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Abstract

Neural networks are vulnerable to adversar-
ial examples. The adversary can success-
fully attack a model even without knowing
model architecture and parameters, i.e., un-
der a black-box scenario. Previous works
on word-level attacks widely use word impor-
tance ranking (WIR) methods and complex
search methods, including greedy search and
heuristic algorithms, to find optimal substitu-
tions. However, these methods fail to balance
the attack success rate and the cost of attacks,
such as the number of queries to the model
and the time consumption. In this paper, We
propose PAthological woRd Saliency sEarch
(PARSE) that performs the search under dy-
namic search space following the subarea im-
portance. Experiments show that PARSE can
achieve comparable attack success rates to
complex search methods while saving numer-
ous queries and time, e.g., saving at most
74% of queries and 90% of time compared
with greedy search when attacking the exam-
ples from Yelp dataset. The adversarial exam-
ples crafted by PARSE are also of high qual-
ity, highly transferable, and can effectively im-
prove model robustness in adversarial training.

1 Introduction

Neural networks have achieved remarkable suc-
cess in various NLP tasks while being vulnerable
to adversarial examples. The adversary can craft
adversarial examples, which contain noise that is
imperceptible to human but can mislead the model
decision, even without knowing the model archi-
tecture and parameters. Under such black-box sce-
nario, word-level attacks have been more focused
on by recent studies for the flexibility of the attack
and the high quality generated examples (Gao et al.,
2018; Alzantot et al., 2018; Jin et al., 2020; Li et al.,
2018; Garg and Ramakrishnan, 2020a; Ebrahimi
et al., 2018). Word-level attacks can flexibly fit
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Search Method A.S% #Queries Time(s)

Random 83.02 252 3503
TIWO 82.31 191 1802

WIR-Delete 91.64 234 1289
WIR-A 91.82 225 1347
WIR-UNK 91.79 221 1325

PARSE (w = 1) 93.23 378 1568
PARSE (w = 2) 93.38 472 2031
PARSE (w = 4) 94.14 620 4670
PARSE (w = 8) 96.80 1065 5665

Greedy 96.38 3327 27494
Beam (w = 4) 96.99 10 159 85087
Beam (w = 8) 97.84 18 327 211 400

Genetic 97.13 13 469 136 602
PSO 98.51 51 341 402 452

Figure 1: Average #Queries vs. Attack success rate
(%) when attacking TextCNN on 500 examples from
Yelp in HowNet. Increasing the beam width w in
PARSE effectively increases the attack success rate
while just costing a few more #queries and time.
PARSE (w=8) outperforms Greedy search while taking
only 32% of queries and 20% of time. The complete
results are in Table 2.

the grammar and semantics constraints by chang-
ing the similarity and semantics threshold when
filtering candidate substitutions, and the generated
adversarial examples will not be detected by a spell
checker (Ebrahimi et al., 2018; Iyyer et al., 2018)
or substantially damage the overall semantic and
logic of the sentence (Jia and Liang, 2017; Liang
et al., 2018). High-quality adversarial examples
ensure the attacks are imperceptible to human and
can be used to learn the robustness of models better.

To better explain our contribution to the word-
level adversarial attack, we would like first to define
the word-level attack as a combinatorial optimiza-
tion problem, which is similar to (Yoo et al., 2020;
Morris et al., 2020b,a). Under this setting, a word-
level adversarial attack method can be decomposed
into Search Space and Search Method. The search
space gives all the possible substitutions that meet
the similarity and semantics requirements for the
target words, i.e., decides what words the target
words can be transformed into. The search method
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is the search strategy to perform the attack, i.e., de-
cides which words to be transformed (target words)
and what words should be transformed into (pick
from the search space). Search method is the most
significant part of an attack method, as the exponen-
tial nature of the search space makes inefficiency
search method difficult to attack large-scale and
long examples. Therefore, we fix the search space
and only focus on the search methods in this paper.

Various search methods for word-level black-box
attacks have been proposed, divided into simple
methods, including the variants of Word Impor-
tance Ranking (WIR) methods (Gao et al., 2018;
Li et al., 2018; Jin et al., 2020; Li et al., 2020), and
complex methods, including greedy search (Pruthi
et al., 2019; Li et al., 2021), beam search (Ebrahimi
et al., 2018), genetic algorithm (Alzantot et al.,
2018), and Particle Swarm Optimization (PSO) al-
gorithm (Zang et al., 2020). WIR methods search
substitutions for each word in the descending order
of word importance scores, which is faster than
other complex search methods, while is poor in
attack success rate. Other search methods can al-
ways achieve better attack success rates, while they
need more queries to the target model and time,
as they directly search on the search space of the
entire sentence. Previous works fail to balance well
between performance and efficiency.

In this paper, to achieve higher attack suc-
cess rates with fewer queries and time in word-
level black-box attacks, we propose a search
method called PAthological woRd Saliency sEarch
(PARSE). PARSE separates the entire sentence into
multiple subarea according to the stability of words
and searches in the descending order of the sub-
area importance. Therefore, PARSE avoids directly
searching on the huge search space of the entire
sentence and reduces the cost of attacks. Search-
ing on each subarea instead of on each word like
WIR methods also makes PARSE less likely to
be stuck in local optima. Extensive experiments
demonstrate that PARSE achieves comparable at-
tack success rates to complex search methods while
saving numerous queries and time, e.g., saving
at most 74% of queries and 90% of time com-
pared with greedy search when attacking the Yelp
dataset (Zhang et al., 2015). Figure 1 shows the per-
formance comparisons. The major contributions of
this paper are summarized as follows:

• We define the stability of words in adversarial
attacks and explain the ineffective of WIR

methods from the view of word stability.

• We propose PARSE, a search method for
word-level black-box adversarial attacks that
performs search under dynamic search space
following the subarea importance.

• Experiments show that PARSE achieves com-
parable attack success rates to complex meth-
ods while saving numerous queries and time.

2 Related Works

Adversarial attack. Inspired by the early works
on adversarial attacks that mainly focus on the field
of computer vision (CV) (Goodfellow et al., 2015;
Papernot et al., 2016; Moosavi-Dezfooli et al.,
2016; Carlini and Wagner, 2017), various meth-
ods to attack language models are proposed (Li
et al., 2018; Gao et al., 2018; Garg and Ramakrish-
nan, 2020b; Miyato et al., 2017; Gong et al., 2018).
Unlike the image, which is differentiable as pixels
are continuous values, the discrete text is not differ-
entiable. Therefore, the adversarial attacks in NLP
tasks are more appropriately described as combi-
natorial optimization problems, which seek to find
optimal substitutions in the search space (Yoo et al.,
2020; Morris et al., 2020b,a).

Search Method. Although various adversarial at-
tack frameworks focusing on the NLP tasks are
proposed, few works make a clear distinction be-
tween the search space and search method. The
reported results may benefit from strong search
method (Alzantot et al., 2018; Zang et al., 2020; Jia
et al., 2019), which have a higher time complexity
and need more queries to the model, or the less
restrictive search space (Pruthi et al., 2019; Gao
et al., 2018; Ebrahimi et al., 2018; Li et al., 2018;
Jin et al., 2020; Li et al., 2020), which does not con-
sider both the distance between the target words
and the substitutions and the semantic of the entire
perturbed sentence. In this paper, we only focus
on the search methods and benchmark all search
methods under the same search space.

3 PARSE

3.1 Textual Adversarial Example
Suppose there is a model F : X → Y trained by
minimizing the empirical risk over all given text
X ∈ X and labels Y ∈ Y following the distribu-
tion D:

min
θ

E(X,Y )∼DL (F (X;θ) , Y ) (1)
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where θ is the parameter, and L(·) is the cross-
entropy loss. An adversarial exampleXadv crafted
from a normal text X = (xn)n∈{1,...,N} can thus
be defined as:

Xadv = O(X) = o(xn)n∈{1,...,N},

s.t. ∀n ∈ {1, . . . , N}, ∆xn < δ,

and ∆X < ε,

and argmax
Y ∈Y

P(Y |Xadv) 6= argmax
Y ∈Y

P(Y |X)

(2)

where O(X) means performing word-level substi-
tution on sentence X , o(xn) means substituting
the word xn with a new word from search space, if
possible. ∆xn denotes the difference between xn
and o(xn), ∆X denotes the difference betweenX
and O(X), δ and ε are the maximum allowed dif-
ference of words and the overall sentence, respec-
tively, which restrictions are imposed on search
space to filter potential substitutions, P(·|·) is the
posterior probability. Intuitively, (2) can be ex-
plained as the following condition. We have a finite
search space that contains all possible substitutions
for each word in X , and the substitutions in the
search space are further filtered by the restrictions,
including δ and ε, which may mainly focus on the
semantics and the Lp norm of embedding distance
of each word and the entire sentence. These re-
strictions ensure that the final generated adversarial
example is imperceptible to human. The search
method can thus be seen as the strategy to perform
O(·), deciding the order to perform o(·) and the
substitutions picked from the search space. When
the restrictions on search space are fixed, the better
search method finds the adversarial example more
accurately and efficiently.

3.2 Word Importance
As gradient information is not available in the
Black-box scenario, the Leave One Out (LOO)
methods are proposed to obtain word importance,
i.e., the word saliency. (Li et al., 2016; Gao et al.,
2018; Li et al., 2018; Jin et al., 2020; Li et al., 2020).
LOO methods expect to obtain word importance
by comparing the model confidence of two sen-
tences with only one word is different. Formally,
the importance of words xi ∈X is defined as

S(xi) = P(Ytrue|X)− P(Ytrue|X̂i) (3)

where S(·) is the word saliency, Ytrue is the ground-
truth class, and X̂i = x1 . . . x̂i . . . xN is the sen-
tence with word xi transformed. Transforming xi

to x̂i in different ways formulating three prevalent
LOO methods: (i) Delete: leaving x̂i blank. (ii)
UNK: x̂i = [UNK], triggering the out of vocab-
ulary (OOV) problem. (iii) A: x̂i = a, replacing
with a neutral word a that has a similar distribu-
tion across classes (Pruthi et al., 2019). Intuitively,
performing the substituting operation o(·) on the
words in the descending order of their importance
should help to generate adversarial examples more
efficiently (this is how the WIR search methods
do), as the important word have a large impact on
the model prediction.

3.3 Word Stability from the View of Words
Importance Changing

To explain why the word importance fails to in-
dicate the model concentration and why the WIR
methods, which strictly follow the descending or-
der of words importance to perform the attack, have
a degenerated performance, we first try to answer:

When should a word be considered unstable?
We would like to clarify that the stability of a word
is defined together with the system trying to under-
stand the word, i.e., the stable word for a system
may be an unstable word for other systems. For hu-
man, parsing a sentence is a denoising process. We
can still understand a sentence even if slight noise
is introduced to the sentence, e.g., changing the
order of letters in a word or deleting some words
in a sentence (McCusker et al., 1981; Rayner et al.,
2006; Adam Drewnowski, 1978; McCusker et al.,
1981; Van Orden, 1987). More importantly, we
focus on the important words in the sentence and
do not change our attention to the words due to the
small noise. Based on this, there are few unstable
words for the human reading comprehension sys-
tem, as the important words we concentrate on do
not change. Following this, if a system, e.g., a lan-
guage model, changes attention to the words when
parsing a sentence because of sufficiently slight
noise, we consider the words whose importance,
i.e., the attention of the system, have changed as
unstable words for the system. It should be noted
that, as defined in (3), the word importance is a con-
tinuous value, and if the importance of all words
increases to the same extent, the attention of the
system is actually not changed. Therefore, we fur-
ther use a discrete value called importance ranking
to define the attention, which is formed as

R(X) = r(xi)i∈{1,...,N}

= arg sort
i

S(xi)i∈{1,...,N}
(4)
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where arg sort(·) returns the indexes of the sorted
sequence in descending order. Therefore, the sta-
bility of a word and a group of adjacent words can
be defined.

Definition 1. For a given model F , a sentence
X = (xn)n∈{1,...,N}, let t(·) be a slight trans-
formation that deletes the least important word
in a sentence, the word importance rankings of
X and t(X) are R(X) = (r1, r2, . . . , rN ) and
R(t(X)) = (r∗1, r

∗
2, . . . , r

∗
N ), respectively, where

ri and r∗i are the word index. If ri 6= r∗i , then the
word xri is an unstable word for model F; other-
wise, a stable word. If ∀ rj ∈ (ri, . . . , ri+n), rj 6=
r∗j , the adjacent words (xri , . . . , xri+n) form an
unstable subarea; otherwise, a stable subarea.

Intuitively, the importance of unstable words can
not accurately indicate the impact on the model pre-
diction, as even a slight transformation is enough
to shift the importance ranking of these words over
the entire sentence, and the important word may
become not that important. That is why the WIR
methods always have poor performance. Such
phenomena are probably due to the model pathol-
ogy (Feng et al., 2018) as neural networks are more
linear than expected and will overfit the negative
log-likelihood loss to produce low-entropy distri-
bution over classes, leading the model to overconfi-
dence in instances outside the training data distribu-
tion (Goodfellow et al., 2015). This consequently
leads to the word importance drastically changing
with even the least important word being removed
from the sentence, which is sufficient to bias the
sentence representation from the distribution.

To show the influence of word stability for com-
mon language models of different architectures, we
test the word stability of the sentence in MR and
Yelp training set for LSTM, TextCNN, and Distil-
BERT (model architectures are detailed in §4.1).
Following (3), (4), and Definition 1, we first obtain
the word importance rankings with the LOO-UNK
method on 500 randomly picked examples and then
compare the word importance rankings between the
original sentences and the sentences with the least
important word removed to obtain the word sta-
bility. Table 1 shows the average stability results
of five individual runs. There are relatively few
unstable words on the short text on MR, with an
average of 45.5% on the three models, while it will
rise to 72.4% on the longer text on Yelp. We also
find that the average length of an unstable subarea
is very short compared with the length of the entire

Dataset Model
#input #unstable unstable #unstable AVG unstable
words words word% subarea subarea length

MR
LSTM 18.25 8.14 44.60 2.23 3.49

TextCNN 18.72 8.26 44.12 2.32 3.56
DistilBERT 18.39 8.79 47.79 2.41 3.65

Yelp
LSTM 128.39 96.66 75.28 10.81 8.94

TextCNN 133.29 83.94 62.97 8.77 9.57
DistilBERT 135.86 107.14 78.86 8.61 12.51

Table 1: Statistics on the word stability of the sentence
in MR and Yelp training set for different models.

sentence and takes only 19.3% for MR and 7.8%
for Yelp on average. Therefore, we can draw two
conclusions about word stability:

(C1) unstable words are prevalent regardless of the
model architecture and take a higher propor-
tion in a longer sentence.

(C2) the word importance rankings are mainly
swapping between the words of similar im-
portance (as the average length of unstable
subarea is short).

3.4 Searching Strategy of PARSE

To generate adversarial examples in higher attack
success rate with fewer queries and time, a search
method must take the word stability (and further
the (C1) and (C2)) into account. As the importance
of unstable words fails to accurately indicate the
impact on the model prediction, strictly following
which to perform attack are likely to stuck in lo-
cal optima. Based on this, we propose PARSE
that performs beam search under dynamic search
space following subarea importance. The general
searching strategy of PARSE is shown in Figure
2. Specifically, PARSE starts by transforming the
target sentenceX with transformation t(·) and ob-
taining the stability of all words in the target sen-
tences. PARSE treats each stable word individually
while treating the adjacent unstable words, i.e., the
words in the same unstable subarea, as an inte-
gration. That is, according to Definition 1, each
stable word forms a stable subarea, and multiple
adjacent unstable words form an unstable subarea.
Therefore, the sentence is separated into multiple
subarea based on the stability of words, and the
entire potential search space is separated into multi-
ple subspace. PARSE avoids being too sensitive to
the importance of a single word and being affected
by the inaccuracy of word importance by taking the
subarea as basic elements at each search step rather
than each word like other methods. The search is
then performed following the descending order of
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Figure 2: The general searching strategy of PARSE. We separate the entire sentence into multiple subarea according
to the word stability. PARSE performs search in the descending order of subarea importance and takes each subarea
as integration at each search step.

the subarea importance score, which is the average
importance rankings of the words in a subarea:

score(A) =
1

||A||
∑
xi∈A

r(xi) (5)

where A denotes a subarea, ||A|| denotes the num-
ber of words in a subarea. PARSE behaves dif-
ferently when encountering stable subarea and un-
stable subarea. To better understand the idea of
PARSE, we first explain the detailed search pro-
cess when beam width w = 1. When encounter-
ing stable subarea Ak, which contains the only
word xi ∈ Ak, we tend to find the substitution x̂i
that mostly reduces the model confidence from the
search space:

x̂i = argmax
x̂i∈Li

{P(Ytrue|X)−P(Ytrue|X̂i)} (6)

where Li is the potential search space for xi under
the fixed restrictions including δ and ε, and X̂i

is the sentence with word xi transformed into x̂i.
When encountering unstable subareaAk that con-
tains multiple unstable words (xri , . . . , xri+n) ∈
Ak, we tend to find the group of substitutions
{x̂rj |j ∈ [i, i+ n]} that mostly reduces the model
confidence, which equals to:

argmax
{x̂rj |j∈[i,i+n]}∈

⋃i+n
j=i Lrj

{P(Ytrue|X)− P(Ytrue|X̂ri+n
ri )} (7)

where
⋃i+n

j=i Lrj is the potential search space for
the multiple words (xri , . . . , xri+n) ∈ Ak, i.e., the
combination of the search space of every single
word, X̂ri+n

ri is the sentence with words {xrj |j ∈
[i, i+n]} transformed into {x̂rj |j ∈ [i, i+n]}. In-
tuitively, different from the search space of a single
word Li, the same substitution for a single word
in {x̂rj |j ∈ [i, i + n]} may appear many times in

Algorithm 1: PARSE
input :Original sentence X = x1x2 . . . xN ,

Separated search space
A = (A1,A2, . . . ,An),
beam width w, true label Ytrue

output :Adversarial example Xadv

1 Initialize candidate set Xbest ← {X}
2 Sort A by the subarea score (Eq.(5)) in descending
3 for all Ak ∈ A do
4 reset the union of candidate set Xall ← {}
5 for all X′

j ∈ Xbest do
6 if Ak is stable zone then
7 Xcand ← {top-w sentences

transformed from X′
j that x̂i most

close to Eq.(6)}
8 else
9 Xcand ← {top-w sentences

transformed from X′
j that

{x̂rj |j ∈ [i, i+ n]} most close to
Eq.(7)}

10 Xall ←Xall ∪ Xcand

11 Xbest ← {top-w sentences X ′ ∈ Xall that
mostly reduce model confidence
P(Ytrue|X)− P(Ytrue|X ′)}

12 if ∃ argmax
Y ∈Y,X′∈Xbest

P(Y |X ′) 6= Ytrue then

13 return the X ′ that mostly reduces model
confidence as Xadv; /* Success */

14 return X; /* Fail */

all possible substitution combinations in the search
space of multiple words

⋃i+n
j=i Lrj . Thus the word

order in an unstable subarea is ignored, and the
words in an unstable subarea will be substituted at
the same time at each search step, which helps re-
duce the impact of the inaccurate importance rank-
ings of unstable words. The search is performed
on every subarea in order until the generated exam-
ple meets (2). When the beam width w 6= 1, we
keep the top-w x̂i or {x̂rj |j ∈ [i, i + n]} that the
results most close to equation (6) or (7), i.e., mostly
reduce the model confidence, at each search step.
The details of PARSE are shown in Algorithm 1.
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4 Experiment

4.1 Experiment Setup

Dataset. The experiments are conducted on
Movie Review (MR) (Pang and Lee, 2005) and
Yelp Review Polarity (Yelp) (Zhang et al., 2015).
Both of them are sentiment classification tasks. For
MR, the average text length is 18.49. For Yelp, the
average text length is 135.66.

Model. We use TextCNN (Kim, 2014), LSTM,
and DistilBERT (Sanh et al., 2019) in our experi-
ments. More details of the model are in Appendix.

Search Space. We utilize the 300-Dimensional
GloVe word vectors (Pennington et al., 2014) and
HowNet (Dong and Dong, 2003) as the search
space for substitutions. GloVe contains vector rep-
resentations for words learned by an unsupervised
learning algorithm. HowNet is a knowledge base
of sememes with over 100,000 words.

Restrictions on Search Space. The possible
substitutions for each word in the search space are
filtered by the restrictions imposed on the search
space. The substitutions picked from the search
space should have the same part of speech as the
original word. The similarity between the gener-
ated and original sentences measured by BERT
should be larger than 90%.

Baselines. We compare PARSE with nine search
methods: Random, Traverse in word order (TIWO),
WIR-Delete, WIR-A, WIR-UNK, Greedy Search,
Beam Search, Genetic Algorithm (Genetic) (Alzan-
tot et al., 2018), and Particle Swarm Optimization
(PSO) (Zang et al., 2020). The Random method
randomly picks a word as the target word at each
search step. TIWO method performs the search
following the word order.

Implementation Details. For PARSE, we use
the LOO-UNK to obtain the word importance. For
the Genetic and PSO algorithm, the population size
and the number of iterations are set to 60 and 20,
respectively. All reported results are the average of
five individual runs. All comparisons in our experi-
ments are conducted under the same search space
with the same restrictions on the same machine
with an A5000 GPU.

4.2 Main Results

Comparisons on Performance. We perform ad-
versarial attacks on 500 randomly picked exam-

ples, and the results on performance are shown in
Table 2. Even when w = 1, PARSE still outper-
forms WIR methods on attack success rates, and
#queries and time are only slightly increased. This
indicates that considering the stability of words
and treating the words of different stability differ-
ently in each search step helps reduce the impact
of the inaccurate word importance. Compared with
the complex search methods like greedy search,
PARSE (w = 8) can achieve comparable attack
success rates with fewer #queries and time, es-
pecially on the long text from Yelp. On MR, on
average, PARSE (w = 8) needs 213 queries and 2.9
seconds for each successful attack, while greedy
search needs 390 queries and 7.1 seconds. On Yelp,
on average, PARSE (w = 8) needs 1320 queries
and 13 seconds for each successful attack, while
greedy search needs 4582 queries and 115 seconds.
Others complex search methods even need far more
queries and time. It should be noted that PARSE
is more suitable for attacking long sentences as it
is less affected by the increased search space com-
pared to other complex search methods, while it
can still achieve competitive results when attacking
short sentences.

Comparisons under Different Search Space.
We replace the search methods while maintain-
ing the search space in TextBugger, BAE, and
DeepWordBug, then perform attacks on 500 ran-
domly picked examples from MR on three mod-
els. Table 3 shows the comparisons of different
search methods. Genetic and PSO are excluded
for their low efficiency (especially on DistilBERT).
PARSE (w = 8) always achieves comparable at-
tack success rates to complex methods while gen-
erally needing fewer queries and time, indicating
that PARSE can be effectively applied to different
search space.

Quality of Crafted Example. We measure the
quality of the adversarial examples crafted by dif-
ferent search methods by attacking LSTM on MR
in HowNet. We use the LanguageTool1 to detect
the grammar correctness and use the Universal Sen-
tence Encoder (USE) (Cer et al., 2018) to measure
the semantic similarity of 500 randomly picked
successfully attacked examples and the original ex-
amples. We also conduct human evaluations on
Amazon Mechanical Turk2 by asking the workers

1https://languagetool.org/
2https://www.mturk.com/

https://languagetool.org/
https://www.mturk.com/
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Yelp MR

GloVe HowNet GloVe HowNet

Model Search Method A.S% #Queries Time (s) A.S% #Queries Time (s) A.S% #Queries Time (s) A.S% #Queries Time (s)

LSTM

Random 87.45 305 5196 88.81 209 2955 66.58 64 856 60.54 38 483
TIWO 86.64 237 4118 86.13 159 2221 72.73 61 877 65.14 38 266

WIR-Delete 94.38 283 1803 94.19 233 986 80.84 69 684 71.38 51 286
WIR-A 94.31 254 1721 94.88 216 969 81.13 69 673 71.35 52 284

WIR-UNK 94.82 268 1787 94.87 221 971 81.45 68 671 72.47 52 257

PARSE(w = 1) 96.47 480 2955 95.79 390 1525 83.38 73 680 74.23 73 302
PARSE(w = 2) 97.31 568 4351 97.94 496 2650 84.87 98 683 77.76 81 397
PARSE(w = 4) 97.81 899 4614 98.12 782 3774 87.18 149 907 78.68 113 542
PARSE(w = 8) 98.64 1839 7736 98.37 1189 4129 88.11 223 1341 80.38 159 688

Greedy 98.92 5786 85 763 98.33 2953 28 029 88.85 489 5288 81.72 253 1427
Beam(w = 4) 99.37 14 271 177 167 98.54 6516 62 391 90.18 735 7539 82.17 368 2647
Beam(w = 8) 99.54 25 311 458 740 98.97 11 979 100 524 90.93 1088 9399 83.71 566 5473

Genetic 99.28 10 197 142 847 98.73 7991 97 482 93.74 3144 23 660 88.41 2579 11 232
PSO ≈ 224 / 1 week 99.17 38 749 317 175 89.90 3101 14 780 85.27 2458 6272

TextCNN

Random 79.12 399 8061 83.02 252 3503 62.98 65 1250 57.04 46 349
TIWO 79.23 303 5160 82.31 191 1802 56.28 68 1149 54.19 48 530

WIR-Delete 93.89 286 1957 91.64 234 1289 79.48 75 936 68.54 55 400
WIR-A 94.68 267 1871 91.82 225 1347 78.32 73 925 69.71 53 424

WIR-UNK 94.05 269 1845 91.79 221 1325 79.93 79 941 69.25 53 401

PARSE(w = 1) 95.73 482 3055 93.23 378 1568 81.14 103 991 70.78 81 574
PARSE(w = 2) 96.56 595 4482 93.38 472 2031 85.12 118 1036 73.02 95 724
PARSE(w = 4) 96.95 838 5285 94.14 620 4670 86.96 185 1321 75.29 137 1119
PARSE(w = 8) 97.26 1629 8619 96.80 1065 5665 87.93 278 2579 76.31 193 1342

Greedy 96.54 6264 89 001 96.38 3327 27 494 88.61 532 5591 77.67 287 1935
Beam(w = 4) 97.03 18 165 258 647 96.99 10 159 85 087 91.22 903 11 022 80.59 452 2730
Beam(w = 8) ≈ 287 / 1 week 97.84 18 327 211 399 93.47 1581 14 857 81.34 807 5918

Genetic 96.98 13 678 168 335 97.13 13 469 136 602 95.34 3387 33 867 88.37 2918 14 455
PSO ≈ 168 / 1 week 98.51 51 341 402 452 92.25 4397 37 755 83.85 3081 7452

Table 2: The comparisons on attack success rate (A.S%), average #queries to attack one example (#Queries), and
total seconds to attack 500 examples (Time) of different search methods. ≈ n / 1 week means the attack fails to
complete in 1 week, and n is the number of the completed attacks.

LSTM TextCNN DistilBERT
A.S% #Que. Time A.S% #Que. Time A.S% #Que. Time

TextBugger (WIR-Delete) 78.44 48 29 78.86 48 28 69.84 51 107
w/ PARSE(w = 1) 79.73 65 33 81.34 65 29 75.24 66 112
w/ PARSE(w = 2) 83.81 79 39 84.99 78 38 78.18 95 157
w/ PARSE(w = 4) 84.65 97 56 86.88 113 53 80.74 132 213
w/ PARSE(w = 8) 87.53 138 78 87.23 168 81 81.05 218 335

w/ Greedy 86.73 227 89 86.35 243 91 83.74 312 436
w/ Beam(w = 4) 89.69 509 167 91.42 554 180 85.51 616 901
w/ Beam(w = 8) 90.89 819 273 91.74 855 319 87.23 1185 1637

BAE (WIR-Delete) 72.13 56 627 67.57 58 799 63.80 58 830
w/ PARSE(w = 1) 73.15 72 821 71.89 73 903 65.95 77 1011
w/ PARSE(w = 2) 74.43 89 970 72.87 92 1157 68.56 95 1248
w/ PARSE(w = 4) 74.63 108 1739 74.16 107 1971 70.34 125 2072
w/ PARSE(w = 8) 76.06 162 2758 74.88 169 2992 71.21 198 3228

w/ Greedy 77.39 229 3221 75.06 224 3719 71.33 234 4041
w/ Beam(w = 4) 79.98 384 5976 76.64 389 6731 75.50 395 7072
w/ Beam(w = 8) 80.65 494 10 679 78.92 568 12 493 76.32 642 12 929

DeepWordBug (WIR-Delete) 83.21 30 18 86.91 33 11 77.32 36 86
w/ PARSE(w = 1) 84.31 50 20 88.38 51 12 78.71 51 98
w/ PARSE(w = 2) 84.57 62 23 88.98 57 16 80.18 63 115
w/ PARSE(w = 4) 87.21 80 26 91.06 81 21 81.88 94 162
w/ PARSE(w = 8) 89.30 96 31 93.56 98 26 83.76 115 187

w/ Greedy 89.12 115 32 93.87 124 31 85.93 142 203
w/ Beam(w = 4) 92.20 254 58 95.56 249 48 91.32 179 419
w/ Beam(w = 8) 93.22 431 87 96.07 416 79 92.31 518 771

Table 3: Performance of different search methods when
searching on the search space of previous frameworks.
The original attacks use WIR-Delete as search method.

to give scores from 1 (best) to 5 (worse) to indicate
the Plausibility of 100 adversarial examples and
100 randomly picked normal examples. Table 4
shows the results on the quality of the generated ad-
versarial examples. PARSE effectively reduces the
increased grammar errors by increasing the search

Search method
#Increased USE

grammar errors similarity Perturbed% Plausibility

Normal - - - 3.15

Random 0.094 0.881 11.69 3.68
TIWO 0.063 0.893 10.72 3.51

WIR-Delete 0.101 0.894 10.05 3.46
WIR-A 0.104 0.896 10.01 3.45

WIR-UNK 0.097 0.897 9.95 3.45

PARSE(w = 1) 0.093 0.897 9.52 3.43
PARSE(w = 2) 0.091 0.897 9.59 3.42
PARSE(w = 4) 0.083 0.895 9.69 3.42
PARSE(w = 8) 0.077 0.895 9.76 3.39

Greedy 0.064 0.905 8.79 3.35
Beam(w = 4) 0.079 0.907 8.68 3.36
Beam(w = 8) 0.082 0.909 8.53 3.36

Genetic 0.074 0.880 11.21 3.37
PSO 0.089 0.896 10.18 3.35

Table 4: Quality of the adversarial examples crafted by
different search methods.

width w, while a larger w will increase the gram-
mar errors of the example crafted by beam search.
The effect of PARSE on maintaining the USE simi-
larity of sentences is similar to WIR and PSO meth-
ods and is just relatively 1.32% worse than greedy
search and beam search. PARSE perturbs fewer
words than WIR methods and only needs an aver-
age of 1.02% more perturbed words than greedy
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Figure 3: The comparisons of the #queries and time needed by different search methods to attack the adversarially
trained models. Line plot correspond to the axis of the same color. Bar plot indicates the accuracy under attack.
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Figure 4: The comparison of the transferability of ad-
versarial examples crafted by different search methods.

search and beam search. The results on plausibility
show that PARSE with larger w generates more
human-understandable adversarial examples. The
case study is shown in Table 6-12 in Appendix.

Adversarial Training and Model Robustness.
We randomly generate 1000 adversarial examples
by attacking LSTM on MR in HowNet with differ-
ent search methods, and then adversarially retrains
the LSTM with the generated adversarial examples.
Figure 3 shows the results on model robustness and
attack performance. The model trained with the
adversarial examples crafted by PARSE (w = 8)
has the highest average accuracy, indicating that
PARSE (w = 8) outperforms other methods in im-
proving model robustness. PARSE is effective and
efficient even when attacking robust models.

Transferability. We randomly generate 1000 ad-
versarial examples with different search methods
on MR in HowNet. Figure 4 shows the result of
transferability between LSTM and TextCNN. In-
creasing the beam width w in PARSE helps gener-
ate adversarial examples with higher transferability.
When w = 8, the transferability of adversarial ex-

#Increased USE
A.S% grammar errors similarity Perturbed%

PARSE (w = 1) 74.23 0.093 0.897 9.52
w/o Word Stability 72.47 0.097 0.897 9.95

PARSE (w = 2) 77.76 0.091 0.897 9.59
w/o Word Stability 74.45 0.095 0.894 10.05

PARSE (w = 4) 78.68 0.083 0.895 9.69
w/o Word Stability 76.74 0.096 0.893 10.12

PARSE (w = 8) 80.38 0.077 0.895 9.76
w/o Word Stability 77.23 0.101 0.892 10.45

Table 5: Influence of parameter w and word stability.
w/o word stability means the search method does not
make a distinction between the words of different sta-
bility, and PARSE (w = 1) w/o Word Stability equals
to WIR-UNK method.

amples crafted by PARSE outperforms all baselines
except beam search.

Ablation Study. Table 5 shows the influence of
word stability when attacking LSTM on 500 exam-
ples from MR in HowNet. We find that changing
the search space according to the word stability
increases the attack success rate and helps generate
adversarial examples with fewer grammar errors,
higher USE similarity, and fewer perturbed words.

5 Conclusion

This paper proposes PARSE, an efficient search
method for black-box adversarial text attacks,
which performs search under dynamic search space
following the subarea importance. PARSE can
achieve comparable attack success rates to complex
search methods while saving numerous queries and
time. The adversarial examples crafted by PARSE
are high quality and highly transferable. We hope
the analysis in our paper will inspire future work.
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A Appendix

Additional Details on Model
The TextCNN has a 300-dimensional GloVe em-
bedding layer (Pennington et al., 2014), a con-
volutional layer containing 150 filters with win-
dows sizes (3, 4, 5). The LSTM also has a 300-
dimensional GloVe embedding layer and a bi-
directional LSTM layer composed of 150 units.
We use the distilbert-base-uncased as Distil-
BERT (Sanh et al., 2019), which is a fast Trans-
former model with 40% fewer parameters than
BERT. The model used in Table 2 and Table 3 have
the accuracy on clean dataset as follow: (LSTM,
Yelp: 92.1%; LSTM, MR: 80.3%; TextCNN, Yelp:
91.4%; TextCNN, MR: 79.2%; DistilBERT, MR:
83.9%). Under our setting, attacking a base un-
cased version of BERT takes approximately 4 times
as long as attacking a base uncased version of
DistilBERT, and the beam search (w = 4), beam
search (w = 8), Genetic algorithm, and PSO fails
to attack 500 examples within one week when at-
tacking the examples from Yelp on GloVe search
space.

Additional Case Study
We give the case study of the adversarial examples
crafted with PARSE in Table 6-12. The green word
is the original word, and the following red word is
the substitution.

Method Perturbed Texts

PARSE(w = 1)
There is a general air vent of
exuberance ardour in all about the
benjamins that’s hard to resist.

PARSE(w = 2)
There is a general air notification of
exuberance fervor in all about the
benjamins that’s hard to resist.

PARSE(w = 4)
There is a general air propaganda
of exuberance eagerness in all about
the benjamins that’s hard to resist.

PARSE(w = 8)
There is a general air propaganda
of exuberance eagerness in all about
the benjamins that’s hard to resist.

Table 6: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.

Method Perturbed Texts

PARSE(w = 1)

Kids should have a stirring time at this
beautifully prettily drawn movie car-
toon. And adults will at least have a
dream image of the west to savor taste
whenever the film’s lamer instincts are
in the saddle.

PARSE(w = 2)

Kids should have a stirring time at this
beautifully prettily drawn movie car-
toon. And adults will at least have a
dream image of the west to savor taste
whenever the film’s lamer instincts are
in the saddle.

PARSE(w = 4)

Kids should have a stirring time at this
beautifully pretty drawn movie cartoon.
And adults will at least have a dream
image of the west to savor taste when-
ever the film’s lamer instincts are in the
saddle.

PARSE(w = 8)

Kids should have a stirring time at this
beautifully wonderfully drawn movie
cartoon. And adults will at least have a
dream image of the west to savor taste
whenever the film’s lamer instincts are
in the saddle.

Table 7: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.

Method Perturbed Texts

PARSE(w = 1)

It’s dark but has wonderfully bizarrely
funny recreational moments; you care
about the characters; and the action and
special effects are first-rate.

PARSE(w = 2)

It’s dark but has wonderfully bizarrely
funny recreational moments; you care
about the characters; and the action and
special effects are first-rate.

PARSE(w = 4)

It’s dark but has wonderfully bizarrely
funny recreational moments; you care
about the characters; and the action and
special effects are first-rate.

PARSE(w = 8)

It’s dark but has wonderfully suspi-
ciously funny recreational moments;
you care about the characters; and the
action and special effects are first-rate.

Table 8: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.
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Method Perturbed Texts

PARSE(w = 1)

In the director’s cut, the film is not
only a love song to the movies but it
also is more fully an example of the
kind of lush, all-enveloping movie
experience aftertaste it rhapsodizes
talks.

PARSE(w = 2)

In the director’s cut, the film is not
only a love song to the movies but it
also is more fully an example of the
kind of lush, all-enveloping movie
experience aftertaste it rhapsodizes
talks.

PARSE(w = 4)

In the director’s cut, the film is not
only a love song to the movies but it
also is more fully an example of the
kind of lush, all-enveloping movie
experience aftertaste it rhapsodizes
lectures.

PARSE(w = 8)

In the director’s cut, the film is not
only a love song to the movies but it
also is more fully an example of the
kind of lush, all-enveloping movie
experience aftertaste it rhapsodizes
lectures.

Table 9: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.

Method Perturbed Texts

PARSE(w = 1)

A smart brainy and funny ridiculous, al-
beit sometimes superficial, cautionary
tale narration of a technology tech in
search of an artist.

PARSE(w = 2)

A smart brainy and funny ridiculous, al-
beit sometimes superficial, cautionary
tale narration of a technology tech in
search of an artist.

PARSE(w = 4)

A smart brainy and funny ridiculous, al-
beit sometimes superficial, cautionary
tale narration of a technology tech in
search of an artist.

PARSE(w = 8)

A smart brainy and funny laughable, al-
beit sometimes superficial, cautionary
tale story of a technology tech in search
of an artist.

Table 10: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.

Method Perturbed Texts

PARSE(w = 1)

The wonderfully curiously lush drunk
morvern callar is pure punk existential-
ism, and ms. ramsay and her co-writer,
liana dognini, have dramatized the alan
warner novel, which itself felt like an
answer to irvine welsh’s book trainspot-
ting.

PARSE(w = 2)

The wonderfully curiously lush drunk
morvern callar is pure punk existential-
ism, and ms. ramsay and her co-writer,
liana dognini, have dramatized the alan
warner novel, which itself felt like an
answer to irvine welsh’s book trainspot-
ting.

PARSE(w = 4)

The wonderfully curiously lush drunk
morvern callar is pure punk existential-
ism, and ms. ramsay and her co-writer,
liana dognini, have dramatized the alan
warner novel, which itself felt like an
answer to irvine welsh’s book trainspot-
ting.

PARSE(w = 8)

The wonderfully singularly lush drunk
morvern callar is pure punk existential-
ism, and ms. ramsay and her co-writer,
liana dognini, have dramatized the alan
warner novel, which itself felt like an
answer to irvine welsh’s book trainspot-
ting.

Table 11: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.

Method Perturbed Texts

PARSE(w = 1)
The film is hard to dismiss – moody,
thoughtful, and lit fainted by flashes
blazes of mordant humor animation.

PARSE(w = 2)
The film is hard to dismiss – moody,
thoughtful, and lit fainted by flashes
blazes of mordant humor animation.

PARSE(w = 4)
The film is hard to dismiss – moody
listless, thoughtful, and lit by flashes
winks of mordant humor animation.

PARSE(w = 8)
The film is hard to dismiss – moody
listless, thoughtful, and lit by flashes
blazes of mordant humor vividness.

Table 12: The case study of the adversarial exam-
ples crafted by attacking LSTM on the MR dataset in
HowNet search space with PARSE.


