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Abstract

Diagnosis prediction on admission notes is a
core clinical task. However, these notes may in-
completely describe the patient. Also, clinical
language models may suffer from idiosyncratic
language or imbalanced vocabulary for describ-
ing diseases or symptoms. We tackle the task
of diagnosis prediction, which consists of pre-
dicting future patient diagnoses from clinical
texts at the time of admission. We improve
the performance on this task by introducing
an additional signal from support sets of diag-
nostic codes from prior admissions or as they
emerge during differential diagnosis. To en-
hance the robustness of diagnosis prediction
methods, we propose to augment clinical text
with potentially complementary set data from
diagnosis codes from previous patient visits
or from codes that emerge from the current
admission as they become available through
diagnostics. We discuss novel attention net-
work architectures and augmentation strategies
to solve this problem. Our experiments reveal
that support sets improve the performance dras-
tically to predict less common diagnosis codes.
Our approach clearly outperforms the previous
state-of-the-art PubMedBERT baseline by up
3% points. Furthermore, we find that support
sets drastically improve the performance for
pregnancy- and gynecology-related diagnoses
up to 32.9 % points compared to the baseline.

1 Introduction

Pre-trained large language models such as Clini-
calBERT (Alsentzer et al., 2019) or PubMedBERT
(Gu et al., 2021) are commonly used in the medical
domain to predict diagnoses from admission notes
(Hashir and Sawhney, 2020; Sushil et al., 2018a;
van Aken et al., 2021). Admission and discharge
notes are valuable information sources about doc-
tors’ decisions about patients and the outcomes.
However, the vocabulary in these notes is often
insufficient to describe the patients’ clinical pheno-
type fully. Also, clinical text frequently contains

idiosyncratic vocabulary, uncommon abbreviations
and differs from clinic to clinic in writing style.
Moreover, evidence for clinical diseases in the text
is imbalanced. In particular for less common or
even rare diseases (see also Figure 1) not much text
evidence exists. Finally, pre-trained language mod-
els can suffer from limited access to training data
because of silos or data-privacy concerns. These
factors can lead to poor performance in predicting
outcomes on clinical text with pre-trained language
models.

Multimodal Patient Representation. Miotto
et al. (2016) and Topol (2019) therefore propose to
augment text with potential complementary multi-
modal data into a reusable deep patient represen-
tation to improve clinical prediction tasks. For
example, recent work surveys to augment text with
image data (Esteva et al., 2021), with complemen-
tary medical text books (van Aken et al., 2021),
ontologies (Cai et al., 2020) or time series data
(Yang and Wu, 2021).

Improving predictions with text and set data.
A particularly powerful source to augment clinical
text are sets of diagnosis codes from previous vis-
its of the patient or upcoming hypotheses of the
treating physician during the patients’ treatment.
For example, a patient in an ICU scenario receives
on average a set of more than ten diagnosis codes
at discharge time, see also Table 2. These sets
match a patients’ previous state against a common
ontology, such as ICD or CCS medical nomencla-
ture. Therefore, these sets are a rich and potentially
complementary knowledge source for a patient rep-
resentation. To our best knowledge this is the first
work on augmenting clinical text for diagnosis pre-
diction with such sets. Figure 2 illustrates this
novel task in detail: Given is the admission note
containing details on chief complaints, present ill-
ness, medication, physical examination and family
or social history. In addition, the system receives a
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support set of additional diagnosis codes observed
for this patient in the past or during the current
treatment. Given both inputs, the final task is to
predict the likely diagnostic outcome for the patient
at discharge time.
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Figure 1: The distribution of CCS labels of the full
dataset. The top 13 codes form the short head of the
distribution. The middle tail is 30 codes wide, while the
remaining 237 codes form the long tail.

Contribution. Augmenting text with set data is a
complex knowledge integration problem. Ideally, a
multi-modal representation from both, text and set
data, is much more powerful for large multi-label
classification tasks, such as diagnosis prediction,
than each knowledge representation on its own. For
solving this problem, our major contributions are:
(1) We represent text and set data in two different
latent vector spaces. This also includes investigat-
ing different sampling methods of set elements for
learning embeddings during training. Optionally,
we enrich disease codes in sets with additional tex-
tual information from UMLS, a medical ontology,
and Wikidata. (2) We propose three different novel
network architectures for augmenting knowledge
from text with set data, including pooled- and full
text attention as well as a dual stack encoder. (3) In
a rigid experimental setting, we compare these ar-
chitectures against each other and two strong base-
lines. We also report prediction results in particular
for infrequent diseases on the MIMIC-III data set
with approximately 60.000 admissions and more
than 2 million clinical notes. The remainder of this
paper is structured as follows: We review related
work in Section 2. In Section 3, we explore task
and data set characteristics, from which we justify
in Section 4 our novel network architecture design.
Section 5 reports our quantitative evaluation, fol-
lowed by result discussion and an error analysis in
Section 6. Finally, we conclude in Section 7.

2 Related Work

There is a large amount of work focusing on diag-
nosis prediction from EHR data, especially clinical

codes. Furthermore, there is an increasing empha-
sis on incorporating text or multi-modal data from
clinical notes. We distinguish ourselves, particu-
larly from work in ICD coding, since only infor-
mation at the time of admission is used for our
considered tasks. ICD coding, on the other hand,
uses all data available at discharge time.

Diagnosis prediction on codes. Choi et al.
(2016) use a reverse time attention mechanism on
the diagnosis and procedure codes of the patients’
history for the task of heart failure prediction. Ma
et al. (2017) use a bidirectional recurrent neural net-
work (RNN) on the diagnosis and procedure codes
of the patients’ history to predict diagnosis codes
for the next admission. Later they apply graph-
based attention to incorporate the knowledge of
a medical knowledge graph to learn medical rep-
resentations (Ma et al., 2018). Peng et al. (2020)
use a self-attention mechanism on the diagnosis
codes to capture contextual and temporal relations
within the patients’ journey to predict the second
hierarchy of the ICD-9 codes.

Clinical text for diagnosis prediction. Boag
et al. (2018) evaluate the usefulness of different
simple text representations for diagnosis predic-
tion and show that the text itself contains valuable
information. Sushil et al. (2018b) use stacked de-
noising autoencoders combined with a paragraph
vector model to learn patient representations. van
Aken et al. (2021) simulate patients at admission
time by only using parts of the textual descrip-
tions known at admission time, such as "Chief com-
plaint" or "Medical history". Winter et al. (2022)
apply knowledge graphs to retrain and instill at-
tention heads with complementary structured do-
main knowledge for clinical outcome prediction
from text. Papaioannou et al. (2022) seek to embed
complementary knowledge to increase the perfor-
mance on low resource languages by consecutive
fine-tuning of multi-lingual models.

Multimodal diagnosis prediction. Lipton et al.
(2016) use an LSTM architecture on 13 time-series
variables like blood pressure or heart rate. Liu
et al. (2018) use free, unstructured text from medi-
cal notes and structured clinical information such
as numerical lab and vital sign values to predict a
small set of specific chronic diseases. Qiao et al.
(2019) use RNNs and attention to mix code- and
text features for readmission diagnosis prediction
from prior admissions. In contrast to the aforemen-
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49 - Diabetes mellitus without complication 
53 - Disorders of lipid metabolism 
84 - Headache; including migraine 
98 - Essential hypertension 
106 - Cardiac dysrhythmias 
109 - Acute cerebrovascular disease 
257 - Other aftercare 

CHIEF COMPLAINT: Headaches

PRESENT ILLNESS: 58yo man w/ hx of hypertension, AFib on
coumadin presented to ED with the worst headache of his life.
Brother reports states that patient has been complaining of
headache for 2 days and that the patient has lost
consciousness. He had a syncopal episode and was intubated by
EMS. 

MEDICATION ON ADMISSION: 1mg IV ativan x 1, metformin

PHYSICAL EXAM: Vitals: P: 92 R: 14 BP: 151/78 SaO2: 99%
intubated. Cardiac: RRR. GCS  E: 3   V:2  M:5 HEENT:
atraumatic, normocephalic Pupils: 4-3mm. Abd: Soft, BS+ Extrem:
Warm and well-perfused.

FAMILY HISTORY: Mother had stroke at age 82. Father unknown.

SOCIAL HISTORY: Lives with wife. 25py. No EtOH

1. 84 - Headache; including migraine
2. 98 - Essential hypertension
3. 106 - Cardiac dysrhythmias

Admission Note Support Set

Support Set Augmenting Transformer Architecture

Target Labels

Figure 2: Illustration of the set-augmented diagnosis prediction task: Given an admission note and an optional
support set of diagnosis codes, our architecture aims to predict the diagnostic outcome for the patient at discharge
time. Our basic observation is that the text data is only partially representing the patient, might be noisy and
diagnostic codes can complement observations from the clinical text. Combining information from both sides will
lead to improved understanding of a latent model towards clinical health conditions.

tioned approaches, we aim to model interdepen-
dencies between diagnostic codes and mix them
with state-of-the-art text representations of clinical
admission notes. Further, we seek to implement an
interactive system that allows verifying hypothe-
ses by systematically adding or removing diagnos-
tic codes in combination with a current admission
note.

Distinction from previous work. In contrast to
the aforementioned approaches, we aim to model
interdependencies between diagnostic codes and
mix them with state-of-the-art text representations
of clinical admission notes. Further, we seek to
implement an interactive system that allows verify-
ing hypotheses by systematically adding or remov-
ing diagnostic codes in combination with a current
admission note. Our model does not rely on the
existence of codes but instead uses them as they
become available during a diagnostic process or
through prior admissions to refine the classification
result. Up to our knowledge, there is only related
work that uses RNNs / LSTMs (Qiao et al., 2019)
for representing the set embeddings. Modeling the
set embeddings with RNNs is problematic because
they introduce temporal dependencies between the
diagnosis code inputs. In consequence, they treat
the diagnosis code sets as a sequence. Most of the
time, those temporal dependencies are not reflected
in the available data.

3 Tasks and Datasets

In the following section, we introduce the tasks of
diagnosis and readmission diagnosis prediction and
describe our medical dataset.

Prediction from clinical text and diagnosis sets.
Following van Aken et al. (2021), our model aims
to predict diagnostic codes assigned to a patients’
admission after their discharge with the constraint
of using only information available at admission
time 1. In addition, we allow the model to lever-
age an optional set of support codes to refine the
classification process. In the real-world use of
our model, these supporting codes would originate
from a doctors’ hypotheses, evident diagnoses or
from a diagnosis of a doctor outside the clinic the
patient has visited before, such as the family doc-
tor. Formally, our training data consists of a set
of admissions A where Ai = (Ti, Si, Ci), Ai ∈ A.
Ti = (t1, . . . , tn) is the text of the admission note
with a sequence length of n tokens for a patient
at admission time. Ci ⊂ C is the prediction tar-
get of diagnostic codes from the label space C and
Si ⊂ Ci is the support set.

Readmission diagnosis prediction. We consider
the readmission diagnosis prediction task to fur-
ther simulate and evaluate a real-world diagnostic
process. In contrast to the diagnosis prediction
task, the support set Si ⊂ Ci−1 consists of the
diagnoses of the last clinical admission Ci−1 of

1https://github.com/bvanaken/clinical-outcome-
prediction

https://github.com/bvanaken/clinical-outcome-prediction
https://github.com/bvanaken/clinical-outcome-prediction


4768

the same patient from the patients’ journey that
consists of m admissions P = {A0p , . . . , Amp},
where Ai = (Ti, Si, Ci). Ti is the admission note
and Ci ⊂ C is the set of diagnostic codes. The
motivation behind this is to integrate prior knowl-
edge about the patient from his former admissions
at the same hospital. As an additional difficulty,
the model must compensate at this point for the
fact that the codes from the previous admission
are not necessarily supporting the diagnosis predic-
tion, nor do the codes from the current admission
functionally depend on them.

Clinical admissions and discharge summaries.
We use the freely available Medical Information
Mart for Intensive Care v1.4 database (MIMIC-
III) (Johnson et al., 2016), containing de-identified
electronic health record data (EHR), including tex-
tual discharge summaries in English of the Beth
Israel Deaconess Medical Center in Massachusetts
between 2001 and 2012. Following van Aken
et al. (2021), we filter those textual discharge sum-
maries by sections known at admission time, like
"Chief complaint," "Medical history," or "Admis-
sion medications." The diagnostic codes associated
with those admissions are using the ICD-9-CM for-
mat. Since ICD-9-CM is a very fine-grained medi-
cal coding standard, we aggregate the label space
using the Clinical Classifications Software (CCS)
for ICD-9-CM 2, which merges similar ICD-9-CM
codes into a categorical group. Table 1 provides
an overview of the dataset statistics. We also use
MIMIC-III for the task of readmission diagnosis
prediction but focus only on patients with more
than one admission. Statistics about this subset are
shown in Table 2.

Total Train Val Test

Admissions 48741 33994 4918 9829

Min. tokens 28 29 31 28
Max. tokens 17034 17034 4039 3304
∅ Tokens 641 640 635 647

Min. diagnoses 1 1 1 1
Max. diagnoses 34 34 33 33
∅ diagnoses 10.41 10.40 10.32 10.50

Unique diagnoses 280 279 266 272

Table 1: Statistics of our dataset for the task of diagnosis
prediction. Very rare codes might appear only in one of
the three splits.

2https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

Total Train Test

Admissions 18785 13785 5000

∅ Diag. / patient 11.55 10.87 13.45
∅ New diag. / patient 8.03 7.58 9.28
∅ Lost diag. / patient 3.33 3.25 3.56
∅ Persistent diag. / patient 3.52 3.28 4.17

Unique diagnoses 270 268 256

Table 2: Statistics of our dataset for the task of read-
mission diagnosis prediction. On average, patients keep
3.52 of their previous diagnosis codes only. Between
two admission, a patient no longer shows symptoms for
an average of one-third of their previously annotated
diagnosis codes.

4 Models

Augmenting text with set embeddings. For the
task of set-augmented diagnosis prediction, we re-
quire a network architecture that is able to combine
two possibly complementary information sources
from different modalities: Clinical text from ad-
mission notes and sets of diagnosis codes. Also,
the architecture must be able to learn a meaningful
representation from a few examples without catas-
trophic forgetting in the underlying pre-trained lan-
guage model. The attention mechanism (Bahdanau
et al., 2015; Kim et al., 2017) allows the model to
base its decision on a fine granular selection of the
information in the two input spaces and to ignore
less important elements. Thus, it enables the model
to enrich the incomplete text representations with
knowledge from the support set.

4.1 Novel Architectures

We apply three different transformer-based archi-
tectures (s. Figure 3) to incorporate knowledge
from support sets to enhance the models’ predic-
tion. We preserve the permutation invariance of
the set of added codes by feeding them directly
into the transformer and omitting the positional en-
coding. Moreover, following (Devlin et al., 2019),
we add the special token [NULL] to every support
set. The [NULL] token also serves as an aggregate
representation for the support set.

Pooled Attention. In the pooled attention archi-
tecture (s. Figure 3) we use the last hidden state of
the [CLS] token as a pooling mechanism pool()
to aggregate the information from all tokens in the
text into a single embedding. With the pooled atten-
tion architecture, we aim to compress the admission
note into a meaningful single vector text representa-
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Figure 3: Support Set Augmentation Architectures with different levels of attention between text and support code
features showing the Pooled Attention, Full Text Attention and Dual Stack architecture from left to right.

tion that contains all necessary information to solve
the diagnosis prediction task. We project the text
Ti from admission Ai into an embedding G.

G = pool(BERT (Ti)) (1)

Furthermore, we apply attention between the
[CLS] token and the input code embeddings. We
use a transformer to learn shared features between
the elements in the support set. Typically, the at-
tention mechanism uses a softmax function to nor-
malize the attention scores (Vaswani et al., 2017).
However, the softmax limits the information flow to
a single code embedding. Following Gülçehre et al.
(2019)‚ we replace the softmax function with a sig-
moid activation σ and define our cross attention
with queries Q, keys K and values V as follows:

Cross Attention = σ(QKT )V

Q = G ·WQ,K = G ·WK , V = D ·WV

(2)

We denote the admission note representation by Q
and K and the code representations by V and lin-
early transform them with learned weight matrices
WQ, WK and WV . The sigmoid function allows
information to flow between all code embeddings
and the admission note representation. Finally, we
use a skipthrough connection and concatenate the
output of the attention layer with the [CLS] repre-
sentation to minimize information loss and to avoid
catastrophic forgetting on the text encoder side.

Full Text Attention. With the full text attention
architecture, we aim to reduce the potential infor-
mation loss in the aggregation step in contrast to
the pooled attention model. The architecture ap-
plies softmax attention between all tokens of the

admission note and all codes in the support set. We
use an additional transformer on top of the attended
admission note tokens and use the resulting output
of the [CLS] token for the prediction step. In dis-
tinction to the pooled attention, we only add the
[NULL] token for empty support sets Si.

Dual Stack. Finally, we experiment with a less
complex and, compared to the full text attention
model, computationally more efficient dual stack
architecture that does not involve an attention
mechanism to mix the support set with the text
embedding. Instead, it consists of two independent
encoders: one for the admission note and one for
the support set. We use a BERT architecture as
the admission note encoder and train a multi-head
transformer for the support set representation. To
combine the information from both information
spaces, we concatenate the embeddings from both
encoders and feed them into the prediction layer.

Loss function. We optimize all models by min-
imizing the multi-label binary cross entropy loss
between the predictions p and the target labels y:

L = − 1

N

N∑
i=1

M∑
j=1

yijlog(pij) (3)

where M is the number of diagnosis codes and N
the number of admission notes.

4.2 Augmenting Codes with Ontologies

The diagnosis code distribution from Figure 1
shows that there are very few training samples for
codes from the long tail. This raises the concern
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that the model might not be able to learn a mean-
ingful representation for each code. We initialise
our diagnosis sets with additional textual informa-
tion about diagnosis codes from medical ontologies
to address this issue. We use three different data
sources: (1) We obtain the descriptive name for ev-
ery diagnostic code from the MIMIC-III database
and map it to the respective CCS code. In addi-
tion, (2) we use textual definitions from the Unified
Medical Language System (UMLS) 2021AB (Bo-
denreider, 2004), which provides comprehensive
full-text definitions for 22.1% of the diagnostic
codes present in our data. Furthermore (3), for
additional 4.7% of the codes we use descriptions
from the Wikidata knowledge graph.

4.3 Baselines

We compare our approaches against two powerful
baselines representing state-of-the-art approaches
to diagnosis prediction with either text or set data.

Baseline: PubMedBERT We compare our ap-
proach to a PubMedBERT(Gu et al., 2021) based
classifier which incorporates only textual informa-
tion from the admission note Ni. We use PubMed-
BERT instead of ClinicalBERT (Alsentzer et al.,
2019) because ClinicalBERT was pre-trained on
MIMIC-III notes and therefore already contains
knowledge from the discharge notes, leading to an
unfair advantage in the diagnosis prediction task
from admission notes only. We fine-tune the model
and use the last hidden state of the [CLS] token
to predict the diagnostic codes.

Baseline: Support Set Transformer This ar-
chitecture only incorporates knowledge from the
support set. We use the transformer based archi-
tecture from the dual stacks’ support set encoder
(s. Figure 3) and use only the support set Si from
the admission to predict the remaining annotated
diagnostic codes Ci. Similar to the dual stack ap-
proach, we aggregate the information of the input
set into a single embedding by adding a special
token [NULL].

4.4 Hyperparameter Setup

We use PubMedBERT (Gu et al., 2021) as a text
encoder for all text-related components of our ar-
chitecture such as the admission note encoder or the
ontology-knowledge augmented set encoder. We
use the Adam optimizer (Kingma and Ba, 2015)
with a weight decay of 0.01. Our code and hyper-

parameters are publicly available3. Furthermore,
we performed a hyperparameter optimization for
all architectures and also report details regarding
the tuned parameters in the appendix. To prevent
catastrophic forgetting in the pre-trained text en-
coder, we use a lower learning rate of 2e-5 for the
weights of the BERT model. Due to the sequence
length limitation of PubMedBERT, we truncate all
admission notes to 512 tokens. We use a code
embedding ∈ R768. The transformer in the full
text attention model consists of four layers with
two attention heads each. The dual stack model
uses a transformer composed of one attention layer
with 12 heads. We sample three annotated codes
from the admission note for the diagnosis predic-
tion task, which produced optimal results during
training based on our HPO. In the readmission task
we use all codes from the previous admission or
the [NULL] token for the first admission.

5 Evaluation

Metrics. We measure the performance of our
experiments in macro averaged AUROC (area un-
der the receiver operating characteristic curve) and
mAP (mean average precision). Because the sup-
plied support set Si in the diagnosis prediction task
is part of the target label space Si ⊂ Ci, it provides
the support set augmented architectures an unfair
advantage over the baselines to evaluate on codes
∈ Si. Therefore, we only evaluate our approach on
y = Ci \ Si to exclude the advantage of provided
codes and to avoid that codes from the support set
Si are determined as correct predictions.

5.1 Results
We report scores of our quantitative evaluation in
Table 3 and use a support set of five codes for the
diagnosis prediction task to augment the admis-
sion note. Set Embeddings denote the combined
representation of set and text data. Semantic Set
Embeddings contain codes enriched with ontology
knowledge as described in Section 4.2 and the ad-
mission notes’ text. In addition to mAP and AU-
ROC, we also report the standard error over five
runs for the diagnosis prediction task because it
involved random sampling to generate the support
sets.

Novel models outperform baselines. We report
that all of our approaches outperform the baselines,

3https://github.com/DATEXIS/
ClinicalSupportSetAugmentation

https://github.com/DATEXIS/ClinicalSupportSetAugmentation
https://github.com/DATEXIS/ClinicalSupportSetAugmentation
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Diagnosis Prediction Readmission Task
Model AUROC mAP AUROC mAP

Baselines Support Set Transformer 75.52 ±1.7e-3 30.51 ±5.6e-4 66.66 44.33
PubMedBERT 84.67 ±7.0e-4 47.39 ±7.8e-4 79.98 59.32

Set Embeddings
Full Text Attention 86.93 ±2.9e-4 49.12 ±9.2e-4 81.37 59.74

Pooled Attention 87.08 ±8.2e-4 48.96 ±6.0e-4 81.06 60.59
Dual Stack 87.10 ±7.0e-4 48.95 ±4.0e-4 81.01 60.54

Semantic Set Embeddings
Full Text Attention 87.24 ±1.0e-3 49.66 ±9.0e-4 81.03 59.61

Pooled Attention 87.21 ±7.3e-4 48.85 ±1.5e-4 80.95 59.00
Dual Stack 87.18 ±1.2e-3 48.67 ±2.4e-4 81.03 59.35

Table 3: Results on the diagnosis- and readmission diagnosis prediction task in macro averaged AUROC and mAP.
All of our proposed architectures outperform the baselines. The full text attention model with semantic initialization
of the diagnosis code embeddings performs best on the diagnosis prediction task. Semantic integration especially
helps the task of diagnosis prediction, while learned set embeddings perform better for the readmission task.

emphasizing our hypothesis that augmenting admis-
sion notes with support sets containing diagnostic
information helps. However, we observe that there
is little difference in the performance between our
proposed architectures. In general, the full text at-
tention model performs best. Using the text and
the support set in combination leads to an average
improvement of around 2-3 points in AUROC or
2.5 points in mAP compared to the PubMedBERT
baseline.

Minor gains with semantic set embeddings.
We observe a slight increase in performance by inte-
grating semantic knowledge (s. Table 3). However,
the co-occurrence of codes within the admissions
seems to have a much more substantial impact on
the final classification performance than the addi-
tional semantic information. This slight increase
indicates that the architecture can leverage the ad-
ditional information, but the semantics encoded in
the ICD names and UMLS definitions do not seem
to contain much complementary knowledge.

Rare and very frequent codes are most effective.
We analyze the impact of the diagnosis code fre-
quency on the prediction performance. We perform
ten evaluations with each three random sampled
codes in the support set, binned by frequency. We
measure the performance difference between our
model and the PubMedBERT baseline on the re-
maining codes and plot the standard error for those
observations (s. Figure 4). We observe that both
rare codes from the end of the long-tail and frequent
codes belonging to the second tertile improve the
prediction by almost five points in mAP. We hy-
pothesize that especially rare codes create a major
distinctive factor for a diagnosis where the machine
assigns a high weight. Contrary, obvious and fre-
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Figure 4: Performance difference between PubMed-
BERT and full text attention with support sets of size 1,
3, and 5 codes across different frequency bins.

quent diagnoses may create a bias and thus have
the highest impact on the prediction. The smaller
increase in performance between frequency bins
50 to 250 indicates partial to non-existent comple-
mentarity between text and support set. In general,
the effect of diminishing performance difference
with decreasing frequency can be explained by few
training examples for the given code and thus an in-
sufficiently learned representation because MIMIC-
III primarily focuses on severely ill patients that
require life-saving measures at the ICU.

Random sampling for compensating imbalance.
The CCS label distribution follows a power-law
distribution pattern (s. Figure 1). To compensate
effects of such an imbalanced label distribution, we
evaluate random sampling vs. inverse frequency
weighted random sampling to create potentially
more balanced support sets during training. We find
that inverse frequency weighted random sampling,
in general, performs worse than random sampling
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|Si| 0-13 13-43 43-280

0 80.66 82.03 86.41
1 81.61 83.19 87.94
2 82.08 83.61 88.36
3 82.54 84.03 87.91

PubMedBERT 79.28 81.09 85.73

Table 4: Prediction performance over different code fre-
quencies measured in AUROC with different support set
sizes using random sampling and the full-text attention
model with set embeddings. Frequencies split in tertiles
(s. Figure 1) according to the code distribution in the
admission note dataset. The performance increases with
growing support set sizes |Si|.

that follows the label distribution in the training
data. We observe a difference in mAP of -0.3, -
1.8, and -1.3 points for the full text, pooled, and
dual stack architectures compared to training with
random sampling. Our explanation is that random
sampling focuses more on the short head of the
label distribution. Therefore, the model learns a
richer representation for codes that are more fre-
quent in the dataset and therefore provides better
support for common predictions (s. Figure 4).

Larger sets can be beneficial. Table 4 shows
that increasing the number of elements in the sup-
port set improves the performance for codes of all
frequencies. Especially in the range of the 25-50
most frequent codes (s. Figure 4), larger support
set sizes lead to the most performance improve-
ment. Finally, we observe that even with |Si| = 0,
our model outperforms the PubMedBERT base-
line, which indicates that the model stores valuable
information in the [NULL] token.

6 Discussion

Clever Hans problem for readmissions. Lan-
guage models often just learn effective shortcuts of
high dimensional data distributions instead of gen-
eralizing, which is called Clever Hans problem (La-
puschkin et al., 2019). We expect to find a variant
of the Clever Hans problem for the readmission di-
agnosis prediction task: Here, we expect the model
to learn the shortcut of copying codes from the
support set into the diagnosis predictions instead
of learning novel correlations from the potentially
complementary text data. Indeed, our model copies
in 78.1% of the test cases, on average, 2.12 codes
from the support set that are not in the target label
set. However, this is only a tiny fraction of the av-
erage of 13.45 codes in each support set (s. Table

2). This contradicts the Clever Hans problem and
empirically confirms the ability of our model to
ignore unrelated information from the support set
and, in those cases, to focus more on the admission
note.

Beneficial and non-beneficial codes. In our eval-
uation with clinical doctors we observe certain
codes that improve the prediction more than others.
We find that these codes are typically rare, such
as code 188 (s. Table 5), but improve the mAP
relative to PubMedBERT by more than 30 points.
Likewise, rare codes can also have a diminishing
effect on the prediction performance. We hypothe-
size that their representation is not well initialized
due to the lack of training examples. In Table 5, we
show the most helpful and most unhelpful codes
and their rank in the dataset. We find that 221 codes
improve the prediction by, on average, 3.02%. 51
codes decrease the prediction performance by, on
average, 2.29%.

CCS Code ∆mAP Rank
188 - Fetopelvic disproportion;
obstruction +32.9 269

187 - Malposition; malpresentation +25.8 259

191 - Polyhydramnios and other
problems of amniotic cavity +24.0 270

31 - Cancer of other male genital
organs +23.4 272

184 - Early or threatened labor +21.3 242

..

119 - Varicose veins of lower extrem-
ity

-05.2 234

218 - Liveborn -05.4 267

655 - Disorders usually diagnosed in
infancy, childhood, or adolescence -05.9 247

124 - Acute and chronic tonsillitis -09.6 257

177 - Spontaneous abortion -15.3 261

Table 5: Excerpt of all codes in the support set that have
the most effect on prediction performance compared to
PubMedBERT ranked by mAP difference. Codes from
the long tail have the highest impact on performance.

Additional set data can compensate problems
of language models with idiosyncratic language.
Commonly, large language models often have dif-
ficulties with domain-specific language (Liu et al.,
2020). For example, pregnancy is often encoded in
an idiosyncratic manner like "G2P1," which stands
for gravida 2 para 1, which means that this is the
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second pregnancy and the first one’s result was a
life-born child. Also, abbreviations such as "PNV"
for prenatal vitamins are usually the only indicator
of pregnancy. Often language models do not have
seen sufficient context information during training
to generalize from these words to infer higher-level
concepts. We analyze the effect of the most in-
fluential codes, from which 15 of 20 are either
pregnancy or gynecology related. We measure the
difference in rank with and without these codes
in the support set. Of all the codes that benefit
from adding these codes, 73.90% are pregnancy or
gynecology-related as well. Our results indicate
that adding pregnancy-related codes to the support
set helps the model recognize the concept of preg-
nancy and compensates for problems of idiosyn-
cratic language.

Future improvements. It is interesting to see if
graph neural networks can lead to improved rep-
resentation through updates of related codes. Fur-
thermore, it is possible to experiment with negative
examples of diagnostic codes and additional en-
codings to represent the time between two or more
admissions. Given the sparse training data situ-
ation presented in medical data silos, particular
focus should be applied to zero-shot or few-shot
cases, e.g., codes that occur the first time or are
rarely represented in prior admissions.

7 Conclusion

Augmenting text with set data is an important prob-
lem, in particular in the clinical domain with multi-
modal patient representations. To solve this prob-
lem, we propose novel attention-based network
architectures. Our results clearly show that in a
clinical prediction task, the augmented representa-
tion outperforms a language model, particularly for
predicting less common diseases. We also observe
that complementary data from sets can for com-
pensate shortcomings of language models, such as
idiosyncratic language or abbreviations.

8 Ethical Considerations

Models for diagnosis prediction based on clini-
cal admission notes can be a valuable component
of clinical decision support systems that aim to
assist medical professionals during their differen-
tial diagnosis. Hence, those models bear the po-
tential to save lives by preventing inexperienced
doctors from overlooking rare or unusual symp-
toms. They might as well save cost and reduce

the amount of time required for the diagnosis pro-
cess of medical professionals. However, admission
notes and billing codes such as ICD-9 are only a
very limited and biased perspective on the patient.
Admission notes leave out important diagnostics
performed during the patients’ stay. Furthermore,
billing codes are a suboptimal target label space.
They are used to obtain the maximum possible re-
imbursement for the cost of treatment. There is a
risk that patients will receive an excessive number
of codes and, therefore, might be over-coded. Like-
wise, under-coded patients may also occur. To de-
duce clinical outcome solely from admission notes
without having medical professionals perform an
iterative differential diagnosis process raises the
concern that certain very significant signals may
never be introduced to the model.
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