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Abstract

Nowadays, transformer-based models gradu-
ally become the “default choice” for artificial
intelligence pioneers. The models also show
superiority even in the few-shot scenarios. In
this paper, we revisit the classical methods and
propose a new few-shot alternative. Specif-
ically, we investigate the few-shot one-class
problem, which actually takes a known sample
as a reference to detect whether an unknown
instance belongs to the same class. This prob-
lem can be studied from the perspective of
sequence match. It is shown that with meta-
learning, the classical sequence match method,
i.e. Compare-Aggregate, significantly outper-
forms transformer ones. The classical approach
requires much less training cost. Furthermore,
we perform an empirical comparison between
two kinds of sequence match approaches under
simple fine-tuning and meta-learning. Meta-
learning causes the transformer models’ fea-
tures to have high-correlation dimensions. The
reason is closely related to the number of lay-
ers and heads of transformer models. Experi-
mental codes and data are available at https:
//github.com/hmt2014/FewOne.

1 Introduction

When the labeled data is scarce in practical appli-
cation, it is struggled to learn a well-performed
model using deep learning algorithms. Yet anno-
tating data costs much labor and time. Few-shot
learning (FSL) intuitively addresses this obstacle
(Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017; Finn et al., 2017; Sung et al., 2018). FSL
learns at the meta-task level, where each meta-task
is formulated as inferring queries with the help
of a support set (Vinyals et al., 2016). Multiple
meta-tasks facilitate the task-agnostic transferrable
knowledge. Thus it can learn new knowledge fast
after being taught only a few samples. Despite
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1) Might be a good place, but if you need customer 
support, good luck! 

2) Basic cable and wifi. 
3) This place was designed really well, too.

Support set

Query set

Reference: Class: hotel

1

?

1
0

?
?

This was the worst hotel in Vegas.

1) It was sold out due to there was the girls' basketball 
tournament taking place over the weekend. 

2) The service is wonderful and the hotel is amazing. 
3) Food was awesome and so was our waiter.

Figure 1: Meta-task example in few-shot one-class text
classification, where 1 denotes a positive instance and 0
denotes a negative one.

FSL has been well-studied, its one-class scenario
(Frikha et al., 2021) is less investigated.

In this paper, following the one-class trait, we
design each meta-task as a binary classification. It
consists of a reference instance, a support set, and
a query set (see Figure 1). The reference instance
is one known sample of a class, which is exploited
to tell whether an instance out of the support/query
set belongs to the same class. Such purpose is
consistent with sequence match, which also makes
a decision for two sequences. Previous sequence
match can mainly be categorized into two promis-
ing directions: classical methods, e.g. Siamese
Network (Koch et al., 2015), Compare-Aggregate
(CA) (Wang and Jiang, 2017), and transformer-
based method, e.g. DistilBert (Sanh et al., 2019),
BERT (Devlin et al., 2019).

In recent years, transformer models have already
beaten classical ones in a wide range of tasks (De-
vlin et al., 2019). We wonder how two kinds of
models perform under the few-shot one-class sce-
nario. Consequently, it is presented that with meta-
learning, classical sequence match method can sig-
nificantly outperform transformer-based models.
The classical models require much less training
cost. Specifically, model-agnostic meta-learning

https://github.com/hmt2014/FewOne
https://github.com/hmt2014/FewOne
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(MAML) algorithm (Finn et al., 2017) is a subtle
bi-level optimizing approach that aims to learn a
good parameter initialization. By introducing this
algorithm, classical methods act as simple but com-
petitive few-shot one-class learners.

Furthermore, we make an empirical comparison
between classical and transformer-based models
under simple fine-tuning and meta-learning. Firstly,
it is found that MAML has a more positive impact
on the both sequence match approaches than simple
fine-tuning. This suggests that a good parameter
initialization is important for both of them. Sec-
ondly, MAML tends to make transformer models
extract features with high-correlation dimensions.
The bi-level optimization might cause the feature
extraction layers of large models less trained. Yet
the last classifying layer tends to be better learned
relatively. We demonstrate that the high correlation
is related to the number of heads and layers in the
transformer.

In summary, our main contributions are as fol-
lows: (1) We present a simple but competitive
few-shot one-class learner, which is based on
the classical sequence match approach and meta-
learning. Extensive experimental results show that
this learner achieves significant improvements com-
pared with transformer-based models. This pro-
vides new insights in the transformer-dominant era.
(2) Based on the testbed provided by the above
approaches, an empirical study is made to further
reveal their underlining natures. New observations
and conclusions are derived.

2 Related Works

2.1 Few-Shot Learning

Few-shot learning (FSL) (Fei-Fei et al., 2006) deals
with the practical problem of data scarcity in an
intuitive way. It learns new knowledge fast with
limited supervised information. An early work
(Koch et al., 2015) learns to detect whether two
instances belong to the same class. Later, match-
ing network (Vinyals et al., 2016) proposes to con-
struct multiple meta-tasks in both the training and
testing procedures. This setting becomes main-
stream in the subsequent works, to name a few,
distance-based methods (Snell et al., 2017; Sung
et al., 2018; Garcia and Bruna, 2018; Bao et al.,
2020), optimization-based methods (Finn et al.,
2017; Munkhdalai and Yu, 2017) or hallucination-
based methods (Wang et al., 2018; Li et al., 2020).
Among them, MAML (Finn et al., 2017) is spe-

cial for “model-agnostic”, indicating that this algo-
rithm can be applied in any model. Therefore, we
choose to further study its effects. To the best of
our knowledge, it is seldom studied in transformer-
based models. We provide an interesting empirical
analysis in the experiments.

Recently, prompt-based fine-tuning (Gao et al.,
2021) also become popular in FSL. It classifies a
template-based instance through the masked lan-
guage model. This prediction manner bridges the
gap between pre-training and fine-tuning. Its ef-
fectiveness in the few-shot one-class scenario is
under-explored.

2.2 One-Class Few-Shot Learning
Recently some works discuss the one-class prob-
lem in FSL. Cumulative LEARning (CLEAR)
(Kozerawski and Turk, 2018) uses transfer learn-
ing to model the decision boundary of SVM. One-
way proto (OWP) (Kruspe, 2019) is based on the
prototypical network (Snell et al., 2017). OWP
computes the positive prototype by simply averag-
ing the representations of instances. It designs a
0-vector as the negative prototype. The Euclidean
distance with prototypes in the embedding space
indicates that an instance is positive or negative.
One-class MAML (Frikha et al., 2021) proposes
a simple data sampling strategy to ensure that the
class-imbalance rate of the inner-level matches the
test task. Different from them, we leverage the
unique direction in natural language processing, i.e.
sequence match, to study the one-class FSL.

2.3 Sequence Match
Sequence match aims to make a decision for two
sequences. Many tasks require to match sequences,
such as text entailment (Bowman et al., 2015), ma-
chine comprehension (Tapaswi et al., 2016), rec-
ommendation (Kraus and Feuerriegel, 2019), etc.
A straightforward approach is to encode each se-
quence as a vector and then compare the two vec-
tors to make a decision (Bowman et al., 2015;
Feng et al., 2015). However, a single vector is
insufficient to match the important information be-
tween two sequences. Thus attention mechanism
is adopted in this task (Rocktäschel et al., 2016).

Later, the Compare-Aggregate framework is pro-
posed (Wang and Jiang, 2017) for matching se-
quences, which has been widely studied. Its ex-
tended version usually considers the bidirectional
information of two inputs (Bian et al., 2017; Yoon
et al., 2019). One previous work (Ye and Ling,
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2019) shows that matching and aggregation are
effective in few-shot relation classification. We
explore this framework in the few-shot one-class
problem. More recently, pre-trained language mod-
els, e.g. BERT (Sanh et al., 2019) gain remarkable
achievements in many sequence match tasks (Wang
et al., 2020).

3 Methods

In this work, two kinds of sequence match methods,
including classical and transformer-based ones, are
mainly investigated. Compare-Aggregate (Wang
and Jiang, 2017) is a promising classical method.
We choose to study its extended version, i.e. Bidi-
rectional Compare-Aggregate (BiCA) (Bian et al.,
2017; Yoon et al., 2019), introduced in §3.2. The
transformer-based sequence match (Sanh et al.,
2019) is also presented in §3.3 briefly.

3.1 Problem Definition

Assume the training data Dtrain is composed of a
set of training classes Ctrain, and the testing data
Dtest has a set of classes Ctest, there are no over-
lapping between two class sets Ctrain ∩ Ctest = ∅.
During training, we randomly sample a bunch of
meta-tasks from Ctrain. A meta-task is made as a
binary classifier to detect one class, which is for-
mulated as below.

A meta-task contains a reference sentence r, a
support set S and a query set Q.

S = {(x1s, y1s), (x2s, y2s), ...(x|S|s , y|S|s )}
Q = {(x1q , y1q ), (x2q , y2q ), ...(x|Q|

q , y|Q|
q )}

(1)

where xs/xq is an instance and ys/yq denotes
whether this instance belongs to the same class as
the reference. |S| and |Q| indicate the number of in-
stances in two sets, respectively. Many meta-tasks
enable the model to extract task-agnostic knowl-
edge, which is beneficial to the meta-tasks from the
testing classes Ctest.

3.2 Classical Sequence Match

In this section, we will introduce the components of
Bidirectional Compare-Aggregate (BiCA) in detail.

Encoder Given an input sentence with L words,
denoted as {w1, w2, ..., wL}, it is first mapped into
an embedding sequence E = {e1, e2, ..., eL} by
looking up the pre-trained GloVe embeddings (Pen-
nington et al., 2014). Then the embedding se-
quence is processed by the gate mechanism (Wang

Reference instance An instance from  
support/query set

w1
r , w2

r , . . . , wL
r w1, w2, . . . , wL′ 

Hr H

Hr H

Encoder Encoder

Attention Attention

Bidirectional 
Comparison

Bidirectional 
Comparison

Aggregation Aggregation

Cr C

fr f
MLP

p

Figure 2: The network architecture of BiCA. The pa-
rameters are shared by two input instances.

and Jiang, 2017) to obtain contextualized informa-
tion. This gating mechanism aims at remember-
ing the meaningful words and filtering the less-
important words in a sentence.

H = σ(WiE+ bi)⊙tanh(WuE+ bu) (2)

where Wi and Wu are parameter matrix, bi and
bu are biases, ⊙ is element-wise multiplication.

Attention As depicted in Figure 2, the reference
and an instance from support/query set are fed into
the encoder, obtaining Hr and H. Then the inter-
action between two inputs is computed through an
attention mechanism.

Hr = Hr · softmax(Hr
TH)

H = H · softmax(HTHr)
(3)

This attention mechanism is non-parametric
since it only depends on the encoded representa-
tions Hr and H. Such design reduces the reliance
on parameters and focuses on learning the relation-
ships between data. Hence, this helps better adapt
to unseen classes.

Bidirectional Comparison To compare the two
instances, we adopt a simple word-level compari-
son function, i.e., element-wise multiplication ⊙.

Cr = Hr ⊙H C = H⊙Hr (4)

The comparison function is also non-parametric
for the purpose of adaptation. As shown in Figure
2, the encoded representations are applied in both
the attention and bidirectional comparison modules
to promote the mutual interaction of two inputs.
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Figure 3: Introducing meta-learning to sequence match approaches. The left part and the right part share the same
architecture but employ different parameters in the meta-learning. The five steps are corresponding to the Algorithm
1. After training, the optimal parameter initialization θ for the testing classes is obtained.

Aggregation Following the original work (Wang
and Jiang, 2017), the comparison representations
are aggregated by convolution neural network
(CNN) (Kim, 2014). The convolution kernel slides
over the comparison sequence to extract n-gram
features, which tends to be helpful in matching.

fr = CNN(Cr) f = CNN(C) (5)

where CNN(·) is a convolution operation followed
by max-pooling. Then the matching score is com-
puted with the aggregation representations of two
input sentences.

p = MLP([fr,f ]) (6)

where MLP is a single linear layer. p is a two-
dimensional logits output.

Loss The training objective of BiCA is the cross
entropy loss.

Lθ(r, S) = −
1

|S|
∑
|S|

logP (y|p) (7)

where y is the ground truth. θ represents all the
parameters in the sequence match model.

3.3 Transformer-Based Sequence Match
Transformer-based models, e.g. BERT (Devlin
et al., 2019) are pre-trained on a large-scale corpus,
serving as foundational backbones for a wide
range of natural language processing tasks. When
aiming at sequence match, BERT utilizes two
special tokens [CLS] and [SEP] to concatenate two
sequences as a whole. For the two input instances
shown in Figure 2, they are combined into
{[CLS], w1

r , w
2
r , ..., w

L
r , [SEP], w

1, w2, ..., wL′},
where the output of [CLS] is usually for classifica-
tion and [SEP] is for separating two inputs. This
combined sequence is then fed into BERT. The
self-attention mechanism (Vaswani et al., 2017)

Algorithm 1: Meta-Learning for Few-Shot
One-Class Problem
Input: Training data from Dtrain

1 Randomly initialize θ
2 repeat
3 Sample positive classes Cp and negative

classes Cn from Dtrain

4 Cp ∩ Cn = ∅
5 for all Cp do
6 Construct a meta-task
7 Evaluate∇θLθ(r, S) in Eq. (7)
8 Compute adapted parameters with

gradient descent:
θ
′
p = θ − α∇θLθ(r, S)

9 Update θ ← θ − β∇θ
∑

Cp Lθ′p(r,Q)

10 until performance on the validation data set
does not improve in 3 epochs.

in the transformer will compute the interaction
between two inputs. Finally, the output of the first
token [CLS] is adopted for inference. The training
objective is also computed by Eq. (7).

3.4 Meta-Learning for Sequence Match

In the few-shot one-class paradigm, a meta-task
from the unseen class has a few labeled instances
as the support set. To better leverage such knowl-
edge, we introduce meta-learning to sequence
match models, which is displayed in Figure 3 and
Algorithm 1. Specifically, model-agnostic meta-
learning (MAML) algorithm (Finn et al., 2017) is
chosen to investigate its impact on the sequence
match approaches. This algorithm learns a good
initialization of model parameters by maximizing
the sensitivity of the loss function when adapting
to new tasks (Song et al., 2020).
Construct a Meta-Task In Algorithm 1 (line
6), given a positive class, we first sample N + 1
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Train Validation Test

Class Num 64 16 20

Data Num single 13677 3394 4671
multi 26643 6686 7929

Data Num/Class single 213.7 212.1 233.5
multi 416.2 417.8 396.4

Table 1: Dataset statistics for ACD. single denotes
the single-aspect sentence and multi denotes the multi-
aspect one.

instances from this class, which constitutes a ref-
erence instance r and N positive ones. Moreover,
N negative examples are also sampled from the
negative classes Cn. These positive and negative
examples are mixed up randomly, which are further
divided into the support set and query set.

Meta-learning trains in a bi-level way (see Al-
gorithm 1), including the inner-level (line 8) and
the outer-level (line 9) for the support set S and
the query set Q, respectively. This way will cause
the gradients for updating parameters to propagate
through more layers (line 9), i.e. twice as many as
the number of network layers in a sequence match
model. Its special effects on the transformer mod-
els are further discussed in §4.4. When evaluating,
a model is initialized from the parameters θ trained
by MAML on the training classes, which is then op-
timized with the support set on the testing classes.

4 Experiments

4.1 Datasets

Aspect Category Detection (ACD) A dataset
for few-shot one-class ACD is collected from Yel-
pAspect (Bauman et al., 2017; Li et al., 2019),
which is a large-scale multi-domain dataset for
fine-grained sentiment analysis. The 100 aspect
categories are split without intersection into 64
classes for training, 16 classes for validation, and
20 classes for testing. Table 1 displays the statistics
of the dataset. The data in each class is further
divided according to the number of the aspects in a
sentence, into single-aspect and multi-aspect. Rela-
tively, a multi-aspect example contains more noise
when matching sequences. To explore a challeng-
ing scenario, the support/query set are both sam-
pled from the multi-aspect set. Fixing this setup,
we choose a reference instance as a single- and
multi-aspect one.

HuffPost It consists of news headlines published

in HuffPost between 2012 and 2018 (Misra, 2018).
Bao et al. (2020) process the original dataset for
few-shot text classification. The number of training,
validation, and testing classes are 20, 5, and 16,
respectively, where each class has 900 instances.
Since the sentences are headlines, they are shorter
and less grammatical.

4.2 Baseline Methods
Matching sequences at the vector-level:
SN (Koch et al., 2015) Siamese network can cap-
ture discriminative features to generalize the pre-
dictive power of the network. The input instances
are extracted into two vectors, which are compared
with cosine similarity.
OWP (Kruspe, 2019) One-way prototypical net-
work designs a 0-vector as the negative prototype.
It measures the Euclidean distance between an in-
stance with the positive/negative prototypes in the
embedding space.

Matching sequences at the word-level:
CA (Wang and Jiang, 2017) Compare-Aggregate
is widely used to match the important units between
sequences. It only compares in one direction, i.e.,
reference-to-candidate.
BiCA CA is enhanced into matching sequences
bidirectionally (§3.2).
DistilBert (Sanh et al., 2019) It is a distilled ver-
sion of BERT (§3.3).
BERT (Devlin et al., 2019) It is transformer-based
and matching sequences at word-level (§3.3).
BERT(p) (Gao et al., 2021) It trains BERT with
prompt-based learning. The two sequences are
concatenated with “?[MASK],” like Gao et al.. The
representation of [MASK] is mapped into word “yes”
or “no”, suggesting that two sequences belong to
the same class or not.

4.2.1 Implementation Details
Baseline methods are trained with naive training,
which learns the training classes in a meta-task
manner, but combines the support set and query
set as a whole to optimize parameters. +finetune
means that the naive trained models are fine-tuned.
+MAML indicates the models are optimized by
MAML (Algorithm 1). During the evaluation,
+finetune or +MAML exploit the support set of
testing classes in the same way, with the same num-
ber of updating steps and learning rate. Thus the
only difference between +finetune and +MAML is
the parameters are initialized by naive training or
MAML training. All testing meta-tasks share the
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Model Use support Match Type ACD Single ACD Multi HuffPost
set of Dtest vector word Acc F1 Acc F1 Acc F1

SN No ✓ 69.88±1.19 69.33±1.16 72.12±0.82 71.64±0.82 62.61±0.55 61.87±0.56

OWP No ✓ 72.50±1.22 71.96±1.23 70.94±0.58 70.24±0.65 61.72±0.72 61.05±0.72

CA No ✓ 79.45±1.17 78.97±1.25 76.72±0.99 76.27±0.96 64.02±0.36 63.33±0.47

BiCA No ✓ 79.46±0.39 79.03±0.46 76.81±0.89 76.40±0.92 64.72±0.77 64.20±0.76

DistilBert No ✓ 79.32±1.19 78.87±1.36 75.16±0.94 74.62±0.97 64.87±1.32 63.91±1.79

BERT No ✓ 79.05±0.98 78.61±0.98 74.62±0.97 74.03±1.03 66.02±1.22 65.24±1.34

BERT(p) No ✓ 74.99±5.22 73.73±6.67 76.58±0.90 76.07±0.92 64.67±0.58 63.52±1.26

BERT(p)+finetune Yes ✓ 83.53±1.11 83.30±1.19 82.74±0.73 82.53±0.75 67.43±1.06 66.64±1.22

BERT+funetune Yes ✓ 86.10±0.76 85.97±0.76 82.63±0.77 82.43±0.78 73.02±0.70 72.73±0.69

BERT+MAML Yes ✓ 88.33±2.76 88.23±3.07 84.99±2.86 84.86±3.18 73.89±3.28 73.66±3.37

DistilBert+finetune Yes ✓ 84.62±1.21 84.44±1.26 82.15±0.57 81.93±0.62 69.68±0.83 69.22±0.92

DistilBert+MAML Yes ✓ 87.73±0.66 87.61±0.67 84.93±0.79 84.76±0.81 72.22±1.60 72.00±1.62

BiCA+finetune Yes ✓ 84.62±0.38 84.46±0.39 82.84±0.97 82.70±0.98 65.82±0.85 65.48±0.89

BiCA+MAML Yes ✓ 89.86†±0.65 89.76†±0.66 89.80†±0.56 89.70†±0.57 74.47‡±1.68 74.20‡±1.68

Table 2: Experimental results for ACD and HuffPost in terms of accuracy(%) and macro-f1(%). We report the
average and standard deviation of 5 runs. Single indicates that the reference instance is single-aspect. Multi
indicates setting references as multi-aspect. The marker † refers to p-value<0.01 of the T-test compared with
DistilBert+MAML. The marker ‡ refers to p-value<0.07 of the T-test compared with DistilBert+MAML.

same parameter initialization without mutual inter-
ference. The implementation details are described
in the Appendix.

4.3 Experimental Results

The experimental results on ACD and HuffPost
datasets are displayed in Table 2. The first part
in Table 2 shows the case that when testing, we
only have the reference instance but do not use
the support set. By comparing two match types,
we find that a finer-granularity matching helps the
few-shot one-class scenario gain significantly. This
indicates that in the few-shot scenario of text tasks,
learning deeper interaction between instances is
a better choice. Many previous tasks gain signifi-
cantly from BERT (Wang et al., 2020) or DistilBert
(Wright and Augenstein, 2020). However, we sur-
prisingly see little performing difference among
the five word-level sequence match methods. The
transformer-based methods do not have remark-
able superiority. A possible reason is that in the
unseen classes, it is difficult to discover the key
words/semantics for matching only given a refer-
ence instance. Meanwhile, these models with large-
scale parameters may be superior in the data-driven
tasks (Gururangan et al., 2020).

Additionally, though the scale of the support set
is small, exploiting it by fine-tuning or MAML can
bring significant improvements. This also explains
our previous guess that the support set will pro-
vide key words/semantics to match. Meanwhile, on
sequence match methods, including BiCA, BERT

and DistilBert, MAML outperforms fine-tuning in
most situations. This indicates the importance of
a good parameter initialization not only for small
models but also for large pre-trained models in a
few-shot problem.

It is also found that prompt-based fine-tuning,
i.e. BERT(p), is also less-performed than
BiCA+MAML. The possible reasons are: first, the
objective of one-class sequence match is not consis-
tent with the pre-training of language models. Thus
the knowledge of transformer models might not be
fully leveraged; second, prompt-based fine-tuning
may achieve better results by other huge-scale pre-
trained models, such as RoBERTa-large, GPT-3
(Gao et al., 2021).

Finally, it is worth noting that BiCA+MAML
consistently outperforms BERT+MAML and Dis-
tilBert+MAML. Compared with transformer mod-
els, BiCA+MAML has fewer parameters, suggest-
ing that the classical methods are still worth revis-
iting in the large pre-trained models’ dominant era.
We further see another interesting phenomenon.
BiCA gains significantly from MAML but slightly
improves by using fine-tuning. Contrarily, the
transformer-based method gains much from fine-
tuning. It is possible that the pre-trained BERT
already contains abundant knowledge, suggesting
a good initialization for fine-tuning. Meanwhile,
BiCA is a classical model with much fewer param-
eters, which is easier for MAML to learn a good
initialization. Hence, MAML has a more signifi-
cant contribution to BiCA.
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(a) BiCA (b) BiCA+finetune (c) DistilBert (d) DistilBert+finetune

(e) BiCA (f) BiCA+finetune (g) DistilBert (h) DistilBert+finetune
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Figure 4: Effects of fine-tuning on BiCA and DistilBert for ACD, where the reference instance is single-aspect. For
a fair comparison, all models only have one linear output layer. In the top row, we depict PCA plots of the features
before the output layer. The feature dimension in BiCA is 500 and which in DistilBert is 768. In the bottom row, we
directly plot the 2-dimensional logits output.

(a) BiCA+MAML(init) (b) BiCA+MAML (c) DistilBert+MAML(init) (d) DistilBert+MAML

(e) BiCA+MAML(init) (f) BiCA+MAML (g) DistilBert(init) (h) DistilBert+MAML
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Figure 5: Effects of MAML on BiCA and DistilBert for ACD, where the reference instance is single-aspect. “(init)”
indicates that the model learned by MAML training directly predicts the query set of testing meta-tasks without
exploiting the support set.

4.4 Discussion

In this section, an empirical comparison, between
two kinds of sequence match approaches, including
classical and transformer-based ones, is presented.
Because DistilBert+MAML and BERT+MAML
are comparable, as shown in Table 2. Meanwhile,
the parameter scale of DistilBert is smaller, which
is chosen in the following study. We randomly
sample 12 batches from the testing classes, and
obtain the extracted features of the query set. In
each batch, we have 5 meta-tasks, each of them has
10 support instances and 10 query instances. Thus,
the total number of features is 5× 10× 12 = 600.
The features are visualized by t-SNE (Maaten and
Hinton, 2008).

4.4.1 Comparison of Features

We compare the effects of MAML with simple fine-
tuning in Figure 4 and Figure 5, respectively. In
Figure 4, it can be seen that fine-tuning can help
the features learned by BiCA and DistilBert both
become more separable (plot a-d). This is also
reflected by the 2-dimensional logits output (e-g).

In Figure 5, it can be observed that in MAML
training, exploiting the support set can also make
the features more discriminative in BiCA (a-b), and

Model ACD HuffPostSingle Multi

BiCA 1.74e-3 1.23e-3 2.66e-4
BiCA+finetune 1.77e-3 1.22e-3 2.84e-4
BiCA+MAML(init) 1.79e-3 1.67e-3 3.53e-4
BiCA+MAML 1.92e-3 2.09e-3 5.85e-4

DistilBert 3.35e-3 2.70e-3 1.51e-3
DistilBert+finetune 4.01e-3 3.39e-3 1.78e-3
DistilBert+MAML(init) 8.57e-3 1.15e-2 7.40e-3
DistilBert+MAML 8.98e-3 1.32e-2 7.76e-3

BERT 3.89e-3 3.91e-3 4.62e-3
BERT+finetune 4.83e-3 5.56e-3 6.43e-3
BERT+MAML(init) 2.14e-1 1.71e-1 2.63e-1
BERT+MAML 2.21e-1 1.99e-1 2.58e-1

Table 3: Cov_Score of various models. The largest is
marked in bold for each sequence match model.

so does the logits output (e-f). The features (plot
b in Figure 4 and plot b in Figure 5) validates that
MAML is more effective than fine-tuning in BiCA.

Interestingly, the phenomenon of Distil-
Bert+MAML is completely different. It is found
that the features show less separability (c-d), while
the logits output is well distinguished (g-h). This
indicates the features are linearly separable in
high dimensions, i.e. 768. Recalling the purpose
of PCA (Principal Component Analysis) (Abdi
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Figure 6: Cov_Score of the features learned by Distil-
Bert+MAML, setting different numbers of layers, and
numbers of heads in self-attention.

and Williams, 2010), it defines an orthogonal
linear transformation that transforms the data
into a new coordinate system and preserves the
greatest variance. We guess that the unique
phenomena (c-d) are caused by less-orthogonal
feature dimensions. To verify this assumption, we
compute the covariance matrix based on extracted
features in various models. Each element in the
matrix indicates the correlation between two
dimensions in feature, where a larger score means
a higher correlation. We define the Cov_Score as
below, which is the average absolute value of the
covariance matrix.

Cov_Score = avg|Cov(F− rowavg(F))| (8)

where F is the extracted features.
In Table 3, the Cov_Score of three sequence

match approaches are presented separately. Firstly,
compared with BiCA+finetune, BiCA+MAML ex-
tracts features with slightly higher Cov_Score.
However, for DistilBert and BERT, MAML dra-
matically increases the score, which is more sig-
nificant in BERT. As the scores indicate, Distil-
Bert+MAML really extracts features with less-
orthogonal dimensions. A possible reason is that
MAML trains the model in a bi-level manner (see
Algorithm 1). DistilBert has deeper layers and
large-scale parameters. The gradients are propa-
gated through deeper layers, causing the feature
extraction learned insufficiently while the last lin-
ear layer is trained adequately. Thus the logits are
separable while features are not, as plots (c, d, g, h)
shown in Figure 5. The above phenomenon become
also serious in BERT+MAML, because BERT has
more layers compared with DistilBert, leading to
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Figure 7: Loss and accuracy curves in 3 updating steps.

larger Cov_Score.
The plots of other datasets are displayed in the

Appendix. The empirical observations are similar.

4.4.2 DistilBert+MAML: Layers and Heads?
To further investigate why the features learned by
DistilBert+MAML have high-correlation dimen-
sions, we plot the Cov_Score of multiple variants
of DistilBert+MAML in Figure 6. The horizon-
tal ordinate indicates the number of heads in self-
attention, which should divide 768 exactly (768 is
the dimension size of the hidden states in DistilBert
and BERT models).

It is first seen that the score shows an increas-
ing trend as the number of heads grows. Mean-
while, by comparing the curves between #Layer=1
and #Layer=6, we observe that the Cov_Score
also becomes larger as the layers of DistilBert in-
crease. We draw an empirical conclusion that the
high-correlation of feature dimensions in Distil-
Bert+MAML is caused by the multiple layers and
heads of DistilBert.

4.4.3 Initialization for Loss Sensitivity or a
Good Performance Start

In Figure 7, we depict the average batch loss and
accuracy in the 3 update steps for ACD with single-
aspect references. Step 0 indicates the model is
trained by naive training or MAML without using
the testing support set.

Concretely, it can be seen that for both BiCA
and DistilBert, MAML leads to faster loss degrada-
tion than fine-tuning (plot a). The loss in MAML
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Figure 8: F1 scores of BiCA+MAML and Distil-
Bert+MAML by setting different numbers of support
instances.

declines to the bottom even within one updating
step. We also observe a rapid accuracy increase (c).
Overall, MAML outperforms fine-tuning for both
BiCA and DistilBert. However, is MAML always
a good choice? The answer is negative. In step 0 (b
and d), we see a good parameter initialization does
not lead to a good performance start. BiCA and
DistilBert learned by naive training achieve lower
losses and better accuracy scores without updat-
ing parameters. A possible explanation is that they
have different training objectives. Naive training
aims to facilitate task-agnostic sequence matching.
While the bi-level optimization in MAML focuses
on promoting the generalization ability of models
after seeing a few support examples.

4.4.4 Various Numbers of Support Instances
We further explore the performances of
BiCA+MAML and DistilBert+MAML un-
der various support set scales. As displayed in
Figure 8, the number of support instances ranges
from 1 to 10. For a fair comparison, the number
of query instances is all set to 10. Firstly, it
can be seen that as the support set scale grows,
the performances on the query set present an
increasing trend. Secondly, we also observe that
BiCA+MAML outperforms DistilBert+MAML
in most experimental settings. This indicates that
classical sequence match is a competitive few-shot
one-class learner.

5 Conclusion

In this work, we revisit the classical sequence
match approaches and find that with meta-learning,
the classical method can significantly outperform

transformer models in the few-shot one-class sce-
nario. The training cost is greatly reduced. Fur-
thermore, an empirical study is made to explore
the effects of simple fine-tuning and meta-learning.
Interestingly, although meta-learning is more ef-
fective than simple fine-tuning on both sequence
match approaches, it makes the transformer fea-
tures have high correlation dimensions. The cor-
relation is closely related to the number of layers
and heads in the transformer models. We hope this
work could provide insights for future research on
few-shot problems and transformer models.
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Figure 9: Effects of fine-tuning on aspect category detection, where the reference instance is multi-aspect.

(a) BiCA+MAML(init) (b) BiCA+MAML (c) DistilBert+MAML(init) (d) DistilBert+MAML

(e) BiCA+MAML(init) (f) BiCA+MAML (g) DistilBert(init) (h) DistilBert+MAML
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Figure 10: Effects of MAML on aspect category detection, where the reference instance is multi-aspect.

A Additional Experimental Results

The visualizations of aspect category detection with
multi-aspect reference instance are displayed in
Figure 9 and Figure 10.

For HuffPost dataset, the visualizations are dis-
played in Figure 11 and 12.

B Reproducibility

B.1 Computing Infrastructure
All experiments are conducted on the same hard-
ware and software. We use a single NVIDIA
A6000 GPU with 48GB of RAM.

B.2 Average Running time
The average running time of each model is shown
in Table 5.

B.3 Number of Parameters
The number of parameters of each model is shown
in Table 4.

B.4 Datasets
The datasets are available at https://github.
com/hmt2014/FewOne.

B.5 Implementation Details
B.5.1 Classical Methods
All baselines and our model are implemented by
Pytorch. We initialize word embeddings with 50-
dimension GloVE vectors (Pennington et al., 2014).

In the aggregation module, the channels of the
CNNs for input and output are both 50. The kernel
sizes of five CNNs are [1, 2, 3, 4, 5], respectively.
Relu is the activation function for CNN. We adopt
a dropout of 0.1 after both the comparison and
CNN in aggregation. MLP is a single linear layer.

The batch size is |Cp| = 5, indicating a batch
comprises 5 meta-tasks. The instance number in
the support set |S| and query set |Q| are both set to
10. Every epoch we randomly sample 400 batches
for training, 300 batches for validation and 300
batches for testing. The average results of the test-
ing batches are reported. We exploit an early stop
strategy during training if the macro-f1 score on
the validation set does not improve in 3 epochs,
and the best model is chosen for evaluation.

We describe the training details as the format of
(optimizer, learning rate, other information):

Naive Training: Adam, 1e-3, early stop.

+finetune SGD, 0.1, 3 updating steps.

+MAML
The inner-level: α=0.1.
The outer-level: Adam, β=1e-3.
When testing: SGD, 0.1, 3 updating steps.

B.5.2 Transformer-based Methods
The output hidden state of [CLS] in DistilBert
(distilbert-base-uncased) and BERT (bert-base-
uncased) is exploited for classification.

Naive Training Adam, 2e-5, 5 epochs.

https://github.com/hmt2014/FewOne
https://github.com/hmt2014/FewOne
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Figure 11: Effects of fine-tuning on HuffPost.

(a) BiCA+MAML(init) (b) BiCA+MAML (c) DistilBert+MAML(init) (d) DistilBert+MAML

(e) BiCA+MAML(init) (f) BiCA+MAML (g) DistilBert+MAML(init) (h) DistilBert+MAML
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Figure 12: Effects of MAML on HuffPost.

Method ACD Huffpost

SN 1,437,950 1,393,050
OWP 1,437,950 1,393,050
CA 1,476,202 1,431,302

BiCA
1,476,702 1,431,802+finetune

+MAML

DistilBert
66,364,418 66,364,418+finetune

+MAML

BERT
109,483,778 109,483,778+finetune

+MAML

BERT(p) 133,545,786 133,545,786+finetune

Table 4: Number of parameters in each model.

+finetune Adam, 2e-5, 3 updating steps.

+MAML
The inner level: α=2e-3.
The outer-level: Adam, β=2e-5.
When testing: Adam, 2e-5, 3 updating steps.
We use early stop for DistilBert+MAML since

the model does not learn optimally within 5 epochs.

Method ACD Huffpostsingle multi

SN 6m47s 11m44s 20m5s
OWP 13m57s 17m49s 11m45s
CA 21m36s 35m17s 18m2s

BiCA 22m26s 18m5s 11m11s
+finetune 20s 20s 23s

BiCA+MAML 39m8s 1h11m57s 40m53s

DistilBert 21m2s 21m26s 21m56s
+finetune 4m45s 4m43s 4m45s

DistilBert+MAML 4h32m2s 4h3m38s 4h46m4s

BERT 39m33s 40m18s 41m27s
+finetune 8m40s 8m41s 9m14s

Table 5: Average runing time of each model.


