an observation, this paper proposes
a novel two-stage framework SAKDP (Section-
Aware Knowledge-Grounded Dialogue Generation
with Pre-trained Language Model). The power-
ful but expensive PLM is only used to encode a
few facts of higher relevance. First, in the pre-
screening stage, we train a PriorRanking network
using the contrastive learning scheme (Wu et al.,
2020b) to estimate the relevance and then cluster
fact candidates into three sections of different pri-
orities: high, moderate, and low. Second, consid-
ering the investment benefit ratio, we use different
encoding solutions in the following dialogue gen-
eration stage. We propose a BERT-based Context-
Knowledge Joint Encoder to jointly encode the dia-
logue query and the relevant facts included by the
high/moderate priority sections, bringing deeper
infusing and interaction between dialogue and rel-
evant knowledge. Then, we employ a lightweight
non-pretrained Side-way Encoder to encode facts

1Assuming the length is L, the complexity of the self-
attention used by Transformer ∝ L2.

in the low priority section. Third, we use a Hybrid
Selection to select the encoded context/knowledge
memories and a Multi-Source Generator to gener-
ate diverse dialogues.

Experiments on a Chinese dataset (Wu et al.,
2020a) prove SAKDP can outperform baselines
by a large margin. Meanwhile, we conduct exten-
sive studies to analyze the ranking performance
and the necessity of pre-screening. SAKDP is still
competitive even only using three facts. The nov-
elty/contribution of this work is three-fold: 1) We
propose a novel SAKDP to investigate the potential
of both commonsense knowledge and pre-trained
language models; 2) We propose to rank and cluster
knowledge into three sections of different priorities.
It can maximize cost-effectiveness and flexibility
by using section-aware schemes; 3) Extensive ex-
periments and studies demonstrate the performance
of SAKDP.

2 Methodology

2.1 Preliminary
Inputs: Each dialogue is denoted as (X,Y ),
where X = (x1, · · · , xlX ) is a query and Y =
(y1, · · · , ylY ) is a response. Besides, there is a
commonsense knowledge base K = {ki}|K|, where
each triplet ki = (ehead,i, erel,i, etail,i) consists of
a head entity, a relation, and a tail entity.

Knowledge Retrieval: Commonsense fact can-
didates are usually retrieved by matching the name
(Zhou et al., 2018; Wu et al., 2020a): 1) all entity
words appearing in the query X are denoted as a
set {ei}. 2) {ei} are adopted as keys to retrieve
fact candidates from the base K. If the head entity
or the tail entity of a fact ki ∈ K appears in {ei},
then ki will be added to the candidate set K.

#UsedFacts 1 2 3 [4,13]
Distribution 78.16% 16.68% 3.49% 1.65%
Accumulated 78.16% 94.85% 98.35% 100%

Table 1: Distribution of the number of facts used in a
dialogue. Each dialogue has 77.65 fact candidates on
average. The results are based on the adopted Weibo
dataset (Wu et al., 2020a)

Empirical Observation: As shown in Table 1,
in our adopted commonsense knowledge-aligned
Weibo dataset (Wu et al., 2020a), although each
dialogue has 77.65 fact candidates to select on av-
erage, most dialogues use no more than three facts.
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Figure 2: The overview of SAKDP.

In other words, the knowledge that can directly
contribute to dialogue generation is always limited.

Problem Definition: Inspired by the above ob-
servation, as illustrated in Figure 2, SAKDP is a
two-stage approach:

• Pre-Screening Stage: SAKDP first estimates
the relevance of all fact candidates ∈ K;
then, SAKDP ranks and clusters K into three
knowledge sections: the high priority section
KH , the moderate priority section KM , and
the low priority section KL;

• Dialogue Generation Stage: For balanc-
ing the performance and the efficiency,
SAKDP uses section-aware methods to
generate the response conditioned on the
query X and three knowledge sections:
P (Y |X,KH ,KM ,KL).

2.2 Pre-Screening Stage
The relevance between a fact candidate ki ∈ K and
the entire dialogue context (X,Y ) can be various.
Obviously, only highly relevant facts can contribute
to dialogue generation. To this end, we propose
a prior ranking network PriorRanking to estimate
the relevance .

Ranking Score: Our prior ranking network Pri-
orRanking leverages the great potential of PLMs.
We adopt BERT (BERTR) to estimate the rele-
vance score ri ∈ (0, 1) for each fact candidate ki:

ri = θ(WR(BERTR([CLS], X, [SEP ], σ(ki)))

σ(ki) = [CSK], ehead,i, erel,i, etail,i
(1)

where θ is sigmoid function, WR ∈ R1×dim is a
learn-able parameter, σ(ki) linearizes the fact ki
into a plain text. It is worth noting that BERTR

outputs the representation at [CSK]2.

Contrastive Learning: The duty of PriorRank-
ing is to give a higher score to a more relevant fact
and a lower score to a less relevant fact. Thus, the
training follows the idea of contrastive learning
(Wu et al., 2020b). Given a training pair (X,Y ),
we first construct a set of contrastive pairs:

• Positive: We first select a positive subset K+

from K. For each k+ ∈ K+, its head e+head
must appear in X/Y and its tail e+tail must
appear in the another Y/X at the same time.

• Negative: The remaining K− = K −K+ are
negative samples, where each k− ∈ K− is
adopted by X but discarded by Y .

• Contrastive Pairs: For each k+ ∈ K+, we
generate n contrastive pairs by sampling n
k−i ∈ K−. Intuitively, in each contrastive pair,
the positive k+ is more relevant to (X,Y )
than the negative k−.

Subsequently, we train PriorRanking by forcing
it to give at least m = 0.3 higher score to the more
relevant k+ than the less relevant k−:

LRank =
1

n|K+|
∑
k+

n∑
k−i

max(0, (m−rk++rk−i
))

(2)
After the training, we can use the scores out-

putted by PriorRanking to estimate the relevance
and rank candidates.

The Criteria of Clustering: The proposed Prior-
Ranking network can not access the posterior infor-
mation (i.e., the ground-truth response), and thus
it cannot make a completely accurate prediction.

2[CSK] and [SEP ] are two special symbols used by
BERT, [CSK] is a special symbol to separate linearized facts.
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Consequently, rather than strictly sorting the fact
candidates ∈ K using the estimated relevance score
r, we cluster fact candidates into coarse-grained
ranked sections. We strictly distinguish each sec-
tion’s relevance label (order) but do not distinguish
the relevance labels of knowledge fact candidates
in each section. This methodology can balance the
need for ranking and fault tolerance.

Specifically, depending on the estimated ri, each
fact ki can be placed into the high priority sec-
tion KH , the moderate priority section KM , or
the low priority section KL. Based on the em-
piricism (see Table 1) and Zipf’s law (Zipf, 1949),
we assume that the number of fact candidates will
decrease with the relevance increasing. In other
words, |KH | << |KM | << |KL|. As an empiri-
cal procedure, the number of facts in each section
will be determined by the following empirical study
in the experiment.

2.3 Dialogue Generation Stage

To balance performance and efficiency, SAKDP
uses knowledge of different sections via different
strategies (i.e., section-aware).

2.3.1 Section-Aware Encoding

Although PLMs are powerful, they consume mas-
sive computation resources and always limit the
input length. Thanks to the pre-screening stage,
we can use two different section-aware encoding
strategies to alleviate such issues:

1. Context-Knowledge Joint Encoder: To deepen
the context-knowledge interaction, we use the
pre-trained BERT to jointly encode the query
X with the knowledge in the high/moderate
priority section KH /KM . As the number of
facts in KH /KM is limited, the introduction
of BERT only costs an affordable expense;

2. Side-way Knowledge Encoder: Facts in the
low priority section KL may also contribute
to the dialogue generation. As the number
of included facts is significantly larger, using
PLMs is not cost-effective; thus, we use a sep-
arate but lightweight non-pre-trained encoder.

Context-Knowledge Joint Encoder: The input
of the context-knowledge joint encoder is given by:

H = [CLS], X, [SEP ], P rH , TH , P rM , TM

TH/M = σH/M (k
H/M
1 ), · · · , σH/M (k

H/M
l
KH/M

)

σH/M (k) = [HC/MC], ehead, erel, etail
(3)

where TH/M is the linearized KH/M , σH/M (k)
linearizes a fact k into the text with priority-aware
structural labels (i.e. [HC] and [MC]). Inspired by
(Zhou et al., 2021a) that use some tips to investigate
the inherent ability of PLMs, two tips PrH and
PrM are designed to hint the model about the dif-
ferences between two sections. PrH refers to ‘The
following knowledge facts are highly relevant to
the left query:’; PrM refers to ‘Besides, the follow-
ing knowledge facts may also be relevant:’. Finally,
the context-knowledge representations (memories)
are given with the BERT encoder BERT J :

(hCLS,h1, ...hlH) = H = BERT J(H) (4)

Side-way Knowledge Encoder: The lightweight
side-way knowledge encoder is based on the non-
pretrained Transformer network :

(kL
1 , ...k

L
l
KL

) = KL = TransL(TL) (5)

where TL is the linearized KL using the σ (Eq 1).

2.3.2 Decoding
We use a GRU to update the decoding state, a Hy-
brid Selection network to select knowledge, and a
Multi-Source Generator to generate the response.

States Updating: At each time step t, the current
decoding state zt is updated by a GRU network:

zt = GRU(zt−1,yt−1, st) (6)

where yt−1 is the embedding of the last token.

Hybrid Selection: At time t, we use attention
function αH/L (Luong et al., 2015) to select a con-
textually relevant knowledge st = [sHt ; sKL

t ] from
the context-knowledge memory H and the side-
way knowledge memory KL:

sHt =
∑
i

exp(αH(zt−1
TWH

Ahi))∑
j exp(α

H(zt−1
TWH

Ahj))
hi (7)

sK
L

t =
∑
i

exp(αKL
(zt−1

TWKL

A kL
i ))∑

j exp(α
KL(zt−1

TWKL

A kL
j ))

kL
i

(8)
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Multi-Source Generator: The probability of the
next token Pt(yt = w) is given by:

pV,tPV,t(w) + pH,t

∑
hi=w

PH,t(hi)

+ pKL,t

∑
kLi =w

PKL,t(k
L
i )

pV,t, pH,t, pKL,t = Softmax(WPzt) (9)

where WP ∈ R3×dim. The vocabulary proba-
bility PV,t, the context-knowledge copy probabil-
ity PH,t(hi), and the side-way copy probability
PKL,t(k

L
i ) are given by:

PV,t = Softmax(WVzt)

PH,t(hi) =
exp(αH(ztTWH

Ahi))∑
j exp(α

H(ztTWH
Ahj))

PKL,t(k
L
i ) =

exp(αKL
(ztTWKL

A kL
i ))∑

j exp(α
KL (ztTWKL

A kL
j ))

(10)

where the computation of PH,t(hi) and PKL,t(k
L
i )

reuse the parameters of Equation 7 and Equation 8.

Learning Objective: The training optimizes the
following objective:

Ldialog = −
∑
t

log(Pt(yt)) (11)

3 Experiment

3.1 Settings
Dataset: We evaluate models on Weibo dataset
(Wu et al., 2020a), which collected more than 1M
dialogues from the largest Chinese SNS Weibo
and collected commonsense knowledge facts from
the ConceptNet (Speer et al., 2017). The train-
ing/validation/test set has 1,019,908/56,661/56,661
dialogues, the commonsense base has 696K facts,
27K entities, and 26 relations.

Comparison Models: We compare SAKDP with
several representative models: (1) Seq2Seq: The
widely-used Seq2Seq (Sutskever et al., 2014) +
Attention (Luong et al., 2015) model; (2) Copy:
A Seq2Seq variant that can copy words from the
query (See et al., 2017); (3-4) BERT2Seq, BERT-
Copy: We changed the encoder of Seq2Seq and
Copy to the BERT encoder (Cui et al., 2021b). (5)
CCM: It uses commonsense knowledge via the
graph attention. (Zhou et al., 2018); (6) ConKADI:

It proposes a felicitous knowledge selection mech-
anism to use commonsense knowledge (Wu et al.,
2020a); (7) ConceptFlow: It can use multi-hop
commonsense knowledge facts to enhance the dia-
logue response generation. (Zhang et al., 2020a);
(8) GOKC: One of the current SOTA knowledge-
grounded approach (Bai et al., 2021).

We use the official codes 3 for baselines ex-
cept for Seq2Seq, Copy, BERT2Seq, BERTCopy,
which use our PyTorch implementations 4. Models
adopt the following settings: word-level tokeniza-
tion, 2-layer encoder/decoder, 512-d(imensional)
GRU/LSTM or 512-d 8H Transformer, 200-d word
embedding, 30K vocab, 100-d entity embedding,
32 batch size, Adam optimizer, 1e-4 learning
rate, beam-search decoding (beam width =10) if a
model supports. For BERT modules, we adopt a
widely-used Chinese BERT hfl/chinese-bert-wwm-
ext (102M parameters, 768d, 12L, 8H, 21,128
subwords (Cui et al., 2021b). Consequently, for
BERT2Seq, BERTCopy, and SAKDP (both the
ranking and generation network), the optimizer is
changed to AdamW, the tokenization adopts the
default tokenizer of hfl/chinese-bert-wwm-ext , the
learning rate of BERT module is set to 1e-5 (other
modules keep unchanged). The training adopts the
early stopping mechanism. The training will be
stopped if the loss on the validation set increases
in two consecutive epochs.

For all commonsense knowledge-grounded base-
lines, commonsense knowledge candidates are pro-
vided by the original dataset. Thus, the ground-
truth commonsense facts are provided during the
test by default (but no label to indicate which are
gold facts). In our approach, the facts are selected
by our PriorRanking network before the dia-
logue generation.

Metrics: We use both automatic evaluation and
human annotation to evaluate models. In automatic
evaluation, the responses generated by word-level
models are re-tokenized by the BERT tokenizer.
As for automatic metrics, following (Wu et al.,
2020a), we adopt F1, Rouge-1/2/L, Bleu-1/2/3/4,
Em-A/G/X to evaluate the relevance, and we adopt
DIST-1/2, and Ent1/2/3/4 to evaluate the informa-
tiveness and diversity. In addition, we also calcu-
late the geometric mean score overall metrics.

3Some baseline models tend to generate UNK tokens,
bringing very unacceptable results. Considering this, we have
additionally masked the generation of UNK for these models.

4The code of SAKDP can be find in :https://github.
com/pku-sixing/COLING2022-SAKDP

https://github.com/pku-sixing/COLING2022-SAKDP
https://github.com/pku-sixing/COLING2022-SAKDP
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In human evaluation, following (Zhou et al.,
2018), we conducted the pair-wise comparison
between the response generated by our approach
and the baseline. The quality of generated re-
sponses is judged with three criteria: 1) Fluency:
the fluency of a generated response without con-
sidering the context; 2) Appropriateness: the rele-
vance and logic between the query and the gen-
erated response; 3) Informativeness: the qual-
ity/novelty/correctness of information provided in
the generated response.

3.2 Knowledge Pre-Screening Study

Top-k, % @1 @3 @5 @10 @20 @40 @100
PrecisionOurs 35.2 23.3 17.5 10.9 6.24 3.52 2.25
PrecisionRand 2.24 2.20 2.18 2.17 2.18 2.17 2.17
RecallOurs 28.5 53.8 66.3 81.2 92.7 98.3 99.9
RecallRand 1.81 5.32 8.79 17.4 34.1 60.1 94.8
Micro-F1Ours 31.5 32.5 27.7 19.2 11.7 6.80 4.41
Micro-F1Rand 2.00 2.73 3.32 3.85 4.10 4.18 4.24

Table 2: The ranking performance (PriorRanking vs.
random). We report scores on 7 positions (i.e., k).
Meanwhile, MRROurs=0.511, MRRRand=0.09, the
max/avg k is 151/77.65.

We first evaluate the ranking performance of our
ranking network PriorRanking. In prior works,
there is no knowledge pre-screening process be-
fore the dialogue generation; thus, the knowledge
selection totally relies on the internal selection of
the end2end model. However, as shown in Table 2,
if a model uses knowledge facts of random order,
the internal knowledge selection would be pretty
challenging to select relevant knowledge. With-
out the pre-screening, prior works are also blind
if some knowledge candidates must be discarded
for efficiency. Fortunately, we find the ranking
performance of PriorRanking is quite acceptable.
Although there are 77.65 candidates on average, the
precision@1 is 35.2%, and the recall@3 is more
than half. It indicates that SAKDP can efficiently
estimate the relevance of knowledge candidates.

The Criteria of Clustering: Now we can empir-
ically determine the division of three knowledge
sections based on the statistics (Table 1) and the
evaluation results (Table 2): 1) High Priority Sec-
tion KH : Considering that 98.35% responses use
no more than 3 facts and the Micro-F1 achieves
the highest at top-3, we select top-3 candidates to
KH ; 2) Moderate Priority Section KM : We find
the top-10 position is a sweet point, where more
than 80% of gold candidates can be recalled and

the precision is still acceptable. Thus, KM selects
the next 7 candidates (i.e., [4,10]); 3) Low Priority
Section KL: Finally, KL selects the next 30 candi-
dates (i.e., [11,40]) because the top-40 recall has
achieved 98%. The remaining facts are discarded
because the long-tail issue is significant; we think it
is not a good trade to increase the recall continually.

3.3 Automatic Evaluation
Results: As reported in Table 3, SAKDP has
achieved leadership in most metrics and performed
the second-best in almost the remaining metrics. In
the overall geometric mean score, SAKDP outper-
forms various baselines by notable margins. Com-
pared to other knowledge-grounded models, the
most notable advantages come from F1, Rouge, and
Bleu, showing the responses generated by SAKDP
are fluent and coherent. Comparing Seq2Seq/Copy
vs. BERT2Seq/BERTCopy, although notable im-
provements are achieved in other metrics, the in-
troduction of the BERT may impact the diversity
and the informativeness. We think the reason
is the adopted subword-level tokenization. But
fortunately, with the proposed Hybrid Selection
and Multi-Source Generation, SAKDP still has no-
table advantages compared to the baselines except
ConKADI. Meanwhile, although BERT is power-
ful enough, BERTCopy is not enough to compete
against the ConKADI/GOKC, demonstrating incor-
porating commonsense knowledge is essential in
the arena of PLMs.

Non-BERT SAKDP: SAKDP outperforms
the knowledge-grounded ConKADI and GOKC
but has more parameters. To better exhibit our
advantage, we evaluate the efficiency-oriented
SAKDPEffi, which replaces the BERT en-
coder by a lightweight 2-layer Transformer.
Clearly, SAKDPEffi still can outperform
GOKC/ConKADI even with only 59% parameters
(49M vs. 29M). This indicates the advantage of
SAKDP does not fully rely on BERT.

Fully-Joint SAKDP: We also evaluate the
performance-oriented SAKDPPerf that uses our
context-knowledge joint encoder to encode all
knowledge. As a result, SAKDPPerf uses fewer pa-
rameters because the side-way knowledge encoder
is removed. Compared to the standard SAKDP, the
overall geomean score increased by 1.7%, but its
training time sharply increased by 81%5. This re-

5On average, SAKDPEffi/SAKDP/SAKDPPerf costs
0.21/0.33/0.60s per training step.
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Model (#Parameters) F1 Rouge-1/2/L Bleu-1/2/3/4 Embed-A/G/X DIST-1/2 Ent-1/2/3/4 Mean
Seq2Seq 17.21 18.5/3.2/12.9 12.3/5.2/2.4/1.2 0.878/0.681/0.655 0.33/3.61 4.80/6.99/8.45/9.54 3.82

Copy 17.34 18.6/3.5/13.0 12.4/5.5/2.7/1.4 0.877/0.679/0.656 0.59/8.94 5.08/7.60/9.19/10.3 4.33
BERT2Seq 18.29 19.5/3.6/13.8 16.9/7.4/3.6/1.9 0.886/0.679/0.661 0.20/2.04 4.78/6.77/7.96/8.83 4.03
BERTCopy 19.24 20.4/4.3/13.9 18.7/ 8.8/4.5/2.5 0.897/0.681/0.666 0.37/7.09 5.07/7.35/8.71/9.61 4.87
CCM(32M) 15.63 20.2/4.3/13.4 15.0/6.9/3.2/1.6 0.875/0.690/0.659 0.24/2.62 3.95/5.72/6.76/ 7.41 3.87

ConKADI(49M) 18.98 20.9/4.4/14.4 17.8/8.3/3.8/1.8 0.885/0.677/0.662 0.41/10.8 5.55/8.77/10.8/11.9 5.01
ConceptFlow 19.32 24.0/5.8/16.2 18.2/8.9/4.3/2.3 0.874/0.698/0.662 0.26/3.51 4.33/6.38/7.59/8.35 4.51
GOKC(49M) 20.93 24.3/7.0/16.6 19.6/10.7/4.9/2.1 0.900/0.720/0.698 0.31/5.52 4.39/6.73/8.38/9.49 4.96

SAKDP(128M) 23.64 25.5/7.4/17.9 22.7/12.4/6.8/3.8 0.902/0.705/0.688 0.41/8.47 5.28/8.03/9.71/10.8 5.82
SAKDPEffi(29M) 21.07 22.8/6.1/16.3 18.6/9.7/5.1/2.8 0.893/0.692/0.676 0.42/6.67 5.19/7.68/9.16/10.1 5.17

SAKDPPerf (122M) 24.07 26.3/8.3/18.9 20.5/11.7/6.5/3.8 0.896/0.705/0.688 0.50/10.2 5.40/8.36/10.1/11.2 5.92

Table 3: Automatic evaluation results, black/blue is the first/second best (excluding SAKDPPerf and SAKDPEffi).
The last column reports the geomean of previous scores, showing the overall performance.

Model F1 RouL Bleu4 EmG DI2 Ent4 Mean
Full 23.64 17.91 3.83 0.705 8.47 10.80 5.82

w/o Ranking 20.83 15.92 2.96 0.687 9.88 10.95 5.40
w/o BERT 21.07 16.34 2.80 0.692 8.47 10.10 5.17
w/o Joint 22.96 17.20 3.47 0.686 6.99 10.27 5.56
w/o Tips 23.31 18.33 3.63 0.702 9.46 10.85 5.77

w/o MSCopy 22.44 16.98 3.17 0.703 2.59 9.36 4.89

Table 4: Ablation Study. ‘w/o’ denotes ‘without’.

sult shows our section-aware strategy can balance
performance and efficiency.

3.3.1 Ablation Study
Table 4 verifies the contribution of each module.
1) In w/o Ranking, we remove the PriorRanking
and randomly select facts for three sections. No-
tably, there is a significant performance regression,
despite using the same number of facts and the
same generation models. It means PriorRanking
can effectively estimate the relevance of fact candi-
dates without the posterior information; 2) BERT
is quite helpful in dialogue generation. After re-
placing the BERT with a non-pre-trained 2-layer
Transformer (w/o BERT), we can find a notable
performance decrease. 3) In Equation 3, we use
two tips PrH and PrM to hint the model about the
difference between the two sections. The perfor-
mance decreases after removing them (w/o Tips),
demonstrating the necessity to distinguish such two
sections.4) Jointly encoding the query and the rel-
evant knowledge can indeed deepen the context-
knowledge infusing. In ‘w/o Joint.’, we use a sep-
arate BERT to encode KH and KM ; as expected,
the performance is worse; 5) We use Multi-Source
Generator to enhance the diversity. Without it (w/o
MSCopy), the diversity is significantly decreased.

3.3.2 Knowledge Encoding Analysis
To further investigate the characteristics of knowl-
edge sections, we test each knowledge section with

Strategy F1 RouL Bleu4 EmG DI2 Ent4 Mean t(s)
SAKDP 23.64 17.91 3.83 0.705 8.47 10.80 5.82 0.33

KH Joint 22.33 16.57 3.46 0.697 7.67 10.54 5.57 0.20
KH BERT 21.64 16.13 3.21 0.694 7.92 10.43 5.44 0.26
KH Trans 20.73 15.23 2.95 0.689 6.99 9.98 5.20 0.19
KM Joint 20.66 15.71 2.90 0.688 8.43 10.43 5.25 0.21
KM BERT 20.19 14.85 2.83 0.685 7.84 10.15 5.17 0.26
KM Trans 19.90 14.69 2.70 0.685 7.80 10.14 5.08 0.19
KL Joint 20.30 15.37 2.80 0.684 9.81 10.89 5.27 0.40
KL BERT 19.79 14.62 2.66 0.684 7.78 10.05 5.06 0.58
KL Trans 19.20 14.28 2.52 0.680 7.65 9.96 4.92 0.23

Table 5: Performance comparisons among different en-
coding strategies. t is the average time of each training
step. The first column is the adopted section, the second
is the adopted encoder: 1) Joint: use the BERT-based
Context-Knowledge Joint Encoder to jointly encode the
dialogue and the knowledge; 2) BERT: use a separate
BERT to encode; 3) Trans: use the separate non-BERT
Side-way Knowledge encoder to encode.

three encoding strategies. As reported in Table 5:
1) Using a joint BERT to jointly encode the context
and the knowledge is better than using two sep-
arated BERTs, bringing more improvement than
replacing a non-pre-trained Transformer with a pre-
trained BERT. It shows the interaction between the
context and the knowledge is necessary. Mean-
while, we can find using a joint BERT is more
efficient when implemented by PyTorch; this is be-
cause of the higher parallelism; 2) On the whole,
while the number of facts in a higher priority sec-
tion is significantly less, the performance is bet-
ter. In addition, even only using three fact candi-
dates (KH+Joint), our approach still significantly
outperforms baselines. Such two factors indicate
our PriorRanking is very effective; 3) The full
SAKDP has the best performance, but the training
is even faster than KL+BERT/Trans. This shows
our standard SAKDP is very efficient.
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3.4 Human Evaluation

Similar to (Zhou et al., 2018), we employed 3 well-
educated volunteers to evaluate 5 baselines, where
each group has 200 sampled cases. Agreements:
The average 2/3 agreements (at least 2 judges gave
the same label) is 97.4%, the average 3/3 agreement
is 62.2%, and the Fleiss’Kappa is 0.43.

Table 6 reports the percentage that SAKDP wins
its competitor. It can be seen that our approach
significantly outperforms baseline models. Inter-
estingly, the baselines with relatively better perfor-
mance do not infuse external knowledge. This is
because when using knowledge, due to the lack of
enough context-knowledge fusing ability, the flu-
ency of such dialogues is poor, which may affect
human evaluation. Thanks to the introduction of
BERT and context-knowledge joint encoding, our
approach does not suffer from this.

% Flu. Appro. Info.
SAKDP vs. Lose Tie Win Lose Tie Win Lose Tie Win

Seq2Seq 25.3 21.5 53.2 26.2 5.5 68.3 18.8 4.3 76.8
BERTCopy 35.2 18.3 46.5 39.0 10.0 51.0 40.0 9.5 50.5

ConceptFlow 19.8 11.7 68.5 17.5 4.0 78.5 14.0 7.8 78.2
ConKADI 19.8 11.8 68.4 22.2 4.7 73.2 25.2 51.1 69.7

GOKC 7.8 14.8 77.4 9.2 7.2 83.4 8.2 5.3 86.5

Table 6: Human evaluation. Win/Tie/Lose denotes the
ratio that our SAKDP has wined, tied with, or lost to
the corresponding baseline, respectively. Score is sig-
nificantly better (sign test, p-value < 0.005).

Case study: We report two cases in Table 7. In
the first case, we can find that 1) responses have re-
ferred to four facts in our commonsense base in to-
tal. It can be seen that our PriorRanking network
has the ability to estimate the relevance between
a fact candidate and the dialogue context only us-
ing the prior query. Three of them are included by
the high-priority section KH ; the remaining one
is also included by the moderate-priority section
KM ; 2) Thanks to the context-knowledge joint en-
coding, compared to other models, the response
generated by our model is not only fluent but also
rational. ConKADI and GOKC irrationally used
commonsense facts. The second is a case in our hu-
man evaluation. 1) Seq2Seq and BERTCopy have
generated a fluent response, but not appropriate
and informative enough; 2) ConKADI and GOKC
generated irrational responses once again; 3) The
response generated by our SAKDP is still the best.

4 Related Work

Knowledge-Grounded Methods: Traditional
models (Sutskever et al., 2014) tend to generate
boring responses (Li et al., 2016). Knowledge-
grounded methods can address this issue by in-
fusing external knowledge (Yu et al., 2020; Wu
et al., 2021a, 2022). Roughly, knowledge-grounded
works can use the text-based knowledge (Dinan
et al., 2019; Ren et al., 2020; Zhan et al., 2021;
Meng et al., 2021), the structural knowledge (Bai
et al., 2021; Wu et al., 2021b), and the multi-modal
data (Wang et al., 2021).

Commonsense knowledge can contribute to
the semantic understanding (Young et al., 2018),
knowledge reasoning (Liu et al., 2019), topic tran-
sition (Zhong et al., 2021), improving the diversity
(Wu et al., 2020a; Speer et al., 2017). To reduce
the computational cost and improve the knowledge
relevance, text knowledge-grounded works always
follow a two-stage paradigm (Dinan et al., 2019):
1) A pre-screening stage to explicitly select one
knowledge text from candidates; 2) A generation
stage to generate responses with an internal fine-
grained select knowledge. Unlike such works, most
commonsense knowledge-grounded works ignored
the pre-screening and entirely relied on the inter-
nal selection. It may not be a severe problem if a
model does not use PLMs. However, as mentioned,
if we try to integrate PLMs, the cost of knowledge
encoding/accessing is always unacceptable. Differ-
ent from them, to introduce a PLM as an encoder.
We propose a well-designed explicit pre-screening
stage to rank and filter out facts. In addition, unlike
prior works that always employ separate encoders
to encode the dialogue query and the knowledge,
respectively. SAKDP jointly encodes the query and
the relevant knowledge, bringing deeper context-
knowledge infusing and interaction.

Pretrained Models: PLMs have shown striking
potential in NLP tasks (Li et al., 2021b). Dialogue
generation can also benefit from PLMs because
PLMs have extraordinary semantic understanding
and generation abilities (Wang and et al., 2020; Gu
et al., 2021). Researchers have shown that PLMs
can prompt the text knowledge-grounded genera-
tion (Zhao et al., 2020; Cui et al., 2021a), to investi-
gate the implicit knowledge hidden in PLMs (Zhou
et al., 2021a; Sun et al., 2021; Zhou et al., 2021c).
However, as mentioned, using PLMs to promote
the structural knowledge-grounded dialogue gener-
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#1 Query 猫真的超可爱！Cats are really cute!

Seq2Seq 我也觉得超喜欢的. I really like it, too

ConKADI 真的是被萌化了要玩跑粉. It’s really lovely. I want to play running powder.

GOKC 我也要跑了以后你这么可爱的猫.
I’m going to run, too. In the future, you’re such a lovely cat.

BERTCopy 是啊，超级可爱，但是我觉得它好可爱. Yes, it’s super cute, but I think it’s so cute.

Our SAKDP 我也觉得超级可爱，但是它们跑的很快.
I also think they are super cute, but they run fast

Relevant Knowledge (猫Cat,CapbableOf,跑Run) (真的really,RelatedTo,超级Super)
(猫Cat,CapbableOf,玩Play) (萌Lovely,MotivatedBy,可爱Cute)...

#2 Query 撸猫容易戒猫难！改天一起撸猫呀。
It’s easier to cuddle cats than to quit! Let’s cuddle cats some other day.

Seq2Seq (TLL)我也想撸猫。 I’d like to cuddle cats.

ConKADI (LLL)好呀好呀,我也想撸只撸狗鱼。
Well, well, I also want to cuddle cuddle a dog or a fish.

GOKC (LLL)宝贝你要是来了你都比你. Baby, if you come, you’re better than you.

BERTCopy (LLL)好的，我家猫也是这样的，但是我觉得它很可爱.
OK, so is my cat, but I think it’s cute.

Our SAKDP (LLL)好的，我们一起撸猫宝贝OK, let’s cuddle baby cats.

Relevant Knowledge (猫Cat,CapbableOf,喵Meow) (猫Cat,Desires,睡Sleep) (喵Meow,UsedFor,猫Cat)
(猫Cat,IsA,宝贝Baby) (狗Dog,NotDesires,猫Cat) (猫Cat,HasProperty,可爱Cute)...

Table 7: Case Study. The red-colored entities appear in the high-priority section KH , the blue-colored entities
appear in the moderate-priority section KM . The second case is selected from our human evaluation, and we report
the human-annotated scores of one annotator. Specifically, for each baseline, we show the fluency, appropriateness,
and informativeness labels, respectively, at the beginning. W/T/L denotes the baseline has wined SAKDP, tied with
SAKDP, lost to SAKDP, respectively.

ation still faces many challenges (Zhao et al., 2021;
Li et al., 2021a). This paper focuses on investi-
gating auto-encoder PLMs (Vaswani et al., 2017)
(such as BERT and RoBERTa) to encode. We leave
using auto-regressive PLMs (such as GPTs) and
Seq2Seq PLMs (such as BART, MASS) as future
work because 1) such PLMs are unsuitable for intro-
ducing more flexible knowledge selection mecha-
nisms, especially the auto-regressive PLMs; 2) Our
goal is to reach the balance between performance
and efficiency; such Seq2Seq PLMs have more
complicated network structures and more param-
eters; 3) For flexibility and applicability, we hope
SAKDP can also support non-pre-trained modules.

5 Conclusion

In this paper, we present an efficient two-stage
section-aware commonsense knowledge-grounded
dialogue generation framework SAKDP. We pro-
pose a ranking network to cluster knowledge can-
didates into different priority sections and adopt
different use schemes. Subsequently, SAKDP
can benefit from both BERT and commonsense

knowledge with a balance of efficiency and per-
formance. Extensive experiments demonstrate the
performance leadership of our approach.

In the future, we will continue to promote the
integration of PLMs and knowledge: 1) we will
continue to improve the efficiency of knowledge-
grounded and PLM-based dialogue response gen-
eration; 2) we will explore more solutions to select
knowledge in the pre-screening stage, for example,
using GNNs; 3) Current SAKDP is not fully PLM-
based because it uses a GRU decoder. We will
also try to explore the option of fully PLM-based
solutions.

Ethical Considerations

This work did not release any newly created dataset
or ethical statement. The first possible ethical issue
depends on how other users use our method, i.e.,
the adopted dataset, and the user scenario. The
next possible issue is that bias may be introduced
by the adopted PLMs and knowledge. As for this
technical work itself, there is no ethical issue.
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