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Abstract

With the ever growing scale of neural models,
knowledge distillation (KD) attracts more at-
tention as a prominent tool for neural model
compression. However, there are counter in-
tuitive observations in the literature showing
some challenging limitations of KD. A case
in point is that the best performing checkpoint
of the teacher might not necessarily be the
best teacher for training the student in KD.
Therefore, one important question would be
how to find the best checkpoint of the teacher
for distillation? Searching through the check-
points of the teacher would be a very tedious
and computationally expensive process, which
we refer to as the checkpoint-search problem.
Moreover, another observation is that larger
teachers might not necessarily be better teach-
ers in KD, which is referred to as the capacity-
gap problem. To address these challenging
problems, in this work, we introduce our pro-
gressive knowledge distillation (Pro-KD) tech-
nique which defines a smoother training path
for the student by following the training foot-
prints of the teacher instead of solely relying
on distilling from a single mature fully-trained
teacher. We demonstrate that our technique is
quite effective in mitigating the capacity-gap
problem and the checkpoint search problem.
We evaluate our technique using a comprehen-
sive set of experiments on different tasks such
as image classification (CIFAR-10 and CIFAR-
100), natural language understanding tasks of
the GLUE benchmark, and question answering
(SQuAD 1.1 and 2.0) using BERT-based mod-
els and consistently got superior results over
state-of-the-art techniques.

1 Introduction

Knowledge distillation (KD) (Hinton et al., 2015)
has gained a lot of attention in different deep learn-
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Table 1: The best performing checkpoints vary for dif-
ferent size of the models, and different tasks. It is ev-
ident that the best checkpoint of the teacher does not
necessarily lead to the best performing student model.

Task Model
Best #ChPt

Epoch
ACC ∆ ↑

MRPC
BERTLARGE(♠T) 6 88.22 -
BERTSMALL(♣S) 3 85.29 +0.7
DistilBERT(♣S) 5 89.16 +0.8

SST-2
BERTLARGE(♠T) 1 92.89 -
BERTSMALL(♣S) 7 88.76 +0.6
DistilBERT(♣S) 7 91.63 +0.4

QNLI
BERTLARGE(♠T) 6 92.4 -
BERTSMALL(♣S) 2 87.08 +0.3
DistilBERT(♣S) 4 90.46 +0.2

♠T:Teacher, ♣S: Student, #ChPt: Checkpoint Number, ACC:
Accuracy, ∆ ↑: Accuracy improvement compared to the best
checkpoint of the teacher

ing applications such as natural language process-
ing (NLP) (Sun et al., 2019; Jiao et al., 2019;
Clark et al., 2019), computer vision (Guo et al.,
2020; Mirzadeh et al., 2019), and speech process-
ing (Yang et al., 2019; Yoon et al., 2020; Chebotar
and Waters, 2016). Nowadays, the scale of neural
networks is growing in the favor of improving their
performance (Devlin et al., 2019). A case in point
is pre-trained language models (PLMs) such as the
GPT-3 (Brown et al., 2020), Pangu-α (Zeng et al.,
2021), and WuDao2 which have more than a hun-
dred billions of parameters (Brown et al., 2020).
However, deploying these models on devices with
limited computational power will be very challeng-
ing, if not impossible. In this regard, KD can be
used as one of the most prominent neural model
compression techniques.

KD adds a new loss term to the regular cross-
entropy classification loss. This new loss encour-
ages the student model to mimic the output of a
pre-trained teacher network. The teacher network
is usually a higher capacity model which is able to
learn the underlying function of the training data to
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a good extent. The output prediction of the teacher
is called soft-target for the student model. In con-
trast to ground-truth labels coming from the train-
ing dataset which only carry the information about
a single class, soft-targets can provide some infor-
mation about the relative distribution of different
classes for each training data. Therefore, a pre-
trained teacher is able to provide some auxiliary
signal besides the labels in the training dataset.

KD has been investigated a lot in the literature.
Sun et al. (2019); Passban et al. (2021); Wu et al.
(2020) proposed a technique to improve KD by
incorporating the intermediate layer matching in
the KD loss. Jiao et al. (2019) show a two-stage
KD with intermediate layer mapping, attention
distillation and embedding distillation for BERT-
based models. Mate-KD (Rashid et al., 2021) and
MiniMax-KNN KD (Kamalloo et al., 2021) tailor
data augmentation for KD, in which augmented
samples are generated or selected based on max-
imum divergence loss between the student and
teacher networks. Rashid et al. (2020) propose
a zero-shot KD technique in NLP in which the stu-
dent does not need to access the teacher training
data for its training. Clark et al. (2019) use KD for
multi-task learning in natural language understand-
ing. Kim and Rush (2016) propose a sequence-
level KD solution for machine translation. Guo
et al. (2020) introduces a collaborative training of
students with different capacities with KD.

Although KD has been successful in many dif-
ferent deep learning tasks, it is subject to some spe-
cial limitations as well. For example, it is shown
in (Lopez-Paz et al., 2015) that, based on VC the-
ory (Vapnik, 1998), the teacher capacity should not
be too large in KD. Similar observation is given
by Mirzadeh et al. (2019) using empirical and the-
oretical justifications that KD will be less effective
when the capacity gap between the teacher and stu-
dent is large. This problem is referred to as the
capacity-gap problem. Mirzadeh et al. (2019) pro-
posed the TAKD solution to this problem by adding
one or multiple intermediate teacher assistant (TA)
networks to learn from the teacher using KD and
then train the student using other distillation pro-
cesses. However, training intermediate networks
can be prohibitive in terms of adding to the train-
ing time, computational complexity and extra error
propagation. The other case in point is that a fully-
trained teacher might not be the best teacher for
the student (Cho and Hariharan, 2019). In other

words, an early-stopped teacher can be a better
option for KD compared to a fully-trained one.
This observation implies that we need to search
through the checkpoints of the teacher to find the
best model for the distillation process. However,
this search can be very expensive especially when
we deal with PLMs. We refer to this problem as
the checkpoint-search problem. Our investigations
of this checkpoint search problem show the signifi-
cance of this issue especially dealing with PLMs.
Table 1 depicts that the best distillation checkpoint
of the teacher varies for each task and for each stu-
dent configuration and it is very different from the
teacher best performing checkpoint.

In this work, we propose our Pro-KD solution to
tackle both the capacity-gap and checkpoint-search
problems. In Pro-KD, the student grows gradually
with the growth of the teacher. We hypothesize
that the training path of the teacher can be infor-
mative for the student and we should not disregard
it. Therefore, in contrast to the original KD where
the student learns from the best pre-trained teacher,
in Pro-KD the student starts its learning process
together with the teacher. Furthermore, in contrast
to the TAKD technique which reduces the capacity
of the teacher by adding intermediate TAs to the
distillation process, in our Pro-KD, we mitigate the
capacity gap by making the training path of the
student more smooth and gradual by following the
training footsteps of the teacher. Moreover, to make
the training smooth further for the student, inspired
by (Jafari et al., 2021), we apply an adaptive tem-
perature factor to the output of the teacher while
being trained. This temperature factor is decreased
during the training. We will show the effective-
ness of our solution using theoretical justification
and empirical evaluations. We evaluate Pro-KD by
performing experiments on both NLP (the GLUE
(Wang et al., 2018b) benchmark and SQuAD 1.1
and 2.0) and image classification tasks (CIFAR-10,
CIFAR-100). The contributions of this paper are
summarized in the following:

1. We propose our Pro-KD solution to the KD
capacity-gap and checkpoin-search problems.
In Pro-KD, the student follows the training
footsteps of the teacher. Moreover, it intro-
duces a dynamic temperature function to the
output of the teacher when it is distilled to the
student to make the student training gradual
and smooth.

2. We apply our technique to ResNET8 model on
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both CIFAR-10 and CIFAR-100 image clas-
sification tasks, and the natural language in-
ference task on different BERT based mod-
els such as DistilRoBERTa, and BERT-Small
on the GLUE benchmark and also SQuAQ
1.1 and 2.0 question answering datasets and
achieved the state-of-the-art results.

3. Our technique is simple, architecture agnostic,
does not require training any extra network
and can be applied on top of different variants
of KD.

2 Background

Knowledge Distillation KD (Hinton et al.,
2015) is a well-known method for neural model
compression and also is shown to be an effective
regularizer in improving the performance of neural
networks in the self-distillation (Yun et al., 2020;
Hahn and Choi, 2019) or born-again (Furlanello
et al., 2018) setups. KD adds a particular loss term
to the regular cross entropy (CE) classification loss:

LKD(φ) = CE
(
y, S(x;φ)

)
+

T 2KL
(
σ(
zt(x; θ)

T
), σ(

zs(x;φ)

T
)
) (1)

where x is the input data and y is its associated
label, φ and θ refer to the student and teacher pa-
rameters, σ is the softmax function, zs and zt are
the student and teacher logits, T is the tempera-
ture parameter to control the softness of the output
probability distributions, CE and KL refer to the
cross entropy and KL divergence loss functions
respectively.

Regular KD training is a two-stage process in
which the teacher is fully trained in the first stage
and deployed in training of the student model in
the next stage. The student is trained based on the
hard labels coming from the ground-truth training
data and soft labels coming from the teacher output
predictions.

3 Related Work

In this section, we review the most related works
to our paper in the literature.

3.1 Capacity-Gap Problem in KD
The capacity-gap problem in KD, refers to having
a more powerful or larger teacher is not necessarily
leads to a better training for the student. Mirzadeh

et al. (2019) propose their TAKD solution to this
problem by introducing an intermediate TA net-
work whose capacity is greater than the student
but smaller than the teacher. The target of this TA
network is to learn from the teacher and train the
student. It is evident that in this setup the capac-
ity gap between the TA and student is less than
that of the main teacher and the student. Even
though adding the TA network can mitigate the
capacity-gap problem, there are two downsides in
this technique: first, training a separate TA network
is costly; second, the sequence of training multi-
ple networks can lead to error accumulation and
error propagation to the student. Moreover, TAKD
only showed their results on image classification
tasks. Jafari et al. (2021) proposed a TA-free solu-
tion for the capacity-gap problem which is called
Annealing-KD. Annealing-KD adds an annealed
dynamic temperature factor to the output of the
teacher to make the training process for the student
very gradual. The temperature factor starts from
a large value to apply the maximum smoothing to
the output of the teacher at the beginning of the
training and the gradually tends toward 1 where
there is no smoothing effect on the output of the
teacher. Our Pro-KD is inspired by Annealing-
KD in using a dynamic temperature factor to solve
the capacity-gap problem, but we can highlight
two main improvements over Annealing-KD: first,
Annealing-KD suffers from the checkpoint search
problem while Pro-KD does not; second, Pro-KD
takes advantage of the intrinsic gradual training
of the teacher training which is not considered in
Annealing-KD.

3.2 Checkpoint Search Problem in KD

Choi et al. (2020) highlighted their findings over
computer vision (CV) models that bigger models
are not necessarily better teachers and also early
stopped teachers can train students better. To over-
come these issues they propose an ad-hoc approach
called Early Stopped KD (ESKD); however, ESKD
still needs to search among the pool of teacher’s
early checkpoints and the selection mechanism
among this early checkpoints is not clear. More-
over, in PLMs, generally teachers are not fine-tuned
for long and yet searching among the checkpoints
of large PLMs is expensive. (Jin et al., 2019) pro-
posed Route Constrained Optimization (RCO) dis-
tillation which is a curriculum learning technique
to follow easy-to-hard training scheme on top of
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the teacher’s training trajectory. We can deem this
technique as the most related work to us with the
following differences: 1- our Pro-KD has a tem-
perature factor to make the training process more
gradual which can handle the capacity gap better;
2- RCO still requires search to define its trajectory;
3- we evaluated Pro-KD on both CV and NLP tasks
but RCO is only evaluated on CV tasks. We will
show in the Experiment section that our Pro-KD
outperforms RCO consistently.

In the next section, we introduce our Pro-KD
solution to the capacity-gap and checkpoint-search
problems. Pro-KD exploits a smooth training pro-
cess for the student to gradually learn from the
teacher while being trained from scratch, instead
of learning from a fully-trained Teacher.

4 Methodology: Pro-KD

Methodology of this paper concerns addressing the
capacity-gap and checkpoint-search problems in
KD. We propose our Pro-KD technique which is a
progressive training procedure in which the student
is trained together with the teacher. Therefore in
Pro-KD, the student is not exposed to the output
of a fully trained teacher from beginning, and in-
stead, it learns from the teacher at the same time
while the the teacher is being trained. This training
process for the student is more gradual and also
the student can learn from the training path of the
teacher. Inspired by Jafari et al. (2021), We define
the training in two phases: first, the student is only
supervised by an adaptive smoothed version of the
teacher; second, the student will be only trained
on ground-truth labels. The detail of each phase is
explained in the following.

Phase I) General Step-by-Step Training with a
Teacher In this phase, the teacher is being trained
using the cross entropy loss on the training data.
Without loss of generality, let’s assume that θ(i),
the optimized parameters of the teacher at the be-
ginning of epoch i, will be updated during the ith

epoch of training to obtain θ(i+ 1):

LT (θ(i)) = CE
(
y, T (x; θ(i))

)
θ(i+ 1)← min

θ
LT (θ(i))

(2)

Then, a smoothed version of the teacher output
using a temperature factor Ti at epoch i will be

used to train the student at epoch j:

LIS(φ(j)) = ‖zs(x;φ(j))− zt(x; θ(i))

Ti
‖22

φ(j + 1)← min
φ
LIS(φ(j))

Ti ∈ {Ti+1 = Ti − 1| T1 = τmax, Ti+1 ≥ 1}

(3)

where LIS refers to the student loss function in
phase I, zs and zt are the logits of the student and
teacher respectively, φ(j) represents the parame-
ters of the student model at epoch j, Ti is adaptive
temperature factor. The rational behind applying
the temperature to the teacher output is to make
the output of the teacher smoother for the student
to learn, especially at early stages of the training
process (Jafari et al., 2021).

It is evident that early-stopped teachers can be
better teachers for KD (Cho and Hariharan, 2019).
In that case, for an early-stopped teacher, the num-
ber of training epochs of the student can go longer
than that of the teacher. Therefore, for each given
epoch i of the teacher, the student can be trained for
ni ≥ 1 epochs, subject to

∑τmax
i=1 ni = N where

N is the preset total number of student training
epochs. ni is set to a constant integer number in
most of our experiments but can be customized as
well.

Bear in mind that we apply an adaptive temper-
ature to the teacher logit in the student distillation
loss, and this temperature starts from the highest
τmax value and decrease linearly with the epoch
number of the teacher throughout training. τmax is
a hyper-parameter in our training. Moreover, we
keep the temperature fixed at each epoch i. After
training with the teacher logits, in the next phase
the student model will be trained on the ground-
truth labels.

Phase II) Training with the Ground-Truth La-
bels After training the student based on the soft
targets of the teacher, the student is trained on the
ground-truth labels using the cross entropy loss for
a few epochs:

LIIS (φ(j)) = CE
(
y, S(x;φ(j))

)
φ(j + 1)← min

φ
LIIS (φ(j)).

(4)

In summary, our technique enables the student
to learn from the teacher more smoothly. Pro-KD
is different from regular KD technique in the fol-
lowing aspects:



4718

Figure 1: Phase I and Phase II of the Pro-KD method. Phase I: the teacher is trained on the labeled training
data. The student at each step tries to mimic the behavior of the corresponding teacher checkpoint. The logits of
the teacher at each time step is attenuated with the temperature parameter. We start training of the student from
T = τmax and go to T = 1. Phase II: training the student with the labeled data only using the cross entropy loss.
ni for 1 ≤ i ≤ τmax refers to the number of training epochs of the student corresponding to the ith training epoch
of the teacher. nis should add up to N which is the preset total number of training epochs of the student. Bear in
mind that since the teacher is usually early stopped, teacher is trained less longer than the student model.

1. rather than distilling from a fully trained
teacher; we distill from the teacher during
its training;

2. in contrast to regular KD which applies a fixed
temperature parameter to both networks, we
apply an adaptive temperature factor only to
the logits of the teacher;

3. we apply the KD loss and the cross entropy
loss in two separate phases.

Moreover, it is worth mentioning that the overall
number of training steps of our model follows reg-
ular KD techniques. For example, if in regular KD
baselines, the model is trained for 30 number of
epochs, we train the total training time of phase I
and phase II of our model to 30 epochs as well.

4.1 Why Does Pro-KD work?
Lopez-Paz et al. (2015) do an analysis based on VC-
dimension theory to discuss the conditions under
which KD works better than no-KD scenarios. It
is shown that KD works if the following inequality
holds:

O(
|Fs|c + |Ft|c

nα
) + εt+ εl ≤ O(

|Fs|c√
n

) + εs (5)

where Fs and Ft are the function classes corre-
sponding to the teacher and student; |.|c is a func-
tion class capacity measure; O(.) is the estimation
error of training the learner; εs is the approxima-
tion error of the best estimator function belonging
to the Fs class with respect to the underlying func-
tion; εt is a similar approximation error for the
teacher with respect to the underlying function; εl
is the approximation error of the best student func-
tion with respect to the teacher function; n is the
number of training samples, and 1

2 ≤ α ≤ 1 is a
parameter related to the difficulty of the problem.
Smaller values of α indicate slower training and
larger values correspond to faster learning rates of
the student. Given Eq. 5 we observe that for larger
teacher models, the value of the left hand side of
the inequality might get higher than that of the right
hand side, which implies that KD might not work
as expected for large capacity teachers.

We analyzed the capacity-gap problem based on
the inequality 5. To satisfy this inequality when the
capacity of the teacher is large (or equivalently the
capacity gap between the two networks is large),
we can think about reducing the capacity of the
teacher (eg. the TAKD technique (Mirzadeh et al.,
2019) introduces a smaller TA network instead of
a large teacher), or increase α. Increasing α is



4719

Table 2: Comparing the test accuracy of Pro-KD,
TAKD (Mirzadeh et al., 2019), Annealing-KD (Jafar-
pour et al., 2021), RCO (Jin et al., 2019), regular KD,
and student without teacher on CIFAR-10 dataset with
both ResNet and CNN models

Model Type Training method Accuracy

ResNet

Teacher(110) from scratch 93.8
TA(20) KD 92.39

Student(8) from scratch 88.44
Student(8) KD 88.45
Student(8) TAKD 88.47
student(8) RCO 88.90
Student(8) Annealing-KD 89.44
Student(8) Pro-KD (ours) 90.01

Table 3: Comparing the test accuracy of Pro-KD,
TAKD (Mirzadeh et al., 2019), Annealing-KD (Jafar-
pour et al., 2021), RCO (Jin et al., 2019), regular KD,
and student without teacher on CIFAR-100 dataset with
both ResNet and CNN models

Model Type Training method Accuracy

ResNet

teacher(110) from scratch 71.92
TA(20) KD 67.6

student(8) from scratch 61.37
student(8) KD 61.41
student(8) RCO 61.62
student(8) TAKD 61.82
student(8) Annealing KD 63.1
student(8) Pro-KD (ours) 63.43

equivalent to making the training process of stu-
dent easier and smoother. It has been shown in (Li
et al., 2017; Chaudhari et al., 2019) that learning
a smoother loss is easier than a sharp one. There-
fore, we tried to make the training of the student
smoother by following the teacher’s training steps
and also applying the adaptive temperature factor.
In addition to this justification, we present a theo-
retical justification in the Appendix.

5 Experiments and Results

In this section, we evaluate our Pro-KD on 3 dif-
ferent sets of experiments: on image classifica-
tion, natural language understanding and ques-
tion answering tasks. In all these three experi-
ments, we compare Pro-KD with the state-of-the-
art KD techniques which can address the capac-
ity gap problem such as TAKD (Mirzadeh et al.,
2019), and Annealing-KD (Jafari et al., 2021), or
RCO (Jin et al., 2019) technique which does not
require searching teacher checkpoints for KD. We
also include baselines such as the original KD

method (Hinton et al., 2015) and also the regular
training without KD.

5.1 Experimental Setup for Image
Classification Tasks

Data We used CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009) datasets for
our experiments on the image classification tasks.
Both datasets have 60,000 of 32× 32 color images
distributed into 50,000 training and 10,000 test
samples, with 10 classes for CIFAR-10 and 100
classes for CIFAR-100

Setup For these experiments, we used ResNet-8
as the student and resNet-110 as the teacher mod-
els. The experimental setups are similar to TAKD
method (Mirzadeh et al., 2019). Also for the TAKD
baseline, we used ResNet-20 as the TA model. The
results of these experiments can be found in table
2 and 3 for comparison. For the baselines, first,
the ResNet-110 teacher is trained from scratch on
the given datasets and then it is used for training
baselines with KD. For TAKD baseline, the origi-
nal KD method is applied to train the TA network
with the teacher network and it is applied to train
the student network with TA network. For training
the student with the proposed Pro-KD method, we
trained the teacher for 160 epochs. For training
the student, we used maximum temperature 10 and
learning rate 0.1. For every 16 epochs, we decrease
the temperature by 1 and ni = 1.

Results As it is shown in Tables 2 and 3, Pro-KD
outperforms other baselines for both CIFAR-10
and CIFAR-100 experiments. Also, it is worth
mentioning that the Annealing-KD technique is the
second best result. RCO and TAKD both perform
on-par with the regular KD and training the student
from scratch.

5.2 Experimental Setup for Natural
Language Understanding Tasks on the
GLUE Benchmark

Data We use the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2018a), which consists of 9 natural language un-
derstanding tasks. The tasks cover textual entail-
ment (RTE and MNLI), question-answer entail-
ment (QNLI), paraphrase (MRPC), question para-
phrase (QQP), sentiment (SST-2), textual similar-
ity (STS-B), linguistic acceptability (CoLA), and
Winograd Schema (WNLI).
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Table 4: Dev set results of training DistilRoBERTa using the RoBERTaLarge model on the GLUE benchmark.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI Score
RoBERTaLarge (Teacher) 67 85 91.63 92.53 96.21 94.53 91.45 89.94/89.97 88.54
DistilRoBERTa(NoKD) 61.9 69.31 89.85 88.46 91.86 91.31 90.04 84.03/ 83.69 83.32

Vanilla KD 60.97 71.11 90.2 88.86 92.54 91.37 91.64 84.18/84.11 83.85
TAKD 61.15 71.84 89.91 88.94 92.54 91.32 91.7 83.89/84.18 83.93

RCO (Jin et al., 2019) 60.66 72.2 90.56 88.41 91.97 91.09 90.04 88.04/84.18 63.63
Annealing KD 61.67 73.64 90.6 89.01 93.11 91.64 91.5 85.34/84.6 84.52

Pro-KD (Ours) 62.14 73.64 91.9 88.8 92.66 91.47 91.53 84.83/84.84 84.62

Table 5: Test set results of DistilRoBERTa trained on the GLUE tasks using the RoBERTaLarge teacher model.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI Score
Vanilla KD 54.3 74.1 83.4 85.3 93.1 90.8 80.7 83.6/82.9 80.62

TAKD 53.2 74.2 84.7 85 93.2 91.0 80.7 83.8/83.2 80.69
RCO (Jin et al., 2019) 55.1 73.0 87.85 84.4 93.5 88.9 78.66 83.2/82.4 80.51

Annealing KD 54 73.7 85.95 86.8 93.6 90.8 81.15 83.8/83.9 81.23
Pro-KD (Ours) 55.8 73.6 86.45 86.95 93.4 91.0 81.05 84.6/83.8 81.56

Table 6: BERT-Small results for Pro-KD on the GLUE dev set

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI Score
BERTLarge 61.89 68.96 88.22 89.58 92.89 92.4 90.23 86.1/86.25 83.79

BERT-Small (NoKD) 44.05 64.98 83.75 87.41 88.3 86.49 88.43 78.42/78.57 77.74
Vanilla KD 43.28 64.98 84.96 85.95 88.65 86.75 88.24 78.62 /78.55 77.67

TAKD 43.79 65.7 83.98 86.44 88.88 86.78 88.4 78.78/ 78.64 77.84
RCO (Jin et al., 2019) 44.32 65.7 84.91 85.48 88.99 86.32 87.52 78.35 /78.85 77.73

Annealing KD 45 63.9 87.09 87.04 89.56 86.99 88.58 78.66/78.23 78.33
Pro-KD 42.37 66.79 87.78 87.09 89.91 87.88 88.79 79.18/ 79.17 78.72

Table 7: The GLUE leaderboard test results of training BERT-Small from the BERTLarge teacher.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI Score
BERT-Small (NoKD) 41.3 62.6 79.7 80.05 89 86.3 78.05 78.3/ 77.6 74.37

Vanilla KD 37.3 63.4 80.55 78.15 90.2 86.5 78.25 78/76.5 73.95
TAKD 38.5 62.3 80.5 79.25 89.7 86.7 78 78.2/76.9 74.06

RCO (Jin et al., 2019) 40.3 61.7 79.75 78.95 90.6 86.4 78.35 78.3/ 77.3 74.23
Annealing KD 38.6 63.1 81.85 80.6 91.2 87.3 78.35 77.8// 77.4 74.83

Pro-KD 39 62.7 82.9 80.45 91.2 87.5 79.15 78.6/78.2 75.16

Table 8: DistilRoBERTa results for Pro-KD on SQuAD

KD Method Squad 1.1 Squad 2.0
Teacher 93.7 87

Vanilla KD 85 73.65
TAKD 85.4 73.8

Pro-KD 86 76

Setup We perform experiments with multiple stu-
dents of varying capacities. In the first experiment
(Table 4 and 5), we use RoBERTa-large (24-layers)
as teacher, DistilRoBERTa (6-layers) (Sanh et al.,
2019) as student, and RoBERTa-base (12-layers)
(Liu et al., 2019) as the teacher-assistant for the
TAKD baseline. For Pro-KD, we train the teacher
for 5 epochs, and for training the student we use a
maximum temperature of 5, ni = 2, and the learn-
ing rate of 2e-5. For the second experiment (Table

Table 9: BERT-Small results for Pro-KD on SQuAD

KD Method Squad 1.1 Squad 2.0
Teacher 90.2 81

Vanilla KD 78.54 61.66
TAKD 78.5 61.66

Pro-KD 79.7 62.76

6, 7), we use BERT-large (24-layers) as teacher,
BERT-Small (4-layers) (Bhargava et al., 2021) as
student, and BERT-base (12-layers) (Devlin et al.,
2018) as the teacher-assistant for TAKD. We train
the teacher for 7 epochs, and for the student we
use a maximum temperature of 7 for all tasks, and
ni = 1. For the learning rate, we use 5e-5 for RTE
and MRPC, and 2e-5 for all other tasks. Additional
details about other hyper-parameters can be found
in the appendix.
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Table 10: Experimenting the impact of the adaptive temperature factor in Pro-KD using DistilRoBERTa trained
with RoBERTa-large on the GLUE benchmark

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI (392K) WNLI Avg
(8.5k) (2.5k) (3.5k) (5.7k) (67k) (108k) (363k) (392k)

Pro-KD 62.14 73.64 91.9 88.8 92.66 91.47 91.53 84.83/84.84 57.74 81.63
Pro-KD w/o T 58.66 70.03 91.74 88.0 92.43 91.76 91.55 84.95/85.41 56.33 80.61

Results We present our results in Tables 4, 5
and 6. Tables 4 and 6 compare the performance
of Pro-KD with Vanilla KD and TAKD on the
GLUE dev set, while Table 5 presents the results
of DistilRoBERTa on the test set based on GLUE
benchmark’s leaderboard. We see that Pro-KD
outperforms Vanilla KD and TAKD for both Distil-
RoBERTa and BERT-Small models. Even though
TAKD is able to improve over Vanilla KD, the per-
formance gain is much smaller compared to Pro-
KD, demonstrating Pro-KD’s high effectiveness in
dealing with the large capacity gap problem.

5.3 Experimental Setup for Question
Answering

Data We use the Stanford Question Answering
Datasets (SQuAD v1.1 (Rajpurkar et al., 2016) and
SQuAD v2.0) which are a collection of 100k crowd-
sourced question/answer pairs. Given a question
and a passage from Wikipedia containing the an-
swer, the task is to predict the answer text span
in the passage.The SQuAD 2.0 task extends the
SQuAD 1.1 problem definition by allowing for the
possibility that no short answer exists in the pro-
vided paragraph.

Setup Similar to the GLUE experiments, we per-
form experiments on 2 different students but with a
couple of less baselines because Annealing KD and
RCO do not report any result on SQuAD. In the
first experiment (Table 8), we use RoBERTa-large
(24-layers) as teacher, DistilRoBERTa (6-layers)
as student, and RoBERTa-base (12-layers) as the
teacher-assistant for the TAKD baseline. We train
the teacher for 3 epochs, and for the student we
use a maximum temperature of 3, ni = 1, and a
learning rate of 3e-5 with a batch size of 12 for
both Squad v1.1 and Squad 2.0. For the second ex-
periment (Table 9), we use BERT-large (24-layers)
as teacher, BERT-Small (4-layers) as student, and
BERT-base (12-layers) as the teacher-assistant for
TAKD. We train the teacher for 3 epochs, and for
the student we use a maximum temperature of 3,
and ni = 1. and a learning rate of 3e-5 with a
batch size of 12. Additional details about other

hyper-parameters can be found in the appendix.

Results We present our results in Tables 8 and 9.
We again see that Pro-KD consistently outperforms
Vanilla KD and TAKD for both Squad v1.1 and
Squad 2.0 tasks.

5.4 Ablation Studies and Further Analysis

The Impact of the Temperature Factor Here
we show the impact of having the adaptive temper-
ature factor in our technique. The adaptive tempera-
ture helps the student model to be exposed to a soft-
ened version of the teacher in earlier stages. In this
regard we repeated our experiment on the GLUE
benchmark when the student is DistilRoBERTa and
the teacher is RoBERTa-large. Table 10 shows the
result of Pro-KD with and without the temperature.
The results indicate that dropping the adaptive tem-
perature will hamper the performance of our model
by about 1% on the average GLUE score.

6 Conclusion

In this paper, we highlighted the importance of
the capacity-gap problem in KD. We used the
VC-dimension analysis to show that dealing with
larger teachers may discount the benefit of using
knowledge distillation in training. To address this
capacity-gap problem, we introduced our Pro-KD
technique. Our technique was based on defining
a smoother training journey for the student by fol-
lowing the training footprints of the teacher instead
of solely relying on distilling from a mature fully-
trained teacher. In other words, in contrast to the
regular knowledge distillation recipe for model
compression in which the student model learns
only from a fix fully-trained teacher, in our Pro-KD
method, the student learns even from the training
path of the teacher. We believe that following the
training footsteps of the teacher can be quite in-
fluential in improving the student training and can
lead to mitigating the capacity-gap problem in KD
as well. We showed our theoretical analysis and
justifications to support this idea; moreover, we
evaluated our technique using a comprehensive set
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of experiments on different tasks such as image
classification (CIFAR-10 and CIFAR-100), NLP
language understanding tasks of the GLUE bench-
mark, and question answering (SQuAD 1.1 and
2.0) using BERT-based models and consistently
got superior results.
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A Why Does Pro-KD Work?

In this section, first we state stopping the training
procedure of the teacher at early epochs will im-
prove Knowledge Distillation. Then, we argue that
our method will exploit this fact without requiring
any effort on finding the epoch at which early stop-
ping the teacher leads to the optimum Knowledge
Distillation. Finally, we will conclude that training
the student together with the teacher leads to an
important advantage that provides the student with
the opportunity of exploiting the knowledge of the
optimum teacher.

In knowledge distillation, soft labels coming
from a pre-trained teacher contains some so-called
dark knowledge (Dong et al., 2019) which gives a
signal about the relative differences between the
probabilities of the classes.

It is shown by (Cho and Hariharan, 2019) and
(Dong et al., 2019) that early stopping during train-
ing of the teacher network improves the perfor-
mance of Knowledge Distillation significantly; in
other words, there is an optimal epoch at which
if teacher training is stopped, the resulting teacher
will act as a better teacher compared to the ones
stopped at earlier or later epochs. Authors of
(Cho and Hariharan, 2019) have shown this fact
through experiments based on performing KD by
using pre-trained teacher networks stopped at dif-
ferent epochs, and they also have indicated that
changing the temperature cannot compensate lost
Dark Knowledge. Authors of (Dong et al., 2019)
have provided mathematical justification showing
that neural network learns more useful information
faster. They have used the methods proposed in
papers (Du et al., 2018; Oymak and Soltanolkotabi,
2019; Li et al., 2020), and the concept of Neural
Tangent Kernel introduced by (Jacot et al., 2018)
in order to reach an asymptotic conclusion. This
conclusion states that for infinite wide neural net-
works, gradient descend algorithm searches over
different direction with different pace; that is to
say, the projection of the loss function in different
eigenspaces evolves with different rate. Those rates
can be calculated as follows (Dong et al., 2019):

〈(ut − y), ei〉 = 〈(I − ηH∗)(ut − y), ei〉
= 〈(ut − y), (I − ηH∗)ei〉
= (1− ηλi)〈(ut − y), ei〉

(6)

where ut is the output of model, y is the true
label, ei is the eigenvector corresponding to the ith
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eigenvalue(λi) of the static Gram matrix(H∗) of the
network. The gram matrix of neural networks is a
function of time in general; however, in infinitely
wide neural networks, this matrix will be static and
called Neural Tangent Kernel (Jacot et al., 2018).
This static n×nmatrix, n is the number of training
samples, can be calculated as follows (Dong et al.,
2019):

H∗ =
(
〈∂f(θ, xi)

∂θ
.
∂f(θ, xj)

∂θ
〉
)
i,j

(7)

where f(θ, ·) is the output of our model, θ are
the parameters of the neural network, and xi is the
ith data sample.

Arguments provided by (Dong et al., 2019) state
that a neural network learns more useful informa-
tion faster than non-principal pieces of information
about the input samples; however, it does not ex-
plain why continuing training teacher will decrease
the level of that "Dark Knowledge". To justify
this part, we use results from Tishby, Naftali, and
Noga Zaslavsky. "Deep learning and the informa-
tion bottleneck principle."(Tishby and Zaslavsky,
2015) and Saxe, Andrew M., et al. "On the infor-
mation bottleneck theory of deep learning." (Saxe
et al., 2019). In (Saxe et al., 2019) and (Tishby and
Zaslavsky, 2015), authors show that there are two
stages during training a deep neural network, initial
fitting phase and compression phase. These two
stages have some important characteristics:

1. Initial Fitting: During this phase, the mutual
information between the output of different
layers and true labels is increasing. Also, the
mutual information between output of layers
and the input samples is increasing as well. In
other words, network is gaining information
about both labels and input samples. There-
fore, network is gaining more aforementioned
Dark Knowledge as it is gaining information
about relative similarities between samples
from different classes.

2. Compression phase: During this phase, the
mutual information between the output of dif-
ferent layers and true labels is increasing; how-
ever, the mutual information between output
of layers and the input samples is decreas-
ing. In other words, network tries to compress
and discard information which it has gained
about input samples (Saxe et al., 2019). We
can state that Dark Knowledge is decreasing

during this phase; that is because, network is
forgetting relationships between data samples,
and at the same time, it is gaining more in-
formation about labels. This procedure leads
to more confidence on found probabilities for
each class. As a result, the information about
relative similarities between classes decreases
and probabilities tend to one-hot vectors.

Based on the aforementioned facts, a teacher
which has stopped learning at the optimum epoch
provides more informative pieces of information to
the student. Our method exploits the Dark Knowl-
edge of the best teacher by training teacher and
students together; in our method, during training
teacher and student together, at some point teacher
will have the highest level of Dark Knowledge
which leads to the best student. The important
point here is that we do not need to find the op-
timum epoch at which this highest level of Dark
Knowledge will be achieved. Since we are per-
forming Knowledge Distillation in fixed intervals
and storing intermediate checkpoints, the student
trained by guidance of the best teacher will be one
of these checkpoints and we have access to that.

In contrast with usual KD methods, pre-trained
teacher networks are not used in our methods; in
fact, we train teacher alongside with the student.
Based on the aforementioned arguments, Pro-KD
outperforms other KD methods as it gives us the
opportunity of exploiting the experience and the
Dark Knowledge provided by the best teacher, the
teacher which has stopped learning at the optimum
epoch.

B Hyper-parameters

In this section, we summarize the hyper-parameters
used in our experiments.
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Table 11: Model specific Hyper-parameters for BERT-Small on GLUE

Hyper-parameter CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI
Learning Rate 2e-5 5e-5 5e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5

N (Teacher Epochs) 7 7 7 7 7 7 7 7 7
τmax 7 7 7 7 7 7 7 7 7

n (Phase 2 Epochs) 10 10 10 10 10 10 10 10 10

Table 12: Common Hyper-parameters for DistilRoBERTa and BERT-Small models on GLUE

Hyper-parameter CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI
Batch Size 32 32 32 32 32 32 32 32 32

Max Seq. Length 128 128 128 128 128 128 128 128 128
Vanilla KD Alpha 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Gradient Clipping 1 1 1 1 1 1 1 1 1

Table 13: Model specific Hyper-parameters for DistilRoBERTa on GLUE

Hyper-parameter CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI
Learning Rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5

N (Teacher Epochs) 5 5 5 5 5 5 5 5 5
τmax 5 5 5 5 5 5 5 5 5

n (Phase 2 epochs) 10 10 10 10 10 10 10 10 10
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Table 14: Model specific Hyper-parameters for Distil-
RoBERTa on SQuAD

Hyper-parameter SQuAD 1.1/2.0 SQuAD Teacher
Learning Rate 3e-5 1.5e-5

Batch Size 12 12
Max Seq. Length 384 384

Doc Stride 128 128
Weight Decay - 0.01

N (Teacher Epochs) 3 3
τmax 3 -

n (Phase 2 Epochs) 6 -

Table 15: Model specific Hyper-parameters for BERT-
Small on SQuAD

Hyper-parameter SQuAD 1.1/2.0 SQuAD Teacher
Learning Rate 3e-5 3e-5

Batch Size 12 12
Max Seq. Length 384 384

Doc Stride 128 128
N (Teacher Epochs) 3 3

τmax 3 -
n (Phase 2 Epochs) 5 -


