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Abstract
While question generation (QG) has received
significant focus in conversation modeling and
text generation research, the problems of com-
paring questions and evaluation of QG models
have remained inadequately addressed. Indeed,
QG models continue to be evaluated using tradi-
tional measures such as BLEU, METEOR, and
ROUGE scores which were designed for other
text generation problems. We propose QSTS, a
novel Question-Sensitive Text Similarity mea-
sure for questions that characterizes their target
intent based on question class, named-entity,
and semantic similarity information.
We show that QSTS addresses several short-
comings of existing measures that depend on
n-gram overlap scores and obtains superior
results compared to traditional measures on
publicly-available QG datasets. We also collect
a novel dataset SimQG for enabling question
similarity research in QG contexts. SimQG
contains questions generated by state-of-the-art
QG models along with human judgements on
their relevance with respect to passage contexts
as well as the given reference questions. Using
SimQG, we showcase the key aspect of QSTS
that differentiates it from all existing measures.
QSTS is not only able to characterize similar-
ity between two questions, but is also able to
score questions with respect to passage con-
texts. Thus QSTS is, to our knowledge, the
first metric that enables the measurement of
QG performance in a reference-free manner.

1 Introduction

Automatic Question Generation (QG), the task of
generating natural language questions for a given
input text passage continues to garner significant
research focus in the NLP community (Wang et al.,
2020b; Huang et al., 2021) due its potential applica-
tion in education (Srivastava and Goodman, 2021),
tutoring (Lindberg et al., 2013) and interactive dia-
log systems (Wang et al., 2020a).

In current research, in lieu of human evalua-
tion, the standard practice for evaluating the perfor-

mance of QG models involves the use of Question
Answering (QA) datasets containing pairs of (ref-
erence question, passage context) elements. For
evaluating QG, the machine-generated question
for a given passage context is compared with the
given reference question by applying metrics such
as BLEU (Papineni et al., 2002), METEOR Lavie
and Agarwal (2007), and ROUGE (Lin, 2004).

The above widely-used measures were originally
developed for evaluating tasks such as summariza-
tion and translation and are based on overlap of
n-grams between a given reference text and the
model-generated text. Though studies have indi-
cated that these measures do not correlate well with
human judgements of fluency, relevance, and co-
herence (Callison-Burch et al., 2006; Liu et al.,
2016; Nema and Khapra, 2018) these measures
are easy to compute and continue to be used for
various natural language generation (NLG) tasks.
Recently though, research studies are addressing
metrics learning for NLG using transformers and
these learnt metrics were shown to obtain state-
of-the-art performance in evaluation (Zhang et al.,
2020; Sellam et al., 2020).

We posit that the existing metrics for measuring
text generation tasks are inadequate for comparing
questions due to their inability to incorporate vari-
ous features that characterize questions. The first
among these features is the question class (alter-
natively referred to as answer type) which places
constraints on the answer to a given question.1 For
example, for the question, “Who was Lincoln?", in
context of a passage on the former US president, a
correct answer is most likely looking for a descrip-
tion referring to his job/role/occupation whereas
the answer to the question “What is humidity?" is a
definition. We argue that question class as well as
named entities, when present in a question, directly
affect the intent of the question and need to be

1https://cogcomp.seas.upenn.edu/Data/
QA/QC/definition.html

https://cogcomp.seas.upenn.edu/Data/QA/QC/definition.html
https://cogcomp.seas.upenn.edu/Data/QA/QC/definition.html
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Question Pairs QBLEU BLEURT QSTS
(What was the title of Bob Dylan’s first album?;

0.744 0.816 0.928
What was Bob Dylan’s first album called?)
(What was the name of Vincent’s brother;

0.473 0.667 0.874
Who was Vincent’s brother?)
(Where in Germany was the composer Beethoven born?;

0.278 0.709 0.548
Which city in Germany is the place of birth of Beethoven?)

B1:0.457, B4:0.000, Meteor: 0.344, Rouge: 0.485
(Who was Columbus?;

0.508 0.671 0.0
Where is Columbus?)
(What was the name of Vincent’s brother?;

0.832 0.519 0.0
What was the name of Vincent’s painting?)
(When did Freddie Mercury die?;

0.779 0.799 0.0
How did Freddie Mercury die?)

B1: 0.733, B4: 0.683, Meteor: 0.456, Rouge: 0.663

Table 1: Illustrative question pairs are shown with system-level scores for BLEU-1 (B1) and BLEU-4 (B4),
METEOR, and ROUGE and as pair-level scores for QBLEU (Nema and Khapra, 2018), BLEURT (Sellam et al.,
2020), and QSTS

handled differently from other words in a question.
The metrics currently in use are based on word

overlap and do not capture the semantics of ques-
tions as can be seen in the representative exam-
ples of similar and dissimilar questions in Table 1.
The system-level scores of the traditional metrics
(BLEU, METEOR, ROUGE), are shown in this
table along with QBLEU values (the extension of
BLEU scores for questions proposed by Nema, et
al (2018)), as well as BLEURT scores that mea-
sure semantic similarity between two texts using
BERT (Sellam et al., 2020; Devlin et al., 2019).

In Table 1, we note that none of the existing
metrics are able to accurately assess the similar-
ity or difference between the given question pairs
and instead tend to assign high scores to dissimilar
questions and low scores to simple rewritings of
the questions with the same intent. In the right-
most column of Table 1, we show the values of
our proposed Question-Sensitive Text Similarity
(QSTS ) scores assigned to these question pairs that
are more representative. We discuss the design of
QSTS in the rest of this paper. Our contributions
are as follows:

1. We propose QSTS, a Question-Sensitive Text
Similarity measure for comparing questions.
Unlike existing measures, QSTS explicitly
represents the question class and named enti-
ties present in a given question pair and com-
bines them with dependency tree information
and word embeddings to provide a more repre-
sentative and interpretable measure of the se-

mantic similarity between the two questions.

2. We evaluate QSTS on publicly-available
datasets of similar questions available for
QG/QA research. Our experiments indicate
that our proposed measure provides a more
accurate representation of question similarity
compared to traditional measures employed
for characterizing QG model performance.

3. We present the potential use of QSTS in
reference-free evaluation for QG. The QSTS
metric is able to reasonably characterize ques-
tion quality of model-generated questions us-
ing passages that were used for generating
them. This capability is representative of the
human ability to judge whether a given ques-
tion is fluent and relevant in the context of a
given passage unlike existing measures that
need reference questions for evaluation.

We demonstrate reference-free evaluation
for QG using QSTS on a novel dataset,
SimQG. SimQG contains human judgements
for machine-generated questions from lat-
est QG models for a selection of about
500 (reference question, passage) pairs from
SQuAD (Rajpurkar et al., 2016). SimQG and
an implementation of QSTS in Python have
been made available for academic research.2

Organization: We present the details of comput-
2 https://github.com/NUS-IDS/coling22_

QSTS

https://github.com/NUS-IDS/coling22_QSTS
https://github.com/NUS-IDS/coling22_QSTS
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ing QSTS in Section 2. Our novel dataset SimQG
is described in Section 3. Experiments and results
are described in Section 4 while closely-related
work is summarized in Section 5. Finally, we con-
clude the paper with a summary and remarks on
future directions in Section 6.

2 Question-Sensitive Text Similarity

A necessary aspect to capture while comparing
two questions is a measure of whether the target
intent behind the two questions is the same. As
highlighted in the examples from Table 1, measur-
ing simple lexical overlap between n-grams of two
questions is insufficient for this purpose. In com-
parison, word and sentence representations (Pen-
nington et al., 2014; Peters et al., 2018) are known
to capture similarity between words despite the
lexical mismatch. Extending this idea further, met-
rics based on contextual representations were de-
veloped for measuring similarity for text genera-
tion tasks such as translation and image caption-
ing (Zhang et al., 2020; Sellam et al., 2020).

However, note that simple changes to words has
significant changes in question meanings (“Who
was Columbus" vs. “Where was Columbus?")
and embedding spaces learnt purely from word
co-occurrence and contextual information from
large corpora suffer from the drawback of overesti-
mating scores to word pairs representing entities
as well as question cues.3 Consequently, these
measures tend to overestimate similarity in case
of non-similar questions as shown in the last three
examples in Table 1. We address the above issues
by modeling three different question-specific
aspects in QSTS :

Question Class (QC) or Answer-Type for a
question refers to the constraints the question
imposes on the “sought after answer" (Li and Roth,
2002). Li and Roth (2002) designed a two-level
question class taxonomy (Footnote 1) for represent-
ing questions in TREC question answering tasks4

where the answers to questions can be assigned one
of six coarse classes namely, Abbreviation, Entity,
Description, Human, Location, and Numeric value.
These six classes are further organized into 50
fine classes for a more specific classification of
the answer type. For example, the coarse class

3For instance, based on GLoVe embeddings (Pennington
et al., 2014), (“Lincoln", “Columbus"), and (“who", “when")
have cosine similarity values of 0.659 and 0.608, respectively.

4https://trec.nist.gov/data/qa.html

“Human" includes fine classes for an individual, a
group of individuals, a description of an individual,
as well as the title assigned to an individual.
Question class information has also been used
to improve question answering and question
generation performance (Tayyar Madabushi et al.,
2018; Zhou et al., 2019).

We use question class information in QSTS to
characterize if the two questions under consider-
ation are seeking the same answer type. With an
accurate question-class classifier, both questions
in the first row of Table 1 are assigned the same
question class in the QC taxonomy (referring to
“creative pieces and inventions") whereas the two
questions in the fourth row are assigned classes
corresponding to “description of an individual" ver-
sus “location" automatically capturing their differ-
ent semantics. We can directly measure the ques-
tion class similarity (qcsim) using the δ function,
where δij = 1, if qc(qi) = qc(qj) and 0 otherwise
where qci stands for the question class for question
qi. To incorporate the hierarchical nature of the QC
taxonomy, we modify this function to assign partial
score of 0.5 if the coarse class matches for the two
questions and 0.75 if one of question fine classes
involves the catch-all “other" class. For example,
the question classes assigned to the two questions
in the third row correspond to “Location:Other"
and “Location:city", respectively.

Named-Entities when present in a question con-
strain the question with reference to the mentioned
entity. For instance, if “Columbus" in the question
“When was Columbus born?" is replaced by another
name, it will become a completely different ques-
tion. Therefore, similar to question classes, named
entities require a hard measurement. To account for
multi-word names and partial matches, we isolate
the tokens in a given reference question referring
to named entities and look for their presence in the
generated question.5

The named-entity similarity (nesim) is mea-
sured as the fraction of named-entity tokens in the
reference question that are present in the generated
question. That is, for a given reference question,
“Who was Abraham Lincoln?" and the question
“Who was Lincoln?", the named-entity similarity
score is computed as 1

2 .
Semantic Similarity forms the third component

of QSTS. We use the dependency parse of ques-

5We use proper nouns in parts-of-speech tags and named-
entity tags to identify name tokens.

https://trec.nist.gov/data/qa.html
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tions to compute the semantic similarity between
them. Dependency trees of sentences capture syn-
tactic dependencies among the words in a sentence
such as subject-object, modifier, and clausal links.
Dependency-tree based kernels are widely-used in
measuring sentence similarity (Croce et al., 2011;
Özateş et al., 2016).

Let e=(h, rel, t) represent a directed edge in the
dependency tree of a given question where the
typed relation rel exists between two tokens, h
and t. Given the dependency edges of two ques-
tions (reference and generated), we match the de-
pendency edges of the reference question (E(qr))
with those of the generated question (E(qg)) and
pick the best matching or the most similar edge
∀e ∈ E(qr). The edge similarity esim(emr , eng)
is computed as

δ(relmr , relng)
[sim(hmr , hng) + sim(tmr , tng)

2

]
In the above formulation, δ(relmr , relng) refers to
the Kronecker δ function that assigns a value of
1 if the two relation types are the same and zero
otherwise and sim(a, b) is computed using cosine
similarity of the word embeddings if a, b are non-
name tokens. However, if either the head or tail
of the edge is a name token, we use exact match
on that side of the edge. That is, for the two edges
emr=(hmr , relmr , tmr) and enj=(hng , relng , tng),
if hmr is a name token, esim(emr , eng) =

δ(relmr , relng)δ(hmr , hng)sim(tmr , tng)

The same principle applies if tmg is a name token.
The above formulation ensures that name tokens
are not treated like regular tokens and a hard match
is enforced while at the same time the edge similar-
ity values stay in the range [0, 1].

The final semantic similarity (semsim) of the
two questions is the average similarity of the edges
in the reference question that match best with the
edges in the generated question. Since named en-
tity tokens and question cue words are handled
separately, only edges involving content words are
considered in this computation. Additionally, we
ignore edges representing less informative depen-
dency relations such as “punctuation", “possessive
modifier" and seven others in line with previous
works (Özateş et al., 2016).

QSTS : Note that each of the similarity func-
tions, qcsim,nesim,semsim assign normal-
ized scores between [0, 1] for an independent as-
pect of matching the two questions. These three

scores can be summarized using the geometric
mean (Fleming and Wallace, 1986) to obtain a
single score between [0, 1] for Question-Sensitive
Text Similarity as

QSTS(r, g) = (qcsimrg ∗ nesimrg ∗ semsimrg)
1/3

(1)
The QSTS score is directional, the nesim and

semsim computations are with respect to a given
reference question. That is, for nesim, we com-
pute how many of the name tokens in a reference
question are seen in the given/generated question
and in semsim, we compute the best matching
edges from E(qg), ∀e ∈ E(qr). Note that this di-
rectional nature enables the computation of these
two scores for (question, passage) pairs as well. To
estimate if a question is valid for a passage, we can
check if the named entities (when present) in the
question can be found in the passage and if the de-
pendency edges of the question are also supported
in the passage. In this manner, QSTS provides for
a reference-free evaluation of a question, given a
passage context.

3 The SimQG dataset

Current models for QG are evaluated using QA
datasets containing (passage, reference-question)
pairs. Model-generated questions are compared
against these reference questions using traditional
metrics. It is our contention that given a passage
context and questions generated by QG models
against that context, several valid questions may
be possible and it may not be representative to
only compare generated questions against a spe-
cific given reference. To demonstrate this claim, we
collected a novel dataset containing human judge-
ments of machine-generated questions against their
associated passage contexts and the reference ques-
tions available for these contexts.

Our novel dataset is based on SQuAD (Rajpurkar
et al., 2016), a widely-used dataset in both QA
and QG studies. About 500 (question, passage)
pairs were randomly sampled from the test por-
tion of the SQuAD dataset (used in (Zhou et al.,
2018)). Recent QG models from ProphetNet (Qi
et al., 2020), T5 (Raffel et al., 2020), and one of the
early neural models based on Gated Self-Attention
(GSA) networks (Zhao et al., 2018) were used for
obtaining machine-generated questions. By choos-
ing machine-generated questions from models with
QG performance ranging from high (ProphetNet)
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to significantly low (GSA), we seek to include ques-
tions in our dataset with varying degrees of answer-
ability, fluency and relevance (Pan et al., 2020;
Wang et al., 2020a).

Our annotation task on the crowdsourcing plat-
form Amazon Mechanical Turk (AMT) was set up
along the lines of previous QG works (Pan et al.,
2020; Wang et al., 2020a). Each passage along with
the machine generated question was examined by
three independent crowdworkers to characterize if
the question is (1) Fluent: Is the question grammat-
ically correct, natural sounding, and semantically
valid for the given passage context (yes=1.0, ac-
ceptable=0.5, no=0.0)?; (2) Answerable: Is the
answer to the generated question present in the
passage (yes=1.0, no=1.0)?; (3) Relevant: is the
question relevant to the passage and only based on
the content in the passage (yes=1.0, no=0.0)?

The workers were also asked to compare the
machine-generated question with the reference
question provided in SQuAD and to identify
whether the question is similar to the reference
question (score=1.0), similar but has less/more
information compared to the reference question
(score=0.5), different but has the same answer as
the reference question (score=0), or related but dif-
ferent (score=0) and finally very different from the
reference question (score=0).

By averaging worker scores for each question,
we obtain relevance/fluency/answerability scores
for each (machine-generated question, passage)
pair as well as a similarity score for pairs of
(machine-generated, reference) question pairs all
in the range [0, 1] and by suitably thresholding at
0.5, we can obtain pairs of similar and dissimilar
questions for our study as well as questions that are
not fluent, answerable, or relevant. We refer to the
dataset collected above as the SimQG dataset.

A summary of SimQG is provided in Table 2.
As seen in this table, all three QG models generate
reasonably fluent questions. In accordance with
the published QG performance numbers of these
models on SQuAD dataset, the number of non-
fluent and non-answerable questions is the highest
for GSA, lowest for ProphetNet (PrptNet) and in-
between for the T5-based model (Qi et al., 2020;
Zhao et al., 2018).6 In all three models, the num-
ber of non-relevant machine-generated questions
is very low (2-6%) whereas the machine-generated

6https://github.com/patil-suraj/
question_generation

question was considered not similar to the refer-
ence question in 40-50% of the cases. We posit that
this high disparity is indicative of why QG models
need evaluation measures that are not based only
on reference questions.

QGModel !Flu !Rel !Ans !Sim
PrptNet (300) 0.66% 2% 4.66% 45%
GSA (100) 7% 4% 19% 47%
T5 (100) 4% 6% 12% 38%
All(500) 2.6% 3.2% 9% 44%

Table 2: Summary of SimQG dataset. #Qs is the number
of questions whereas !Flu, !Rel, !Ans, !Sim columns
refer to the percentages of questions that are not fluent,
not relevant, not answerable, and not similar to the given
reference question.

Additional notes on data collection: On the
AMT platform, we required the crowdworkers to
have greater than 95% HIT approval rate, a mini-
mum of 10,000 HITs, and be located in the United
States and clear a qualification test to be able to
work on our task. Each worker was paid $0.30
per HIT. We met the ethics, quality, and reliability
considerations for our collected dataset as follows:
As part of the AMT data collection process, the
anonymity and privacy of the crowdworkers is al-
ready ensured. Furthermore, the settings for the
HIT approval rates, and location of the worker,
described previously are set similar to previous
QA/QG data collection efforts to ensure the En-
glish language skills of the data annotators and
thus the quality of the collected dataset. A total of
7 workers helped in creating our dataset. About
47% of the workers who attempted the qualification
test were able to obtain a score of 80% or more and
gained the eligibility to work on our task. Their an-
notations can, therefore, be considered reasonably
reliable on average.

4 Experiments

Baseline Measures: We demonstrate the perfor-
mance of our proposed QSTS measure by compar-
ing with several existing measures. The first set
of measures are traditionally employed in various
text generation tasks including QG and comprise of
BLEU, METEOR, and ROUGE scores (Papineni
et al., 2002; Lavie and Agarwal, 2007; Lin, 2004).
All these measures are based on n-gram overlap
between the generated text and the reference text
(of the same “type", for example, two summaries,
or two sentences).

https://github.com/patil-suraj/question_generation
https://github.com/patil-suraj/question_generation
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The QBLEU metric was designed specifically
for QG systems and includes the notion of answer-
ability, that is, does the question include enough
information to enable answer retrieval for the given
question (Nema and Khapra, 2018)? To this end,
various weights are estimated and incorporated for
question cue words, content words, named enti-
ties and combined linearly to assign answerability
score for a question. Answerability is further com-
bined with the traditional BLEU score to obtain a
QBLEU score.7

A recent research direction involves the use of
transformers for learning metrics for text genera-
tion tasks (Zhang et al., 2020; Sellam et al., 2020).
Based on its state-of-the-art performance on var-
ious NLG tasks compared to other variants such
as BERTscore, we include BLEURT as one of our
baselines for comparing questions. To the best of
our knowledge, BLEURT has not been specifically
evaluated for matching questions and we seek to
bridge this gap as part of our experiments.8

Datasets: We used two existing QA/QG datasets
with paraphrase information for evaluation. The
first is the ComQA dataset that includes about
3.3K paraphrase pairs (Abujabal et al., 2019) while
the second is the recently-compiled FIRS dataset,
containing approximately 5K question pairs (De-
schamps et al., 2021). The FIRS dataset includes
rewrites of a given question which also include
an extra fact from a knowledge base. That is, the
rewritten question has the same intent as the orig-
inal question but includes additional facts of rele-
vant named entities. We randomly selected one of
questions from each paraphrase clusters in ComQA
as the reference question whereas in FIRS, the orig-
inal question forms the reference question.

In addition, we evaluate on questions from the
Quora Question Pairs (QQP) dataset.9 QQP is
a large dataset of about 400k question pairs ob-
tained from Quora and includes duplicate and non-
duplicate labels indicative of whether the intent of
the two questions is the same. Note that this dataset
is not used for QG since passage contexts and an-
swers are unavailable. Moreover, the labels are
known to be noisy in this dataset, and the questions
on community forums are stylistically different

7https://github.com/PrekshaNema25/
Answerability-Metric

8https://github.com/google-research/
bleurt

9https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

from standard QG (António Rodrigues et al., 2017).
Despite these differences, we study a randomly se-
lected 5% sample of the QQP dataset separated
into duplicate pairs (QQP-Dup) and non-duplicate
pairs (QQP-ND). Finally, we provide evaluation on
SimQG, the dataset specifically collected by us to
model QG contexts (Section 3).

Question Class Identification: We trained our
question class classifier on the widely-used TREC
dataset (Li and Roth, 2002). A T5-large model10

fine-tuned for this task obtains a test performance
on par with state-of-the-art results with a classifica-
tion accuracy of 92% on the fine-level classes (50
classes) and an accuracy of 97% on the six coarse
classes (Reimers and Gurevych, 2019). When
computing QSTS scores for question pairs where
the question classes cannot be assumed to be the
same (such as QQP-ND and SimQG ), predictions
with this model were used.

Other Settings: For computing QSTS scores,
we need the dependency parse, parts-of-speech
and named-entity tags for questions. We used the
Stanza library for this purpose.11 Since the name-
tokens and question class information are treated
separately, we avoid contextual and sentence-level
embeddings that are time-consuming to esti-
mate (Peters et al., 2018; Reimers and Gurevych,
2019) and instead directly use word embeddings
from GloVe that only involves lookup (Pennington
et al., 2014). All QG and QC experiments, and
metrics that involve deep learning models were
performed on a single GPU of an Nvidia Tesla
cluster and take time between 1-12 hours based
on the experiment setting and dataset size. The
code for QSTS and the SimQG dataset have been
released for academic research.

4.1 Results and Observations

Comparison of Measures: We compare QSTS
against existing baseline measures on similar ques-
tions from ComQA and FIRS, as well as dupli-
cate and non-duplicate question datasets QQP-Dup
and QQP-ND, respectively. An ideal measure
should assign high scores (close to 1) to similar
questions and low scores (close to 0) to dissimilar
ones. We show the system-level BLEU, METEOR,
and ROUGE score as well as average and standard
deviation of QBLEU, BLEURT, and QSTS scores

10https://huggingface.co/t5-large
11https://stanfordnlp.github.io/stanza/

https://github.com/PrekshaNema25/Answerability-Metric
https://github.com/PrekshaNema25/Answerability-Metric
https://github.com/google-research/bleurt
https://github.com/google-research/bleurt
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://huggingface.co/t5-large
https://stanfordnlp.github.io/stanza/
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Dataset B1 B4 METEOR ROUGE QBLEU BLEURT QSTS
ComQA 0.602 0.287 0.373 0.566 0.594±0.151 0.696±0.110 0.692±0.298
FIRS 0.557 0.430 0.485 0.695 0.554±0.187 0.728±0.110 0.866±0.231
QQP-Dup 0.561 0.277 0.334 0.545 0.449±0.231 0.711±0.112 0.754±0.283
QQP-ND 0.342 0.158 0.204 0.344 0.289±0.252 0.491±0.169 0.388±0.391

Table 3: Question Similarity Metrics Evaluated on Existing Datasets

in Table 3.
Performance on Paraphrase datasets: We

see in Table 3 that QSTS is significantly bet-
ter than other measures on FIRS and QQP-Dup
datasets, and is on par with the BLEURT measure
on ComQA. We analyzed ComQA further to gain
insight into where QSTS breaks down. From Equa-
tion 1, the QSTS score is zero when any of the
component scores, qcsim, nesim, and semsim,
is zero. That is, when the question classes, named-
entities, or the content words of the two questions
do not match. In ComQA, the QSTS score was
zero for 16.9% question pairs with the qcsim,
nesim, and semsim scores being independently
zero in 5%, 8.6%, and 4.6% of the question pairs,
respectively.

Since question paraphrases should, ideally, have
the same question class but qcsim is zero for 5%
of the cases, we can attribute these mismatches
to the errors made by the question class predictor.
However, we also note that this could be caused
by erroneous pairs present in ComQA such as (
“when did Judy Garland first marry?"; “who was
Judy Garlands first married to?") where the ques-
tion classes are indeed different and were predicted
correctly as “NUM:date" and “HUM:ind" by our
question class predictor.

Furthermore, ComQA also has instances where
mentions of the same named-entity have typos
and other differences. For example, pairs such
as (“what is muhamad alis real name?"; “what is
mahummad ali birth name?") and (“ who was the
german fascist leader during world war 2?"; “what
man was the leader of germany during ww2?").

Finally, about 8% of the questions in ComQA
appear to be in search-engine style (“the first amer-
ican in outer space?") and do not have any of the
question cue words.12 Noisy inputs affect the type
of dependency edges between content words and
may result in zero semsim scores. Overall, QSTS
is not fully-equipped to handle noisy paraphrases
since errors in the component scores are penalized
severely (Equation 1).

12why/who/where/how/which/when/where

Performance on Non-Paraphrases: On the
QQP-ND dataset containing non-duplicate ques-
tion pairs, simple n-gram based measures seem
to do better than embedding-based BLEURT and
QSTS measures which overestimate the similar-
ity scores. As mentioned in Section 2, the QSTS
scores are directional and also depend on the pre-
dictions from the question class classifier. There-
fore, in the given non-duplicate pair from QQP-ND,
(“How does one become an angel investor?"; “How
do I get a job at Goldman Sachs?"), the QSTS
scores change from 0 to 0.718 depending on which
question forms the “reference". Moreover, QC pre-
dictions may not always be accurate considering
the stylistic differences in QQP questions when
compared to those from TREC. Questions in QQP
include conjunctions such as “How do you bake
pork chops in an oven and how long should you
bake them?" and multi-sentence questions such as
“I have completed my MBA with . . . in PSU. I want
to work abroad, how do I start?".

We note that accurate measurement of dissimilar
questions is not a big concern in QG contexts. For a
given passage context, a good QG model is unlikely
to generate a question comprising of completely
arbitrary words in contrast with some pairs in QQP-
ND such as (“How can I get perfect idea about best
golf carts?"; “Is it hard to get a job in US after MIS
without prior work experience?")

Reference-free Evaluation on SimQG : Us-
ing the human-assigned scores for similarity be-
tween machine-generated and reference question
pairs in SimQG, we threshold at 0.5 to obtain
pairs of questions considered similar and for these
questions, we compute QSTS scores between the
machine-generated questions and the correspond-
ing passages. In other words, how many machine-
generated questions can we correctly assign a score
value ≥0.5 when the passage is used instead of
comparing with the reference?

Similarly, for the set of machine-generated ques-
tions judged as non-fluent, non-relevant, and non-
answerable by humans, how many questions are
correctly assigned scores <0.5 based on the pas-
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sage. The results of these computations are illus-
trated in Table 4.

Setting #Qs NoQC withQC
Similar 280 66.1% 56.4%
Non-Fluent 13 30.7% 76.9%
Non-Relevant 16 56.3% 81.3%
Non-Answerable 45 40.0% 66.6%

Table 4: Percentages of similar, non-fluent, non-relevant
and non-answerable questions correctly identified in
SimQG by QSTS in the reference-free setting. #Qs
refers to the number of questions whereas NoQC and
withQC refer to with and without the question class
information, respectively.

The percentage of questions correctly scored
using reference-free QSTS is about 56% when
question class information obtained from reference
questions is incorporated (“withQC" column in Ta-
ble 4). The percentage is, however, significantly
higher (66%) when question class information is
not considered (“NoQC"). This difference suggests
that valid questions are being generated for a given
passage context despite having different question
classes. However, when question class informa-
tion is incorporated into QSTS computation, we
are able to determine non-fluent, non-relevant, and
non-answerable questions with significantly higher
accuracy as observed in Table 4.

In practice, it may not be unreasonable to as-
sume that the expected question class is known a
priori, considering the current state-of-the-art QG
performance is obtained in the answer-aware (as op-
posed to answer agnostic) setting when the answer
span is assumed to be known and used as a signal
while learning QG (Pan et al., 2019). Even without
explicit question class information, QSTS can cor-
rectly identify relevant and non-relevant questions
with reasonable accuracies. Given that this is the
first method to do so without a known reference
question, this is an exciting result.

In contrast, the traditional measures as well as
QBLEU and BLEURT expect similar types of texts
for their computation. In our experiments, when
QBLEU and BLEURT measures are computed us-
ing generated questions and passages as inputs,
both measures were unable to correctly assign
scores >= 0.5 to any of the similar questions. That
is, the percentage correct values in the top row of
Table 4 are zeros for both these measures. Anec-
dotal examples of question, passage pairs scored
with our QSTS measure are provided in Table 5 for
illustration. QSTS correctly assigns high scores

(indicating relevant) to the top-two (question, pas-
sage) pairs and lower scores (less than 0.5 indicat-
ing non-relevant) to the bottom two pairs.

Finally, the average QSTS scores for the
test split of SQuAD (Zhou et al., 2018) with
ProphetNet (Qi et al., 2020), T5 (Footnote 6), and
GSA (Zhao et al., 2018) models are shown below.

Model QSTS BLEU-4
ProphetNet 0.506 (± 0.386) 25.80
T5 0.407 (± 0.376) 21.32
GSA 0.344 (± 0.370) 16.38

The BLEU-4 scores published for these models are
shown in the rightmost column of the table and
though these published numbers use different data
splits for SQuAD compared to ours, we would like
to highlight that the overall performance trend of
these models as seen by their BLEU-4 scores is
also captured by QSTS.

In summary, QSTS presents as a viable alterna-
tive to traditional measures for evaluating QG in
terms of its interpretable score components. More-
over, QSTS enables a reference-free evaluation for
real-world QG scenarios where precompiled lists
of reference questions are unavailable.

Limitations: Although QSTS addresses several
problems with existing QG metrics (Table 1), we
note the following caveats that need further work.

1. The QSTS function is sensitive to the com-
ponent scores. Though geometric mean
is suggested for summarizing normalized
scores (Fleming and Wallace, 1986), and
yields higher performance compared to other
mean functions in our experiments, other com-
bining functions can be investigated in future.

2. New question-type ontologies are being de-
veloped to cover contexts different from ex-
tractive QA such as questions within dia-
log (Cao and Wang, 2021; Svikhnushina et al.,
2022; Malhotra et al., 2022). High-accuracy
question-class predictors need to be trained
for using QSTS in these contexts.

3. None of the existing metrics as well as our
proposed measure directly incorporate notions
such as fluency, interesting-ness, and answer-
ability that humans are able to assess naturally.
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Question: What was the title of Bob Dylan’s first album? 0.679
Passage: After the eponymous first album, Bob Dylan went on
to become the breakthrough songwriter of ’The Freewheelin’
Question: What was the name of Vincent’s brother? 0.889
Passage: Vincent’s brother, Theo disagreed vehemently with the placement of Irises.
Question: Where in Germany was the composer Beethoven born? 0.488
Passage: The composer ludwig van beethoven went deaf in his final years.
Question: Where is Columbus? 0.0
Passage: Lincoln the 16th president of the United States was born in Kentucky.

Table 5: QSTS scores are shown for anecdotal question-passage pairs

5 Related Work

Models for question generation are being rapidly
developed in current NLP research. We refer our
readers to a survey article by Pan, et al (2019) for
an overview on challenges, existing approaches,
and applications for this task. Similar to the
standard practice in NLG tasks, question gener-
ation has been evaluated using n-gram overlap
based metrics such as BLEU (Papineni et al.,
2002), METEOR Lavie and Agarwal (2007) and
ROUGE (Lin, 2004). While previous studies have
found these metrics inadequate for tasks such as
summarization, paraphrase generation, and transla-
tion (Callison-Burch et al., 2006; Shen et al., 2022),
Nema, at al. (2018) specifically study their draw-
backs in context of question generation models.
Indeed, similar to our approach, they isolate vari-
ous types of tokens in questions and assign tuned
weights to question cue-words, content words, func-
tion words, and named entities to compute “answer-
ability" for a question.

In parallel studies, the notion of unsupervised
evaluation metrics were studied for dialog sys-
tems and machine translation (Liu et al., 2016;
Fomicheva et al., 2020) while metric learning was
explored for several NLG tasks using transform-
ers in BERTscore, BBScore, and BLEURT (Zhang
et al., 2020; Sellam et al., 2020; Shen et al., 2022).

We have highlighted cases where these exist-
ing metrics fall short for question comparison and
specifically propose reference-free evaluation pos-
sibilities for question generation. Reference-free
evaluation was previously studied for NLG tasks
such as machine translation (Agrawal et al., 2021)
and essay grading (Fomicheva et al., 2020).

6 Conclusions and Future Work

We discussed existing metrics for question gen-
eration evaluation and highlighted cases where a

deeper understanding of question semantics need
to be modeled by metrics for a more representa-
tive evaluation. As an alternative, we designed the
question-sensitive text similarity metric (QSTS )
that comprises of interpretable scoring components.
We also underscored the need for reference-free
evaluation in QG systems. The potential of QSTS
in serving this purpose was demonstrated on a
novel dataset SimQG, compiled from human judge-
ments on (machine-generated question, passage)
pairs. QSTS provides, to our knowledge, the first
approach to characterizing QG system performance
in practical deployments where reference questions
may not always be available.

As can be seen in experiments, there is still a
large room for improvement for question similarity
computation as well as QG evaluation. In future,
we hope to pursue these directions further as well
as study metric learning approaches for a reference-
free evaluation.
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Şaziye Betül Özateş, Arzucan Özgür, and Dragomir
Radev. 2016. Sentence similarity based on depen-
dency tree kernels for multi-document summariza-
tion. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 2833–2838, Portorož, Slovenia.
European Language Resources Association (ELRA).

Liangming Pan, Wenqiang Lei, Tat-Seng Chua, and Min-
Yen Kan. 2019. Recent advances in neural question
generation. CoRR, abs/1905.08949.

Liangming Pan, Yuxi Xie, Yansong Feng, Tat-Seng
Chua, and Min-Yen Kan. 2020. Semantic graphs
for generating deep questions. In ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu,
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming
Zhou. 2020. ProphetNet: Predicting future n-gram
for sequence-to-SequencePre-training. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2401–2410, Online. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for

machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Lingfeng Shen, Haiyun Jiang, Lemao Liu, and Shum-
ing Shi. 2022. Revisiting the evaluation metrics of
paraphrase generation.

Megha Srivastava and Noah Goodman. 2021. Question
generation for adaptive education. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 692–701, Online.
Association for Computational Linguistics.

Ekaterina Svikhnushina, Iuliana Voinea, Anuradha We-
livita, and Pearl Pu. 2022. A taxonomy of empathetic
questions in social dialogs. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2952–2973, Dublin, Ireland. Association for Compu-
tational Linguistics.

Harish Tayyar Madabushi, Mark Lee, and John Barnden.
2018. Integrating question classification and deep
learning for improved answer selection. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 3283–3294, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.

Jian Wang, Junhao Liu, Wei Bi, Xiaojiang Liu, Kejing
He, Ruifeng Xu, and Min Yang. 2020a. Improving
knowledge-aware dialogue generation via knowledge
base question answering. AAAI.

Liuyin Wang, Zihan Xu, Zibo Lin, Haitao Zheng, and
Ying Shen. 2020b. Answer-driven deep question gen-
eration based on reinforcement learning. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5159–5170, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International

https://doi.org/10.18653/v1/D18-1429
https://doi.org/10.18653/v1/D18-1429
https://doi.org/10.18653/v1/D18-1429
https://aclanthology.org/L16-1452
https://aclanthology.org/L16-1452
https://aclanthology.org/L16-1452
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://doi.org/10.18653/v1/2020.findings-emnlp.217
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.48550/ARXIV.2202.08479
https://doi.org/10.48550/ARXIV.2202.08479
https://doi.org/10.18653/v1/2021.acl-short.88
https://doi.org/10.18653/v1/2021.acl-short.88
https://doi.org/10.18653/v1/2022.acl-long.211
https://doi.org/10.18653/v1/2022.acl-long.211
https://aclanthology.org/C18-1278
https://aclanthology.org/C18-1278
https://doi.org/10.18653/v1/2020.coling-main.452
https://doi.org/10.18653/v1/2020.coling-main.452
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


3846

Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question gener-
ation with maxout pointer and gated self-attention
networks. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3901–3910, Brussels, Belgium. Association
for Computational Linguistics.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2018. Neural ques-
tion generation from text: A preliminary study. In
Natural Language Processing and Chinese Comput-
ing, pages 662–671, Cham. Springer International
Publishing.

Wenjie Zhou, Minghua Zhang, and Yunfang Wu. 2019.
Question-type driven question generation. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6032–6037,
Hong Kong, China. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D19-1622

	Introduction
	Question-Sensitive Text Similarity
	The SimQG dataset
	Experiments
	Results and Observations

	Related Work
	Conclusions and Future Work

