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Abstract

We present LANTERN, a multi-stage trans-
former architecture for named-entity recogni-
tion (NER) designed to operate on indefinitely
large text sequences (i.e. � 512 elements).
For a given image of a form with structured
text, our method uses language and spatial fea-
tures to predict the entity tags of each text el-
ement. It breaks the quadratic computational
constraints of the attention mechanism by op-
erating over a learned latent space representa-
tion which encodes the input sequence via the
cross-attention mechanism while having the
multi-stage encoding component as a refine-
ment over the NER predictions. As a proxy
task, we propose RADAR, an LSTM classifier
operating at character level, which predicts the
relevance of a word with respect to the entity-
recognition task. Additionally, we formulate
a challenging novel NER use case, nutritional
information extraction from food product la-
bels. We created a dataset with 11, 926 images
depicting food product labels entitled TREAT
dataset, with fully detailed annotations. Our
method achieves superior performance against
two competitive models designed for long se-
quences on the proposed TREAT dataset.

I. Introduction. Information extraction from im-
ages and unstructured text plays a key role in natu-
ral language understanding (NLU) with direct im-
pact in domains such as news content synthesis (Oz-
soy et al., 2011; Moratanch and Chitrakala, 2017;
Foong et al., 2015), query search (Choi et al., 2018)
or knowledge-base systems (Agirre et al., 2018).
The transformer architecture (Vaswani et al., 2017)
played a pivotal role in advancing the state-of-the
art due to its robustness with respect to tasks re-
lated to sequential data manipulation and under-
standing. Its success relies mostly in the attention
mechanism, considered as a key component for its
versatility and its ability to self-specialize and filter
the input information flow.

At the same time, the attention is a curse for

transformers, as it scales quadratically with respect
to the size of the input sequence. To overcome this
limitation, we propose a sequence parsing frame-
work for textual information understanding allow-
ing for indefinitely large input sequences, with
focus on the NER task. Our method is entitled
LANTERN (i.e. LArge sequeNce TransformER
for NER). This is achieved via a multi-stage trans-
former approach over a latent space representation
of the input sequence inspired from (Jaegle et al.,
2021a) and adapted to NER. The key innovation we
propose is a framework which analyses the entire
sequence via a latent space attention-based mod-
elling and leverages a multi-stage prediction setup.

II. Related Work. The transformer based archi-
tecture led to significant advances across major
areas of NLU such as text classification (Lin et al.,
2021), question answering (Choi et al., 2018), se-
quence to sequence translation (Rae et al., 2019;
Lewis et al., 2019) and sentiment analysis (Zhang
et al., 2018).

Pretraining (Yang et al., 2019; Devlin et al.,
2018; Brown et al., 2020) proved extremely useful
for generic language understanding tasks. These
are unsupervised learning models which produce a
vocabulary representation of the unlabelled train-
ing corpus via a masked language modelling task.
One such model is Bidirectional Encoder Repre-
sentation from Transformers (BERT) (Devlin et al.,
2018). Given the pretrained weights of the model
obtained from a large unlabelled data corpus, it
has proven quite impactful in terms of peak per-
formance and versatility for different downstream
linguistic tasks, such as question answering (Garg
et al., 2020; Laskar et al., 2020), NER (Xu et al.,
2020b,a; Li et al., 2021; Zhang et al., 2020; Hwang
et al., 2020; Lee et al., 2022; Huang et al., 2022;
Sandu et al., 2022) or sentence / document classifi-
cation (Lin et al., 2021).

Most of these approaches are constrained by
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Figure 1: (a) TREAT labelling sample. Visualizations of entity-based annotations containing nutrient informa-
tion. First, the annotators look for the [PER100] keyword, followed by the identification of the key / value pair
of the nutrients of interest. (b) Word cloud visualization of TREAT words. The vocabulary of interest is strongly
related to ingredient and nutritional information word corpus. Some of the highest occurring words are measure-
ments such as g or kcal. (c) Stage-wise performance of LANTERN on TREAT dataset. The performance
improves across stage and batch dimensions, with a significant gap across the first stages.

Carbohydrates Energy Proteins Salt Sugar Total Fat Saturated Fat
Statistic All Other Per 100 Key Value Key Value Key Value Key Value Key Value Key Value Key Value
Min / Max 4/2007 4/1916 0/24 0/44 0/11 0/22 0/17 0/26 0/10 0/20 0/10 0/31 0/10 0/49 0/19 0/14 0/7

Mean 488.63 458.69 2.01 1.36 1.00 1.36 1.92 1.18 1.00 0.98 0.81 2.12 0.93 1.33 1.03 2.11 0.64

Std. 165.8 162.24 1.94 2.12 0.82 1.8 1.68 1.6 0.8 1.5 0.8 3.26 0.75 2.23 0.98 4.86 0.79

Median 482 462 2 1 1 1 2 1 1 1 1 1 1 1 1 0 0

Table 1: TREAT Dataset Image-Level Statistics. Per image statistics with the words corresponding to each
unique entity from TREAT. The [OTHER] entity is dominant (i.e. it represents ≈ 85% out of the total labelled
data corpus) as the nutrient section of a food label usually occupies around 10% of the total space of the label. The
mean / median statistics does not reflect directly the length of the sequence inputed to LANTERN. It is processed
via a tokeniser (Kudo, 2018) and the resulted length is usually 2.5× longer.

the quadratic computational limitation of the atten-
tion mechanism (sequences of up to 512 elements),
thus bounded to subcontext. Several approaches
(Dai et al., 2019; Goyal et al., 2021; Beltagy et al.,
2020; Zaheer et al., 2020; Ainslie et al., 2020) con-
sidered modelling the sequence as a whole from
the prism of the attention mechanism, even for se-
quence lengths� 512.

In (Beltagy et al., 2020), the authors propose a
sparse attention mechanism to analyse larger se-
quences of up to 4096 elements, while keeping
the computational time of the attention matrix lin-
ear with respect to the input size. A similar setup
is also proposed in (Zaheer et al., 2020) using an
additional random iterative attention mechanism
to parse the entire graph of the sequence. Differ-
ent from these approaches, our proposed pipeline
can process indefinitely large sequences and has
a stage-wise refinement mechanism of the NER
predictions.

III. Dataset. Additionally, we introduce a new
language modelling problem setup from the um-
brella of NER tasks, namely nutritional information
extraction from images of food products. This was
achieved by collecting a dataset of food product im-
ages, entitled TREAT (i.e. nuTRiEnt fAcTs) with
11, 926 images depicting food products with fully

extracted text information, bounding box image
localization and complete NER class label anno-
tations with sequences of up to ≈ 2, 000 words
(≈ 5000 tokens) to be parsed. Labelling was per-
formed using a web interface highlighting words.
Annotators had to individually assign classes to
words of interest. The proposed NER use-case is
formulated on a linguistically diverse dataset in
terms of semantics and specialisation. The col-
lected data covers multiple European languages
(EN, FR, DE, ES, IT, etc.) containing the nu-
tritional information expressed with different lan-
guages within the same input text sequence. We
further explore the specialisation in the compliance
domain, learning to reason within the vocabulary
of text content from food product labels. They
must contain information related, but not limited,
to ingredients, storage instructions, manufacturer
addresses, nutritional information, allergen state-
ments, advertising and production process details.
Every piece of information can be found in stan-
dalone paragraphs, lists or table structures. The
general layout is rich in both structure and visual
cues. In terms of textual information, the collected
data has both semantic text with full paragraphs
or text structures (e.g. instructions, tables, lists or
advertisement sections) and independent sentences
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Figure 2: Detailed overview of our proposed large-sequence parsing model. Given an image I, we first extract
all the words using a state-of-the-art algorithm, obtaining the complete list of words X. Next, X is filtered using
RADAR thus obtaining the most relevant words with respect to our entity recognition task, Xfiltered. The filtered
list is embedded into a language and positional representation, E, of the remaining words. Lastly, E goes through
LANTERN to generate predictions Ỹ.

Carbohydrates Energy Proteins Salt Sugar Total Fat Saturated Fat
Model All Other Per 100 Key Value Key Value Key Value Key Value Key Value Key Value Key Value
(Beltagy et al., 2020) 0.74 0.96 0.78 0.78 0.71 0.80 0.70 0.78 0.71 0.74 0.68 0.78 0.73 0.75 0.72 0.67 0.52

(Zaheer et al., 2020) 0.76 0.96 0.79 0.77 0.74 0.83 0.69 0.78 0.78 0.79 0.77 0.80 0.77 0.79 0.74 0.64 0.53

(Xu et al., 2020b) 0.61 0.96 0.86 0.59 0.55 0.69 0.67 0.45 0.41 0.41 0.4 0.55 0.53 0.51 0.50 0.48 0.44

Ours 0.86 0.97 0.83 0.94 0.82 0.94 0.87 0.93 0.77 0.91 0.79 0.94 0.76 0.89 0.76 0.87 0.78

Table 2: TREAT Test Set - Word Level Results. The LayoutLM baseline failed to provide quality results as its
context window was limited to 512 elements. Approaches of (Beltagy et al., 2020) and (Zaheer et al., 2020) obtain
superior results as they are able to handle larger sequences (i.e. 2048). The highest F1-score is obtained with
LANTERN as it is able to grasp the entire textual context of the product content.

such as titles, individual statements or website ref-
erences. As illustrated in figure 1 (b), the down-
loaded images contain a high variability in terms
of vocabulary corpus, mainly related to ingredient
or nutritional aspects. Check figure 1 (a) for a la-
belling sample and table 1 for dataset statistics. Ad-
ditionally, we perform an analysis from a linguistic
point of view and notice the following distribution
of dominant languages: 40% english, 11% span-
ish, 11% italian, 10% german and 8% french. The
rest of 20% are data samples with mixed or other
languages, unable to determine the dominant one.

We build a vocabulary with 15, 000 unique to-
kens using (Kudo, 2018). Up to 24% of the resulted
tokens are made of 5 characters, while tokens with
different sizes occupy a relatively uniform space
(e.g. 13% tokens are 7 characters long, 10% to-
kens are 6 characters long and tokens with 2 or 3
characters take 8% of the vocabulary space).

IV. Methodology. Let I ∈ Rh×w denote an
image containing a list X = (x1 . . . xMI

) of

MI words, with xi = (wi, ci) where wi is the
OCR (AWS-Textract, 2019) extracted word and
ci ∈ [0, 1]4 represents the bounding box coordi-
nates relative to dimensions of I. Additionally, let
Y = (y1 . . . yMI

) denote the class labels for each
word wi in X.

Given the high inflation of [OTHER] inside
TREAT (see table 1) we constructed RADAR
(RelevAnt worD clAssifieR) using a bidirectional
LSTM model (Hochreiter and Schmidhuber, 1997)
at character level to predict if the word is relevant or
irrelevant ([OTHER]). Thus, we have Xfiltered =
{xi | RADAR(xi) > α, i = 1 . . .MI} where
α is validated to obtain a recall of 1 for relevant
words. To simplify notation, we identify Xfiltered

with X.

The language based embeddings for wi are sup-
plemented with positional encodings (Vaswani
et al., 2017). Thus, we obtain the embedding rep-
resentation E = (e1 . . . eMI

) of X where ei =
(ewi1 . . . e

w
idw
, exi1 . . . e

x
idx
, eyi1 . . . e

y
idy

).
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This leads to an input sequence E ∈ RM×d,
where d = dw + dx + dy. The dimensions dw, dx
and dy denote language embedding sizes while x
and y denote positional variables with respect to
image width and height, respectively. Additionally,
a latent block representation denoted with LINIT ∈
RN×d (N �M ) is learned. The intuition behind
the latent block is to learn a projection of the most
relevant information with respect to the NER task.

The LANTERN module is applied in a stage-
wise manner. Each stage receives as input the
embedded input sequence, E, and a latent block,
Lt ∈ RN×d, and it predicts an array, Ỹt. In the fol-
lowing, we will describe the computational stages
t ∈ {0 . . . T}. For t = 0, we have LINIT ∈ RN×d.

STAGE t=0: we start by applying a cross-
attention mechanism Θ : RM×d → RN×d, over E
and LINIT. Functions k(·), q(·) and v(·) represent
the keys, queries and values, respectively.

Θ(E,L) = softmax(
q(L)k(E)>√

d
)v(E) (1)

This will basically result in a projection of the in-
put sequence E to the latent space RN×d through
LINIT. We will denote the resulted projected latent
block with LINIT

Θ = Θ(E,LINIT).
Next, LINIT

Θ is passed through a transformer en-
coder, Γ : RN×d → RN×d, to learn an implicit
statistic between the elements of the latent block
elements. The initial latent block information is
added as a residual information on the resulting
encoded information from Γ, thus having

LINIT
Γ = Γ(LINIT

Θ ) + LINIT (2)

Lastly, we apply a reversed cross-attention mech-
anism, ΘREV : RN×d → RM×d over the input se-
quence E and the latent block LINIT

Γ processed
through transformer Γ.

ΘREV(E,L) = softmax(
q(E)k(L)>√

d
)v(L) (3)

The reversed cross-attention operation provides a
reprojection of the transformed latent block infor-
mation LINIT

Γ to the input space, RM×d. Thus,
the resulted information from the reversed cross-
attention will be, LINIT

ΘREV
= ΘREV(E,LINIT

Γ ).
LINIT

ΘREV
is next passed through a feed-forward net-

work, Ψ(·), which provides the class predictions for

the sequence’s entities, Ỹt=0 (i.e. t = 0 denotes
the first stage), and it is being optimized using a
cross-entropy loss function.

STAGE t>0: This process is repeated for sev-
eral iterations, in a multi-stage setup. For the next
stages (i.e. stage 0 < t ≤ T ), the latent sequence
Lt is initialized with the latent block information
obtained from equation 2 of stage t− 1.

Lt =

{
LINIT

Γ , if t = 1

Lt−1
Γ , otherwise

The prediction of stage t − 1 of the NER task,
Ỹt−1, is fed to the feed-forward module of the
current stage, t, as a weight factor. Also, Ỹt−1, is
used as a weight to the attention-matrix computed
at the current stage, t, obtained via a projection
function Φ : RM×dtarget → RM×N where dtarget
is the total number of entities to be predicted

ΘREV(E,L,A) = softmax(
q(E)k(L)>√

d
�A)v(L)

where �(·) : RM×N → RM×N represent
the Hadamard product and A ∈ RM×N is a
weight matrix. Thus, the reprojected latent block
information from stage t becomes, Lt

ΘREV
=

ΘREV(E,Lt
Γ,Φ(Ỹt−1))).

At each stage, a cross-entropy loss is applied
over the output of Ψ : RM×d → RM×dtarget ,
which are cumulated until the final stage T ,LNER =∑T

t=0 LtNER(Ỹt,Y).
Given an input image I and a learned latent block

L, the framework outputs an array Ỹ with class pre-
dictions for all the relevant words identified within
image I. A step-by-step breakdown of our pipeline
is illustrated in figure 2 and in algorithm 1.

V. Experiments. We conduct experiments on
our proposed dataset TREAT. Prior to applying
LANTERN, we filtered a part of the irelevant word
corpus (i.e. [OTHER]) using RADAR. The accu-
racy of RADAR is 85% and we filtered 48% of the
irrelevant words. The reason behind filtering such
a low quantity of [OTHER] with respect to the ob-
tained accuracy is because the majority of the word
corpus from TREAT represents numerical values
(e.g. 100g, 30ml) which we marked with [NUM].
These words ([NUM]) cannot be filtered without
leveraging their positional context as they can be
linked with nutrient keys. Thus, we decided to in-
troduce them as such inside LANTERN without
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(Stage 0) (Stage 1) (Stage 2) (Stage 3) (Stage 4) (Stage 5) (Ground Truth)

Figure 3: Multi-stage Qualitative Results obtained with LANTERN on TREAT Test Set. We show the progres-
sive improvement of the generated entities achieved via the multi-stage component of LANTERN. The refinement
is clearly visible from stage to stage, as the model turns its attention towards the words describing the nutrients of
interest.

RADAR filtration. In table 2 we report the word-
level precision, recall and F1-score. We use a total
of 6 stages with a total embedding size of d = 64,
where dw, dx and dy are set to the values of 32, 16
and 16, respectively. The dimension N of latent
block L is 256. Our method is able to achieve supe-
rior results compated to similar NER frameworks
(Xu et al., 2020b), (Beltagy et al., 2020) and (Za-
heer et al., 2020), some of them being designed for
long sequences. For a fair evaluation, we compare
against other competitive NER baselines using text
and position embeddings only.

Algorithm 1 LANTERN
Input: I ∈ Rh×w, LINIT ∈ RN×d

Output: Ỹ = (ỹ1 . . . ˜yM )
1 X← OCR(I)
2 Xfiltered ← RADAR(X)
3 E← Embed(Xfiltered)
4 LINIT

Θ ← Θ(E,LINIT)
5 LINIT

Γ ← Γ(LINIT
Θ ) + LINIT

6 Ỹ0 ← Ψ(ΘREV(E,LINIT
Γ ))

7 for t = 1 . . . T do
8 if t = 1 then
9 Lt ← LINIT

Γ

10 else
11 Lt ← Lt−1

Γ

12 Lt
Θ ← Θ(E,Lt)

13 Lt
Γ ← Γ(Lt

Θ) + Lt

14 Ỹt ← Ψ(ΘREV(E,Lt
Γ,Φ(Ỹt−1)))

15 Ỹ ← ỸT

In figure 3 we showcase multi-stage predic-
tions, thus highlighting the refinement aspect of
our framework on a practical example.

Method Precision Recall F1-Score
LANTERN w/o RADAR 0.83 0.80 0.81
LANTERN w RADAR 0.84 0.87 0.86

LANTERN w/o weight sharing 0.83 0.80 0.81
LANTERN w weight sharing 0.82 0.82 0.82

LANTERN w Language 0.39 0.42 0.40
LANTERN w Language + Positional 0.83 0.80 0.81

Table 3: Ablation study on various components of
LANTERN over TREAT dataset. The highest impact
in terms of performance is obtained with the RADAR
based filtration of [OTHER]. Parameter weight sharing
across all the stages also impacts positively the perfor-
mance and it helps the model to convergence faster.

In table 3 we analyse the impact of the various
model components and embedding types used by
our model, thus validating the architectural inno-
vative aspects of our method. In figure 1 (c) we
show the impact of the multi-stage component. The
refinement aspect of the method is visible between
consecutive stages leading to significant improve-
ment between the first and last stages.

VI. Conclusions. We propose a novel method for
NER, specifically designed for indefinitely large
sequences. It leverages a multi-stage transformer-
based pipeline which breaks the quadratic compu-
tational constraints of the attention mechanism by
projecting the input sequence to a latent space rep-
resentation and a stage-wise setup which acts as a
context refinement of the entity predictions. The
methodology was evaluated on a novel and difficult
NER use case, nutritional information extraction,
proving superior results over other strong baselines
specifically designed for long sequence parsing.
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