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Abstract

Multilingual neural machine translation
(MNMT) jointly trains a shared model
for translation with multiple language
pairs. However, traditional subword-based
MNMT approaches suffer from out-of-
vocabulary (OOV) issues and representation
bottleneck, which often degrades translation
performance on certain language pairs. While
byte tokenization is used to tackle the OOV
problems in neural machine translation (NMT),
until now its capability has not been validated
in MNMT. Additionally, existing work has
not studied how byte encoding can benefit
endangered language translation to our knowl-
edge. We propose a byte-based multilingual
neural machine translation system (BMNMT)
to alleviate the representation bottleneck and
improve translation performance in endangered
languages. Furthermore, we design a random
byte mapping method with an ensemble
prediction to enhance our model robustness.
Experimental results show that our BMNMT
consistently and significantly outperforms
subword/word-based baselines on twelve
language pairs up to +18.5 BLEU points, an
840% relative improvement.

1 Introduction

Neural Machine Translation (NMT) has achieved
great success and dominates recent research on
translation tasks in both academic and industry
studies (Wu et al., 2016; Stahlberg, 2020; Chen
et al., 2018). In particular, multilingual neural ma-
chine translation (MNMT) has been shown to ben-
efit low-resource language translation by jointly
training MNMT models with high-resource lan-
guages (Johnson et al., 2017). However, most ex-
isting NMT/MNMT models are based on word
or subword tokenization, which has three main
problems. First, language-specific tokenizers,
such as BPE (Shaham and Levy, 2021), may in-
troduce inaccurate segmentations (Banerjee and

Bhattacharya, 2018). Second, out-of-vocabulary
(OOV) words/subwords are still unavoidable and
hurt translation performance. Third, some lan-
guages show a decrease in translation quality with
multilingual training due to specific characteristics
of the language variety, a problem known as the
representation bottleneck (Dabre et al., 2020; Zoph
and Knight, 2016). It essentially limits the im-
provement of transfer learning from high-resource
NMT, like Chinese-English (Gu et al., 2018) to the
low-resource NMT, like Aymara-Spanish.

Recently, byte-based NMT models show com-
parable performance to word/subword-based mod-
els (Shaham and Levy, 2021; Wang et al., 2020).
Because modern byte encoding systems such as
UTF-8 have only 256-byte entries in total, i.e.,
0x00 to 0xff, the unified byte tokenization in
all languages obviates the traditional preprocess-
ing of language-specific subword tokenization and
restricts the vocabulary to a fixed and small one.
Therefore, the 256-byte-sized UTF-8 vocabulary
avoids the OOV issues.

Despite the advantages of byte tokenization, the
byte encoding has not been investigated in mul-
tilingual NMT yet, to the best of our knowledge.
In this paper, we show that byte tokenization can
be naturally applied to MNMT systems with great
advantages. Given the unified encoding of byte
tokenization in all languages, byte encoding is able
to address the representation bottleneck problem in
MNMT systems effectively. For example, Figure 1
shows the overlaps of subword and byte vocabular-
ies among multiple languages. We notice with the
growth of the language number, there is almost no
overlap of word vocabularies, while the byte vocab-
ulary still has a large overlap. This large overlap
of byte vocabulary enables enhanced knowledge
sharing among different languages and can help
the model learn more generalized representations
for these languages. Taking the low resource as a
common property for most endangered languages,
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Figure 1: The vocabulary overlap ratio of byte and sub-
word tokens. The area upper/lower bound denotes the
highest/lowest ratio among all language combinations,
given a language number.

we think byte-based MNMT is particularly helpful
for endangered language translation. Therefore, we
aim to incorporate byte tokenization in MNMT to
alleviate the representation bottleneck problem in
multilingual translation.

Besides incorporating byte encoding into
MNMT, we aim to further investigate the gener-
alizability of byte encoding. We observed that byte
mapping can be arbitrary. For example, the char-
acters “a”-“z” are represented with bytes 97-122
using UTF-8. However, we conjecture “a”-“z” can
be any byte from 0 to 255. The byte representation
does not need to be determined as a single encod-
ing mapping. However, existing byte-based NMT
systems do not consider such randomness of byte
encoding. Moreover, we think language models
should provide similar performance given different
byte encoding methods to improve the generaliz-
ability and robustness. Therefore, we design a new
encoding method that we call Random Byte Encod-
ing by incorporating the random representation of
bytes and reduce the variance of model outputs.

In this work, to address these challenges, we pro-
pose a Byte-based Multilingual Neural Machine
Translation framework (BMNMT). It simultane-
ously considers the byte randomness and the en-
dangered languages in multilingual translation and
works as follows. First, we design a novel MNMT
framework that can take the byte encoding of sen-
tences as inputs. Then, we incorporate the ran-
domness of the byte encoding as discussed above
by generating random byte mapping to replace the
original byte ordering. We finally propose an en-
semble prediction method by combining different
encodings for reliable outputs.

Our BMNMT achieves amazing results in im-
proving the low-resource and the endangered lan-

guage translation that often does not have satis-
factory results due to scarce resources and other
linguistic characteristics (Levow et al., 2021; Ens
et al., 2019; Liu et al., 2022). We demonstrate
that our BMNMT consistently and significantly
enhances the translation performance on all lan-
guages, including five high-resource languages,
German, Arabic, Chinese, Farsi, Turkish to English,
one low-resource language, Slovenian to English,
and ten endangered languages, Asháninka, Aymara,
Bribri, Guarani, Nahuatl, Otomí, Quechua, Rará-
muri, Shipibo-Konibo, and Wixarika to Spanish.
For example, the translation BLEU score [%] in-
creases from 0 to 3.9 for the endangered language
Shipibo-Konibo, and from 2.2 to 20.7 for the low-
resource language Slovenian to English, i.e., +18
BLEU points. The contributions of this work are
summarized as follows:

• We propose an effective byte-based MNMT
framework to alleviate the representation bot-
tleneck problem in word/subword-based mul-
tilingual translation, especially for endangered
languages.

• We design a novel method of random byte
encoding with ensemble prediction to enhance
the generalizability and robustness of our byte-
based MNMT model.

• We evaluate BMNMT on various training
strategies. Extensive experiments validate the
effectiveness, generalizability, and robustness
of our model.

In the following context, we first outline the pre-
vious work in Section 2, then describe our method
in Section 3, finally show our experimental results
in Section 4 and conclude this work in Section 6.

2 Related Work

Multilingual Neural Machine Translation
Word and subword-level tokenizations are widely
used in natural language processing, including
NMT/MNMT. Morishita et al. (Morishita et al.,
2018) propose to incorporate hierarchical subword
features to improve neural machine translation.
Massively multilingual NMT models are proposed
by Aharoni et al. (Aharoni et al., 2019) and
Arivazhagan et al. (Arivazhagan et al., 2019). They
are trained on massive language pairs and show
a strong and positive impact on low-resource
languages. However, these models tend to have
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representation bottlenecks (Dabre et al., 2020),
due to large vocabulary size and large diversity of
training languages. Two MNMT systems (Tan
et al., 2019; Pan et al., 2021) are proposed to solve
this problem by modifying the model architectures,
adding special constraints on training, or designing
more complicated preprocessing methods. Pan
et al. (Pan et al., 2021) adopt the contrastive
learning scheme in many-to-many MNMT. Tan et
al. (Tan et al., 2019) propose a distillation based
approach to boost the accuracy of MNMT systems.
However, these word/subword-based models still
need complex preprocessing steps such as data
augmentation or special model architecture design.

Byte tokenizaiton Recently, byte tokenization
methods are proposed to address the OOV prob-
lems in word/subword-based models. Ruiz et
al. (Ruiz Costa-Jussà et al., 2017) compare
character-based and byte-based NMT systems and
show that byte-based systems converge faster.
Wang et al. (Wang et al., 2020) combine subwords
tokenization with byte encoding and propose a byte-
level BPE (BBPE). Shaham and Levy (Shaham and
Levy, 2021) propose embeddingless byte-to-byte
machine translation by replacing the token embed-
ding layer in subword-based models with one-hot
encoding for bytes. However, among these mod-
els, byte-level MNMT is still not studied, and the
randomness of byte tokenization as we discussed
above is not investigated.

Therefore, different from the previous work, we
mainly focus on byte-based MNMT, while simulta-
neously considering the randomness of bytes and
endangered languages.

3 Methods

3.1 Preliminary of Byte Representation

Any writing system can be encoded with a byte
sequence (Needleman, 2000; Shaham and Levy,
2021), using pre-defined byte encoding methods,
such as UTF-8 for almost all languages, GBK for
simplified Chinese, and eucJP for Japanese.

Formally, we use a mapping function f : C →
Bn to denote the mapping from characters in a raw
sentence to bytes. Here, C is the character domain
for all languages, B = (0, 1, . . . , 255) is the byte
domain, and n is the maximum byte number that a
character maps into. Also, we define f−1 on a byte
sequence to convert it back to the text. In this paper,
we use UTF-8 as the mapping function, because it
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Figure 2: Byte representation of four languages.

is a general encoding method and contains almost
all characters in existing languages. Figure 2 shows
four different languages represented in bytes, in-
cluding English (en), Chinese (zh), German (de),
and Turkish (tr). A character in each language
is mapped into bytes. Particularly, characters of
some languages such as Chinese are mapped into
multiple bytes.

3.2 Problem Definition

Here, we first describe the input and output of the
multilingual translation task.

Definition 1 (Multilingual Domain). We use S =
{S1,S2, . . . ,SN} to denote the source language
domain and use T = {T1, T2, . . . , TM} to denote
the target language domain. Si or Tj represents
a type of language. Note that S and T can have
intersection.

Definition 2 (Multilingual Sentence Pair). Given
the source domain S and the target domain T ,
we define the multilingual sentence pair set L =
{(si, sj) | si ∈ Si and sj ∈ Tj and Si ̸= Tj}.
Here, the si and sj denote two parallel sentences
from different languages.

Based on the above description, we formally
define the multilingual translation task as follow:

Definition 3 (Multilingual Translation). Given the
multilingual sentence pair L as the training set
and a translation model M with parameters θ, we
aim to find the optimized parameters θ̂ of M to
minimize the following objective function:

θ̂ = argmin
θ

∑
(si,sj)∈L

−p(sj) log p(ŝj |si;θ). (1)

Here, ŝj is the predicted sentence of the target
sentence sj . To generate each token x̂tj in ŝj ,
we use si and the previous tokens s<t

j of sj to
calculate a probability p(x̂tj) = M(si, s

<t
j ;θ).

Assume sj consists of m tokens (byte or sub-
word): (x1j , x

2
j , . . . , x

m
j ), the conditional probabil-
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Figure 3: The overview of the proposed byte-based
multilingual translation model BMNMT.

ity p(ŝj |si;θ) is defined as:

p(ŝj |si;θ) =
m∏
t=1

p(x̂tj) =
m∏
t=1

M(si, s
<t
j ;θ).

(2)

3.3 Multilingual translation with byte-level
tokenization

Suppose we are given a sentence pair (si, sj) ∈ L
and si = (c1i , . . . , c

k
i ), sj = (c1j , . . . , c

w
j ), respec-

tively. c is a character of si or sj . k and w denote
the character number of the raw source sentence
si and target sentence sj , respectively. Our pro-
posed multilingual translation framework BMNMT
contains three main parts: byte encoding, model
forward, and byte decoding. The model overview
of BMNMT is shown in Figure 3.

Byte encoding We first use the byte mapping
function f to encode the raw sentence pairs into
byte sequences. Take sj in Figure 3 as an example.
We first map w characters in each raw sentence into
a new sequence rj of m byte tokens:

rj = (f(c1j ), f(c
2
j ), . . . , f(c

w
j ))

= (x1j , x
2
j , . . . , x

m
j ). (3)

It is worth noting that we also consider the punc-
tuation and the space symbol in the raw text as
characters and encode them into bytes.

Model forward Our byte-level multilingual
translation model is based on the state-of-the-art
Transformer architecture (Vaswani et al., 2017),
which includes an encoder Enc and a decoder Dec.
After getting the byte tokens of sentence pairs, we
convert ri and rj to one-hot vectors ri and rj . Then,
the encoder encodes the source sequence into hid-
den representations, and the decoder outputs logits

ht
j ∈ Rd for each generated token x̂tj of the target

sentence. Here, d is the dimension of the decoder
output. Finally, M calculates a probability p(x̂tj)
with a fully-connected (FC) layer with Softmax:

ht
j = Dec(Enc(ri), r

<t
j ) ∈ Rd, (4)

p(x̂tj) = Softmax(Wht
j) ∈ R256. (5)

Here, W ∈ R256×d is the weight in the FC layer
to project the output space of the decoder into the
byte space.

Byte decoding After getting the probability dis-
tribution p(x̂tj) of the current output token x̂tj , we
then use Beam Search (BS) to sample the target
byte token x̂tj . Finally, after generating the entire
byte sequence, we use the inverse mapping f−1 to
retrieve the real generated text sentence ŝj :

x̂tj = BS(p(x̂tj)) (6)

ŝj = f−1(x̂1j , x̂
2
j , . . . , x̂

m
j ) (7)

Note that, in the inference process, we auto-
regressivelly output the target tokens using the
previous generated tokens ŝ<t

j instead of s<t
j , i.e.,

p(x̂tj) = M(si, ŝ
<t
j ;θ).

3.4 Random byte encoding and ensemble
prediction

As discussed in the previous section, we use a one-
hot vector to represent a byte token. For example,
in Figure 3, the byte representation of character
“h” is 104 under UTF-8 encoding. In the one-hot
vector, the entry in 104 is one and the others are
0. However, we conjecture UTF-8 is just one of
the mapping functions for bytes. The language
model should not be limited by a single byte encod-
ing method, because a single encoding method can
bring possible bias in model representation. Rare
resources of data and other characteristics make it
harder for endangered languages on translation task.
Therefore, we propose an additional random byte
encoding method besides the basic byte tokeniza-
tion by generating multiple random byte mappings.
Then we design an ensemble prediction by training
multiple models Ms with different byte mappings
and output an average probability among all Ms
to enhance the robustness of the translation model.

Random byte mapping To generate multiple
random mappings, we define z permutation func-
tions g1, . . . , gz by shuffling the original bytes
B = (0, 1, . . . , 255) to P1, . . . ,Pz . Here, gl is
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Figure 4: Random byte mapping and ensemble predic-
tion. (a) Random byte mapping with z different byte
permutations of UTF-8. (b) Ensemble prediction by
producing z BMNMT for each byte permutation.

a one-to-one mapping from B to Pl. Figure 4(a)
shows one example of the random byte mapping.
g1(0) = 4 maps byte 0 in B to byte 4 in P1.

Ensemble prediction In the previous section, we
directly use byte encoding from UTF-8. By in-
troducing random byte encoding, we first update
Equation (3) using the byte mapping gl:

rlj =
(
gl
(
x1j

)
, gl

(
x2j

)
. . . , gl

(
xmj

))
(8)

Then, we have z byte-level input sentence pairs
(r1i , r

1
j ), (r

2
i , r

2
j ), . . . , (r

z
i , r

z
j ) for each (si, sj). For

l-th random byte encoding, we adopt an individ-
ual multiliangual Transformer Ml to take the l-th
byte-level language pair under mapping gl(·) as
the the input. As a result, we calculate z probabil-
ity distributions p1(x̂

t
j), p2(x̂

t
j), . . . , pz(x̂

t
j) from

Equation (5). Next, we ensemble these z distribu-
tions. pl(x̂

t
j) is a vector of 256 entries. For each

entry v ∈ B, we find the corresponding entry gl(v)
in probability distributions pl(x̂tj) of Pl and calcu-
late an average probability from P1 to Pz:

p̄v(x̂tj) =
1

z

z∑
l=1

p
gl(v)
l (x̂tj). (9)

We still take Figure 4(a) as an example. When cal-
culating the probability of byte 0 in B, we find byte
4 in P1, byte 53 in P2, . . . , and byte 18 in Pz . Fi-
nally, we use p̄(x̂tj) to execute beam search instead
of p(x̂tj) in Equation (6). The ensemble prediction
modules are demonstrated in Figure 4(b).

4 Experimental Settings

4.1 Dataset
In our experiments, we use the English-centric
IWSLT14 dataset (Cettolo et al., 2014) and the
IndCorpus dataset (Chen et al., 2021).

Specifically, in IWSLT14, we select five high-
resource language pairs, i.e., Chinese, Arabic,
German, Farsi, Turkish to English, and one low-
resource language pair, i.e., Slovenian to English.
When preprocessing IWSLT14, we remove sen-
tences longer than 800 bytes in the training set,
following the settings in (Shaham and Levy, 2021).
In total, about 5% samples are removed.

The IndCorpus contains ten endangered lan-
guages. We translate each language to Spanish.
Because the entire test set of IndCorpus is not pub-
licly available, we adopt the Dev set as the test
data. The statistics of IWSLT14 and IndCorpus
can be found in Appendix A. Note that, although
some endangered languages in IndCorpus have a
large number of training samples, we still regard
them as endangered languages because they have
the characteristics of endangered languages.

4.2 Baselines and Model Settings

To study the representation bottleneck when up-
grading from monolingual translation to multi-
lingual translation, we first include a byte-based
monolingual model. Next, to validate the effec-
tiveness of byte-based MNMT, we also incorporate
two subword-based monolingual and multilingual
models. Specifically, we select the following model
schemes as baselines with different model architec-
tures on two datasets:

• B-N (Shaham and Levy, 2021). To valid the
ability of our byte-based MNMT model BM-
NMT in alleviating the representation bottle-
neck, we select a byte-based NMT model (B-
N) for monolingual translation.

• W-N (Mager et al., 2021). To compare
the translation performance between our
model and subword-based model, we select a
subword-based NMT model (W-N) for mono-
lingual translation.

• W-M. We implement a subword-based MNMT
model (W-M) for multilingual translation
based on W-N to further evaluate the effective-
ness of our byte-based model on multilingual.

The framework of all models including our model
are Transformers with the same architecture on
each dataset. For the model scheme in IWSLT14,
we follow the architecture in (Shaham and Levy,
2021). For IndCorpus, we follow the architecture
in (Mager et al., 2021). For both tokenizations,



4412

all language pairs share the same model and
the same dictionary. For the subword-based
models, the embedding layers are shared among
source and target languages. For byte-based
models, we remove the embedding layers follow-
ing (Shaham and Levy, 2021). The detailed model
settings on two datasets including architecture
and environment are listed in Appendix B. The
source code is available at the Github repo:
https://github.com/MengjiaoZhang/
Byte-based-multilingual-NMT.

4.3 Hyper-parameters
Following (Shaham and Levy, 2021) and (Mager
et al., 2021), for subword tokenization with BPE,
we use 10,000 merging steps. The dropout rates
of models in IWSLT14 and IndCorpus are 0.2 and
0.4, respectively. Due to the limited training data
in IndCorpus 2021, we also set attention dropout as
0.2 and ReLU dropout as 0.2 to avoid over-fitting
in IndCorpus. The optimizer is Adam (Kingma and
Ba, 2015) with the inverse square root learning rate
scheduler. We set the warm-up steps as 4,000 and
the minimum learning rate is 10−7. The training
epoch for IWSLT14 is 200 with early stop when
observing no decrease of validation loss within 5
consecutive epochs. The epoch number for IndCor-
pus is 50 without early stop because we use the dev
set in IndCorpus as the test data.

4.4 Evaluation Metrics
To evaluate the translation results of all mod-
els, we use the commonly adopted BLEU scores
on both datasets and use an additional metric
ChrF (Popović, 2015) to evaluate endangered lan-
guages in IndCorpus. Here, ChrF denotes the char-
acter n-gram F-score. We adopt ChrF because not
all endangered languages in IndCorpus have a tok-
enization standard (Mager et al., 2021).

4.5 Training strategies
To analyze the causes of the representation bot-
tleneck and explore model generalizability while
studying the effectiveness of the basic BMNMT
framework and ensemble prediction, we consider
multiple scenarios related to languages resource.

Case 1. Jointly Train BMNMT with both High-
and Low-resource language pairs without finetun-
ing and ensemble prediction (T-HL).

Case 2. Jointly Train BMNMT only with the
High resource language pairs without finetuning

Byte (BLEU) Subword (BLEU)

B-N BMNMT (Ours) W-N W-M

ar-en 30.8 30.4 (-0.4) 30.5 28.8 (-1.7)
de-en 34.4 34.2 (-0.2) 34.1 33.1 (-1.0)
fa-en 22.7 24.2 (+1.5) 21.6 23.0 (+1.4)
tr-en 22.8 22.5 (-0.3) 22.2 21.9 (-0.3)
zh-en 15.8 15.8 (+0.0) 15.9 15.8 (-0.1)

sl-en 2.2 20.7 (+18.5) 8.9 20.2 (+11.3)

Avg. 21.4 24.6 (+3.2) 22.2 23.8 (+1.6)

Table 1: Representation bottleneck analysis on Case 1
(T-HL) using the IWSLT14 dataset. Values in “()” repre-
sents the BLEU score difference between multilingual
and monolingual models. Here, Slovenian (sl) is a rela-
tively low-resource language.

and ensemble prediction (T-H).

Case 3. Jointly Train BMNMT on the
Endangered language pairs without finetuning and
ensemble prediction (T-E).

Case 4. Finetune BMNMT with Endangered lan-
guages on pretrained BMNMT in Case 2 (F-E2).

Case 5. Jointly Train BMNMT on Endangered
languages without finetuning but with ensemble
prediction (T-E+P).

For the first four cases without ensemble, we use
the original UTF-8 encoding. For the last case, we
adopt the proposed random byte encoding method.

5 Experimental Results

In the main paper, we report the BLEU scores of
all cases. The ChrF for endangered languages in
Cases 3-5 can be found in Appendix C.

5.1 Representation Bottleneck Analysis on
Cases 1 (T-HL) and 2 (T-H)

To validate the effectiveness of our model in ad-
dressing the representation bottleneck in multilin-
gual translation with both high and low resource
languages, we adopt the training strategies of Cases
1 (T-HL) and 2 (T-H). First, we run the subword-
based translation baselines on monolingual (W-N)
and multilingual (W-M) languages and calculate
the difference of BLEU scores between them. Then,
we also calculate such difference between BMNMT
and B-N to evaluate whether BMNMT can alleviate
the representation bottleneck in MNMT.

Table 1 shows the results of Case 1 (T-HL) on
IWSLT14 dataset. In this experiment, the high-
resource language pairs are Arabic (ar), German

https://github.com/MengjiaoZhang/Byte-based-multilingual-NMT
https://github.com/MengjiaoZhang/Byte-based-multilingual-NMT
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Byte (BLEU) Subword (BLEU)

B-N BMNMT (Ours) W-N W-M

ar-en 30.8 31.5 (+0.7) 30.5 29.6 (-0.9)
de-en 34.4 35.2 (+0.8) 34.1 33.6 (-0.5)
fa-en 22.7 24.9 (+2.2) 21.6 23.7 (+2.1)
tr-en 22.8 23.8 (+1.0) 22.2 22.4 (+0.5)
zh-en 15.8 16.9 (+1.1) 15.9 16.2 (+0.4)

Avg. 25.3 26.5 (+1.2) 24.9 25.1 (+0.2)

Table 2: Representation bottleneck analysis on Case 2
(T-H) with all high-resource languages in IWSLT14.

(de), Farsi (fa), Turkish (tr), and Chinese (zh) to
English (en), while the low-resource language pair
is Slovenian (sl) to English. We first notice byte-
level models achieve the best performance on al-
most all language pairs. It proves the capability of
byte tokenization in the translation task. Further-
more, as a low-resource language, the translation
from Slovenian to English gains the largest benefit
from BMNMT, and BMNMT has the best average
BLEU score. Therefore, we can conclude that the
application of byte tokenization to MNMT is able
to enhance the knowledge sharing among multiple
languages.

In addition, we notice that subword-based mul-
tilingual translation (W-M) suffers from repre-
sentation bottleneck, because the performance of
some high-resource language pairs ar-en, de-en,
tr-en, and zh-en decrease compared with mono-
lingual translation (W-N). However, our proposed
byte-based multilingual translation shows a much
smaller decrease than word-based models. It fur-
ther proves the ability of BMNMT to alleviate the
representation bottleneck problem in MNMT.

Table 2 shows the results of Case 2 (T-H). Here,
to further study the influence of language resource
on the representation bottleneck, we remove the
low-resource language Slovenian (sl) in Case 1 (T-
HL) and re-train BMNMT and other baselines. We
notice that after removing the language Slovenian,
all MNMT models based on byte and subword gain
a higher performance in the average BLEU score.
However, subword-based W-M still cannot avoid
the representation bottleneck, while our BMNMT
achieves improvement on all pairs against the B-N
model. More importantly, BMNMT has the best
performance on all language pairs.

In summary, when training MNMT with both
high and low-resource languages, the low-resource
languages are a main reason for the representation
bottleneck. Moreover, compared to subword-based

Byte (BLEU) Subword (BLEU)

B-N BMNMT (Ours) W-N W-M

quy-es 2.4 3.5 (+0.9) 3.3 2.7 (-0.6)

gn-es 3.6 4.4 (+0.8) 2.1 3.0 (+0.9)
nah-es 0.2 2.6 (+2.4) 0.8 2.1 (+1.3)
shp-es 0.0 3.9 (+3.9) 0.3 2.8 (+2.5)

Avg. 1.6 3.6 (+2.0) 1.6 2.7 (+1.1)

Table 3: Representation bottleneck analysis on Case
3 (T-E) with endangered languages in IndCorpus.
Quechua (quy) is a relatively high-resource endangered
language.

models, our proposed BMNMT can effectively al-
leviate this problem.

5.2 Representation Bottleneck Analysis on
Endangered Languages: Case 3 (T-E)

To evaluate the ability of BMNMT to address the
representation bottleneck in endangered languages,
we adopt the training strategy of Case 3 (T-E). Here,
we still report the BLUE score differences between
monolingual and multilingual models.

Table 3 demonstrates the results of Case 3. Fol-
lowing the setting in Case 1, we select four lan-
guage pairs Quechua (quy), Guarani (gn), Nahu-
atl (nah), and Shipibo-Konibo (shp) to Spanish (es)
that have relatively large training sizes in IndCor-
pus to avoid the bias in languages of extremely low
resource. Among these pairs, quy has the most
training data that are comparable to high-resource
languages in IWSLT14, while the others can be
regarded as low-resource languages. We notice
the BLEU score of quy is much lower than lan-
guages in IWSLT14. We infer it is because of the
characteristics in endangered languages. However,
different to the results in Case 1, the BLEU score of
byte-based BMNMT on quy-es does not decrease
even with multilingual training. To summarize, we
think our BMNMT can help overcome the repre-
sentation bottleneck of rare resource in endangered
languages and bring enhancement in translation.

5.3 Generalizability Analysis: Case 4 (F-E2)
Another property we want to analyze for multi-
lingual translation is the model generalizability.
Therefore, we adopt Case 4 (F-E2) to generalize
the pretrained model on high-resource languages
to endangered languages. As the case indicates, we
use the pretrained BMNMT and W-M in Case 2,
which are trained on all high-resource languages
and individually finetuned on all endangered lan-
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Figure 5: Robustness analysis on Case 5 (T-E+P): Average BLEU scores of ensemble prediction with different
ensemble number z.

Byte (BLEU) Subword (BLEU)

B-N BMNMT (Ours) W-N W-M

gn-es 4.5 5.9 (+1.4) 3.6 4.0 (+0.4)
nah-es 3.4 4.5 (+1.1) 2.8 2.0 (-0.8)
quy-es 7.0 7.9 (+0.9) 5.4 5.9 (+0.4)
shp-es 0.6 2.7 (+2.1) 1.0 1.1 (+0.1)
aym-es 3.8 5.1 (+1.3) 2.8 2.7 (-0.1)
cni-es 0.3 1.8 (+1.5) 0.6 0.6 (+0.0)
bzd-es 0.7 2.5 (+1.7) 0.9 0.9 (+0.0)
oto-es 0.4 1.4 (+1.0) 0.4 0.4 (+0.0)
tar-es 0.2 0.7 (+0.5) 0.2 0.3 (+0.1)
hch-es 1.7 2.6 (+0.9) 1.1 0.9 (-0.2)

Avg. 2.3 3.5 (+1.2) 1.9 1.9 (+0.0)

Table 4: Generalizability analysis on Case 4 (F-E2) by
finetuning with all endangered languages in IndCorpus
based on pretrained models in Case 2.

guages. As monolingual models, B-N and W-N are
pretrained on German to English and finetuned on
endangered languages. It is worth noting that all
endangered languages in finetuning do not occur in
pretraining to validate the models’ generalizability.

Table 4 shows the finetuning results on IndCor-
pus. We first notice that the models pretrained on
multilingual languages perform better than mono-
lingual models. It indicates that multilingual mod-
els have a stronger generalizability to endangered
languages. Additionally, although the byte-based
monolingual model B-N has worse performance
than W-N on some language pairs, the BLEU
scores of these pairs are largely increased by our
BMNMT compared to W-M. It further validates
the generalizability of BMNMT.

5.4 Robustness Analysis: Case 5 (T-E+P)

To evaluate the translation effectiveness and ro-
bustness of our proposed BMNMT on endangered
languages, we generate multiple random byte map-
pings and adopt Case 5 (T-E+P) in the ensemble
prediction experiment. Specifically, we first choose
the number z of random byte mappings, i.e., en-

semble number from {1, 2, 4, 6, 8}. For each z, we
train BMNMT 5 times on IndCorpus with different
permutations of bytes in UTF-8. The average and
standard deviation of BLEU scores in 5 runs for
each z are reported in Figure 5.

With the growth of z, the BLUE score shows
an increasing trend. It proves that appropriate en-
semble can improve the translation performance.
Moreover, BMNMT without ensemble (z = 1)
has the highest standard deviation. We infer byte-
based translation with only one encoding method
can brings noise to token representations. However,
with multiple byte mapping and ensemble predic-
tion, the translation becomes more stable. There-
fore, we think that the random byte mapping and
ensemble prediction can improve the robustness of
byte-based translation.

In summary, based on all analysis for the repre-
sentation bottleneck, generalizability, and robust-
ness, the effectiveness of our proposed BMNMT
is validated. We conclude that with the introduce
of byte in MNMT and the ensemble prediction for
byte mappings, the representation bottleneck can
be alleviated, especially on endangered language.

6 Conclusion

Multilingual neural machine translation has been
successful in enhancing low-resource languages
because of knowledge sharing. To address the rep-
resentation bottleneck in existing subword-based
multilingual translation systems, we propose a byte-
based MNMT model, BMNMT with the Trans-
former architecture. To improve the model gen-
eralizability and robustness, we further design an
ensemble prediction method with random byte en-
coding. Our experimental results show that BM-
NMT can alleviate the representation bottleneck
and has a stronger generalization ability compared
with subword-based MNMT. Meanwhile, BMNMT
with ensemble prediction improves the transla-
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tion performance and robustness on endangered
language translation tasks. Extending our byte-
based method to large scale models and datasets
is promising and can improve model performance,
which will be our future work.
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A Dataset Statistics

Tables 5 and 6 show the data statistics of IWSLT14
and endangered language dataset IndCorpus, re-
spectively. IWSLT datasets contains English scripts
of TED talks translated into other languages. All
training samples in IWSLT are collected in 2014.
The test samples are from TED talks from 2010
to 2012. For IndCorpus, there are ten indigenous
languages from multiple countries of America.

B Model Architecture and Environment

In every Transformer model used in IWSLT14, we
adopt 6 attention layers for both encoder for de-
coder. The number of attention heads is 4. For the
subword-based models, they contain an embedding
layer for tokens. The embedding dimension is 512,
which is the same as the hidden dimension. The

ISO Language Train Dev Test

zh Chinese 166,046 7,547 5,099
ar Arabic 165,591 7,526 5,357
de German 158,516 7,205 5,585
fa Farsi 99,792 4,536 4,244
tr Turkish 142,619 6,482 5,433
sl Slovenian 15,859 720 2,555

Table 5: Languages from the IWSLT14 dataset with the
ISO codes. The Train, Dev, and Test columns denote the
number of sentence pairs of each language with English
in the training, validation, and test set.

ISO Language Train Dev

cni Asháninka 3,883 883
aym Aymara 6,531 996
bzd Bribri 7,508 996
gn Guarani 26,032 995
nah Nahuatl 16,145 672
oto Otomí 4,889 599
quy Quechua 125,008 996
tar Rarámuri 14,721 995
shp Shipibo-Konibo 14,592 996
hch Wixarika 8,966 994

Table 6: The languages featured in the IndCorpus, their
ISO codes, and dataset statistics.

feed-forward layer is built upon the hidden layer
to calculate the output digits. The dimension of
feed-forward layers in the encoder and decoder is
1024. For byte-based models, they do not have the
embedding layer.

For the Transformer model in IndCorpus, we
shrink the model size to avoid overfitting because
the languages in IndCorpus only contain limited
training samples. The encoder and decoder both
have 5 attention layers with 2 heads. The remaining
parts keep the same as the model architecture used
in IWSLT14.

We use the transformer model implemented by
faiseq1. All the program used in this work is im-
plemented using Python 3.8, PyTorch 1.10.0, and
CUDA 11.3. For the hardware environment, we run
our program on a machine with Intel i9-10900KF
CPU, 128G memory, and an NVIDIA GeForce
RTX 3090 GPU.

C Additional Experimental Results on
Endangered Languages using ChrF

Table 3 and Table 9 show the translation perfor-
mance of endangered languages with ChrF in Cases
3 (T-E) and 4 (F-E2). Similar to the results in Ta-

1https://github.com/facebookresearch/
fairseq

https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq
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IWSLT14 IndCorpus

Encoder layers 6 5
Decoder layers 6 5
Attention heads 4 2
Hidden dim d 512 512
Feed-forward dim 1024 1024

Table 7: Model architectures on the IWSLT14 and Ind-
Corpus datasets.

Byte (ChrF) Subword (ChrF)

B-N BMNMT (Ours) W-N W-M

quy-es 22.5 25.2 (+2.7) 21.5 20.3 (-0.8)

gn-es 21.8 23.4 (+1.6) 18.3 22.7 (+4.4)
nah-es 13.0 19.7 (+6.7) 15.0 19.6 (+4.6)
shp-es 12.0 27.0 (+15.0) 10.5 21.6 (+10.9)

Avg. 17.3 23.8 (+5.5) 16.7 21.2 (+4.5)

Table 8: Representation bottleneck analysis on Case 3
(T-E) with endangered languages. The evaluation metric
in this table is ChrF.

ble 3 and Table 4 with BLEU scores, our proposed
BMNMT has the best performance, and it can im-
prove ChrF on all languages. Evaluation with these
two metrics proves that the byte tokenization can
alleviate the representation bottleneck even in en-
dangered languages.

In Figure 6, we plot the ChrF scores of ensemble
prediction. With the number of ensemble mod-
els increasing, the average translation performance
shows the same trend while the standard deviation
decrease. Both the evaluation on BLEU scores
and ChrF show that the ensemble prediction with
random byte mapping improve the translation per-
formance and robustness in MNMT.

Byte (ChrF) Subword (ChrF)

B-N BMNMT (Ours) W-N W-M

gn-es 25.7 27.1 (+1.4) 22.1 21.6 (-0.5)
nah-es 23.2 25.3 (+2.1) 18.1 17.7 (-0.4)
quy-es 32.1 32.9 (+0.8) 26.3 27.2 (+0.9)
shp-es 20.3 27.3 (+7.0) 16.2 17.0 (+0.8)
aym-es 22.9 25.8 (+2.9) 18.2 18.7 (+0.5)
cni-es 17.0 21.2 (+4.2) 14.1 13.7 (-0.4)
bzd-es 19.7 24.4 (+4.7) 14.3 15.0 (+0.7)
oto-es 17.9 19.4 (+1.5) 12.1 13.2 (+0.0)
tar-es 16.2 19.4 (+3.2) 15.1 14.7 (-0.4)
hch-es 20.3 23.6 (+3.3) 13.6 14.8 (+1.2)

Avg. 21.5 24.6 (+3.1) 17.0 17.4 (+0.4)

Table 9: Translation performance (ChrF) on IndCorpus.
The results are finetune on the model trained in case 2.
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Figure 6: Robustness analysis on Case 5 (T-E+P): Aver-
age ChrF of ensemble prediction with different ensem-
ble number z.


