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Abstract

The process by which sections in a document
are demarcated and labeled is known as section
identification. Such sections are helpful to the
reader when searching for information and con-
textualizing specific topics. The goal of this
work is to segment the sections of clinical med-
ical domain documentation. The primary con-
tribution of this work is MedSecId, a publicly
available set of 2,002 fully annotated medical
notes from the MIMIC-III. We include several
baselines, source code, a pretrained model and
analysis of the data showing a relationship be-
tween medical concepts across sections using
principal component analysis.

1 Introduction

Most unstructured medical text found in electronic
health record systems (EHRs) written by medical
staff have conceptually well defined sections. For
example, discharge summaries are technical med-
ical documents, written by physicians when the pa-
tient is discharged, which describe the patient’s hos-
pital stay and surrounding circumstances of their
illness. As shown by the example in Figure 1, dis-
charge summaries consist of named sections, typ-
ically in a specific sequence, such as the History
of Present Illness; this type of section appears both
in discharge summaries and in physician notes that
describe a chronology of an illness that begins with
the admission of the patient.

Whereas sections often have headers, section
identification (SI) is more challenging than simply
parsing the first several leading header tokens of the
respective section (underlined in Figure 1). While
the first several tokens can be helpful in identifying
a section, their naming often varies. For exam-
ple, the 6th section in Figure 1 starts with header
tokens Preoperative Laboratory Data, but the sec-
tion type is labs-imaging. There are also cases
where the header tokens are missing, as shown in

Admission Date: [**2126-2-7**] Discharge Date:
[**2126-2-20**]
Date of Birth: [**2069-4-1**] Sex: M

history-of-present-illness
HISTORY OF PRESENT ILLNESS: Mr. [**Known last-
name **] is a 56-year-old male who experienced chest. . .

past-medical-history
PAST MEDICAL HISTORY: Hypertension, former
smoker with a 4- pack per day history for which he. . .

social-history
SOCIAL HISTORY: He lives alone, and he works at
[**Hospital3 2576**] as a cargo transporter.

medication-history
MEDICATIONS ON ADMISSION: Aspirin 325 mg p.o.
once a day, Toprol-XL 50 mg p.o. once a day.

allergies
ALLERGIES: He had no known drug allergies.

labs-imaging
PREOPERATIVE LABORATORY DATA: White count
6.0, hematocrit 33.3, platelet count 329,000.. . .

hospital-course
On exam he had a left facial droop, status post his child-
hood polio. Temperature of 97.5, heart rate 65 in sinus. . .

discharge-diagnosis
DISCHARGE DIAGNOSES:
1. Status post coronary artery bypass grafting x 3.. . .

discharge-instructions
DISCHARGE INSTRUCTIONS: He was instructed to
make an appointment. . .

discharge-medications
MEDICATIONS ON DISCHARGE:
1. Aspirin enteric coated 81 mg p.o. once a day.
2. Colace 100 mg p.o. twice a day. . .
He was discharged to home with VNA services in good
condition on [**2126-2-20**]...

Figure 1: A MIMIC-III discharge summary note with
section type in bold, header tokens underlined, and text
not belonging to any section grayed out; omitted text is
indicated with ellipses.

the 7th section (hospital-course) in the same
figure, or where sections have several header text
spans placed throughout the section. Adding to this
challenge is the non-uniformity of the text, lack
of section boundary syntax, and copy-pasted text
from other notes or from structured data such as
patient vital signs.
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While discharge summary sectioning helps a
physician locate specific information, the primary
impetus for the structure and content stems from
the ongoing dispute between providers and health-
care insurance companies in the United States.
Providers are limited by how much they can bill for
relatively simple medical procedures, but increas-
ingly complex procedures garner more revenue
with proper documentation. Specifically, medical
billing staff and insurance companies use relative
value units (RVUs), which is a monetary unit up-
dated annually and currently set at $34.30. The
number of RVUs billed is based on the composi-
tion and number of sections included in the medical
notes per guidelines set by the Centers for Medicare
and Medicaid Services1.

For this reason, providers are encouraged to
write medical notes to maximize RVUs out of ne-
cessity (Barnes et al., 2008) even though physician
training lacks such emphasis. In contrast, medical
residents are evaluated with the objective structured
clinical examination (OSCE), which is a student
examination that evaluates students based on direct
observation (Zayyan, 2011). However, the exam’s
evaluation with respect to medical note authoring
and structure uses a very different criteria and omits
RVUs (Gallagher et al., 2020). The necessity of a
particular structure in medical notes, for the pur-
pose of patient care and arguably more important
insurance billing requirements, highlights the need
for understanding sectioning.

However, the motivation for understanding SI
is not limited to the medical field, it has a bearing
on other medical NLP tasks. Since each section
contains specific information, SI is often the first
step in a medical NLP pipeline and can lead to
downstream propagation errors causing poor task
specific results if not properly executed. Examples
of downstream tasks that benefit from SI include
medical summarization, entity linking and natural
language understanding and extraction.

While academic text segmentation has garnered
interest (Hirohata et al., 2008), no publicly avail-
able medical SI annotated corpora exists (Pomares-
Quimbaya et al., 2019). For this reason, we believe
MedSecId is the first medical section identification
dataset. It was created from 2,002 medical notes
annotated by two attending physicians and one se-
nior resident physician at the University of Illinois
Chicago (UI Health). The annotation dataset is

1https://www.cms.gov/Regulations-and-Guidance

comprehensive with 2,558K annotated tokens or
97.3% of the entire corpus (see Table 1).

Description Count
Documents 2,002
Annotations 22,561
Annotated Sentences 259,286
Total Tokens 2,630,525
Annotated Tokens 2,558,219

Table 1: Annotation dataset statistics.

The contributions of this work include: a) a com-
prehensive publicly available medical section anno-
tation dataset, b) baselines with three models and
several contextual and non-contextual word embed-
dings, c) an ontology of note to section relation-
ships, d) human readable descriptions of medical
notes and all sections annotated (see Appendix A),
e) a pretrained model for each baseline, f) code to
reproduce the results and read the annotations, and
g) a command line tool to predict note annotations
using any of the baseline models.

2 Related Work

Sectioning MedLINE abstracts was explored by
McKnight and Srinivasan (2003) using a support
vector machine (SVM). This classifier was used
to label sentences as Introduction, Method, Result,
or Conclusion and showed promising results us-
ing a bag-of-words approach. Sequence based ap-
proaches (Hirohata et al., 2008) were also used to
section scientific abstracts into Objective, Methods,
Results, and Conclusion labels using a conditional
random field (CRF) model producing a sentence
level accuracy of 95.5%.

While academic abstract segmentation was a
well explored area (Hirohata et al., 2008), Tep-
per et al. (2012) were the first to apply statistical
methods to the medical domain to automatically
classify sections of clinical free text into sections.
Their method used in, out, begin (IOB) annota-
tion (Ramshaw and Marcus, 1995) with labels to
mark named sections. For example, B-HPI indi-
cates a beginning token for the History of Present
Illness section. Their dataset consisted of annotat-
ing the 2010 i2b2 corpus with a section header and
medical ontology label, and obtained an F-measure
of 0.92 for the concept extraction task (Uzuner
et al., 2011; de Bruijn et al., 2010). A Maximum
Entropy (MaxEnt) model (Berger et al., 1996) and
beam search were used for classification to produce
the IOB sequence for token tagging.

https://www.cms.gov/Regulations-and-Guidance/Regulations-and-Guidance
https://www.cms.gov/Regulations-and-Guidance/Regulations-and-Guidance
https://www.cms.gov/Regulations-and-Guidance/Regulations-and-Guidance
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Along with MaxEnt, other non-neural network
methods, such as SVM and CRF models continue
to be popular with few exceptions as detailed in
the comprehensive survey of Pomares-Quimbaya
et al. (2019). One such exception (Sadoughi et al.,
2018) used a long-short term memory (LSTM)
model with word-to-vector (word2vec) embed-
dings (Mikolov et al., 2013a,b) for a binary clas-
sification of section boundaries. Even though the
corpus consists of dictated and transcribed notes,
they show that neural methods work for the section
segmentation task. Other notable neural network
(NN) text segmentation works use convolutional
neural networks (CNNs) over sentence embeddings
with a softmax over the output of a bi-directional
long-short term memory (BiLSTM) layer to demar-
cate sections as a binary classification across both
medical and non-medical datasets (Badjatiya et al.,
2018). Barrow et al. (2020) also used a LSTM
in a network that aggregates features across fast-
Text word embeddings using a concatenated seg-
ment pooling LSTM (S-LSTM) for non-medical
Wikipeda articles (Bojanowski et al., 2017).

The work of Nair et al. (2022) most closely re-
sembles our SI work. However, their model clas-
sifies only the four SOAP (Subjective, Objective,
Assessment and Plan) sections available in the cor-
pus leaving the others as future work. Their meth-
ods also only have been tested against the Flair
framework, which uses concatenated static word
embeddings that are fine tuned locally for the task
on the 2010 i2b2 corpus. Our method includes fine-
tuning the BERT embeddings themselves as an end-
to-end joint learning process. Additionally, they
have provided no annotation pipeline or process to
create a semi-supervised or bootstrapped corpus.
Our work includes medical domain specific experi-
ments with various word embedding combinations
and novel data analysis using the Unified Medical
Language System (UMLS) (Bodenreider, 2004)
and cui2vec (Beam et al., 2020) (see Section 3.3).
It also includes other methods and network experi-
mental configurations the authors have not yet tried
as they used the Flair framework “out of the box”.
Another significant difference is their annotations
are not available2 while we classify 50 sections and
provide our code with annotations publicly.

2The authors did not respond to our request for obtaining
their corpus for baseline comparison.

3 Dataset

MedSecId is a subset of the MIMIC-III version 1.4
corpus (Johnson et al., 2016) that we annotated;
MIMIC-III is publicly available3 and consists of
critical care unit EHR records from the Beth Is-
rael Deaconess Medical Center in Boston, Mass-
achusetts. The dataset contains 58,976 hospital
admissions across 46,520 patients who were ad-
mitted to the intensive care unit (ICU) surgical,
medical, and neonatal departments. It includes
2,083,180 unstructured medical text notes hand-
written by medical professionals across several dis-
ciplines and contains 15 categories, such as dis-
charge summaries and radiology notes.

We created a curated annotation set consisting of
text spans taken from a random sample across five
categories of MIMIC-III medical notes4, including
discharge summaries, Radiology, Consult , Echo,
and Physician progress notes (see Table 2). Each
text span contains the type of the section, such as
History of Present Illness, with zero-index charac-
ter offsets of where the span starts and ends in the
note.

Category Count Proportion
Discharge summary 1,254 62.64%
Physician 288 14.39%
Radiology 205 10.24%
Echo 198 9.89%
Consult 57 2.85%
Total 2,002 100%

Table 2: Annotated medical notes by category and their
distribution in the annotation set.

While each section contains a single type, sec-
tions have zero or more overlapping header text
spans (see Figure 1). In most cases, there is a sin-
gle header span, but vital signs sections can “float”
without a physical exam header. These header
spans consist of text that identify the section such
as History Of Present Illness, an alternate spelling
or abbreviation such as HPI. Even though single
header spans usually appear at the beginning of a
section, additional section headers are found later
in the body indicating subsections in some cases.
Since section type inclusion highly varies based on
the patient’s age, notes were annotated with an age
type (adult, pediatric or neonatal patient), based on
the content of the note by our annotator.

3Access to the MIMIC-III corpus requires creating a Phys-
ioNet account and finishing a training course.

4The unstructured medical note data was taken from the
NOTEEVENTS table.

https://mimic.mit.edu/docs/gettingstarted/
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Type Tokens Spans Notes
physical-examination 203K (8%) 1,385 (6%) Consult, Physician
history-of-present-illness 239K (9%) 1,348 (6%) Consult, Discharge summary, Physician
allergies 9,221 (0%) 1,205 (5%) Consult, Discharge summary, Physician
hospital-course 692K (26%) 1,165 (5%) Discharge summary
labs-imaging 416K (16%) 1,155 (5%) Consult, Discharge summary, Physician
past-medical-history 60K (2%) 1,141 (5%) Consult, Discharge summary, Physician
discharge-condition 14K (1%) 1,132 (5%) Discharge summary
discharge-instructions 183K (7%) 1,077 (5%) Discharge summary
discharge-diagnosis 34K (1%) 1,040 (5%) Discharge summary
chief-complaint 9,622 (0%) 996 (4%) Consult, Discharge summary, Physician
discharge-medications 196K (7%) 914 (4%) Discharge summary
social-history 28K (1%) 912 (4%) Consult, Discharge summary, Physician
medication-history 49K (2%) 867 (4%) Consult, Discharge summary, Physician
family-history 11K (0%) 802 (4%) Consult, Discharge summary, Physician
discharge-disposition 5,602 (0%) 754 (3%) Discharge summary
major-surgical-or-invasive-procedure 16K (1%) 704 (3%) Discharge summary
facility 2,668 (0%) 502 (2%) Discharge summary
reason 5,588 (0%) 458 (2%) Consult, Radiology
findings 58K (2%) 395 (2%) Echo, Radiology
assessment-and-plan 131K (5%) 381 (2%) Consult, Physician
review-of-systems 7,422 (0%) 329 (1%) Consult, Discharge summary, Physician
image-type 1,820 (0%) 328 (1%) Radiology
last-dose-of-antibiotics 3,689 (0%) 293 (1%) Consult, Physician
24-hour-events 16K (1%) 250 (1%) Physician
code-status 1,879 (0%) 237 (1%) Physician
impression 8,233 (0%) 224 (1%) Echo, Radiology
disposition 1,161 (0%) 210 (1%) Physician
conclusions 28K (1%) 206 (1%) Echo
communication 1,304 (0%) 199 (1%) Physician
patient-test-information 13K (1%) 198 (1%) Echo

Table 3: The top 30 most frequently annotated sections.

3.1 Annotation Process

Our annotation process consisted of several pre-
liminary rounds of annotation, that led to our final
annotation guidelines and final annotation.

Before annotation began, a custom set of regular
expressions were used to pre-annotate, similar to
previous work (Shivade et al., 2015); ours were
medical note specific and captured header tokens
along with the section spans. The application of
the regular expressions was only a means to re-
duce the work of the annotators, who followed
the annotation guide regardless of any rule based
pre-annotations. The initial rule based automatic
annotation process was amended by the work of
Alsentzer and Kim (2018), who generously shared
their History of Present Illness annotations to bet-
ter identify and segment the initial dataset used
by our annotators. These automatic annotations
were edited by the annotators after they were im-
ported into INCEpTION (Klie et al., 2018) and
saved to later compute an inter-coder agreement
between the physicians and rule-based output (see
Section 3.2).

An attending physician (designated as a primary
annotator) co-wrote a preliminary annotation guide

with input from a secondary physician annotator.
These two annotators engaged in a process of an-
notation, discussion and revision of the guidelines:
they annotated a first set of one hundred notes, re-
vised the guidelines, annotated a second set of one
hundred notes, and finalized the guidelines after
this second round.

Here we summarize the issues that the annotators
faced during these preliminary rounds of annota-
tion. This process was useful for the physicians to
reach a consensus on what sections should be anno-
tated and agreed on section types given their expe-
rience writing such notes themselves. A set of sec-
tions and their relation to notes began to coalesce
during this process, which provided the motivation
to create an ontology for the purpose of a meta doc-
umentation about the annotations and the utilitarian
purpose to assist in annotation by importing it as
a “knowledge base” in INCEpTION. The ontology
consisted of a one-to-many mapping from notes
to 50 section types using each section’s header to-
kens captured by the regular expressions by string
massaging. For example, History of Present Ill-
ness became history-of-present-illness.
Among the categories, 29 sections were shared
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across more than one note, such as History of
Present Illness shared between notes Discharge
summary, Consult, and Physician (see Table 3 for
annotated sections and Appendix A for full list-
ings).

A1 A2 A3 R
A1 1.0 0.81 0.87 0.73
A2 1.0 0.84 0.49
A3 1.0 0.53
R 1.0

Table 4: Krippendorff’s α coefficient of interannota-
tor agreement between the annotators and the regular
expressions. A1 is the primary annotator, A2 is the sec-
ondary annotator and A3 is the third annotator, and R
represents the regular expressions.

Each section type was then agreed on by the
physicians with many re-typed and regrouped. For
example, Echo notes contained internal subsections
for each chamber of the heart, and was resolved by
grouping the entire section as Findings to match
section types in Radiology notes. Other subsections
implicitly resulted by physicians copying radiology
findings in discharge summaries. In an effort to
reduce complexity, a flat note-to-section hierarchy
without creating a second section level was kept. In
some cases this was achieved by combining labora-
tory results data with radiology findings/diagnosis
as a single section by simply re-casting Labs to
Labs/Radiology for sections that included imaging
studies. Other sections needed to be combined as
not all notes had a clean separation.

To accommodate for a significant variation in
how physicians labeled sections in these situa-
tions, Labs and Radiology was combined into a
Labs/Radiology section. Labs and Imaging were
also combined into Labs/Imaging. Since discharge
summaries typically incorporate instructions for the
patient and follow up information, we categorized
these together broadly as Discharge instructions.
The MIMIC-III pseudo tokens, such as [**First
Name**] were not annotated unless they were in-
cluded in the body of the section.

The primary and secondary annotators finished
revising the annotation guidelines and then trained
the third annotator. A subset of 80 medical notes,
chosen from the second batch of 100 that the pri-
mary and secondary annotator had annotated and
discussed, was used to train the third annotator. Be-
cause these first two batches were only used for cre-
ating guidelines and training, they were not added
in the final annotation set. During this process, the

well known Krippendorff’s α coefficient (Krippen-
dorff, 2011), was used to compute inter-annotator
agreement (IAA) between this last annotator and
the other two, until α became higher than 0.8.

3.2 Final Annotation and IAA Computation
Once the guidelines were finalized the final annota-
tion process started. A set of 100 notes (different
than the sets discussed in Section 3.1) was held out
to compute the inter-annotator agreement (IAA) on
the final guidelines. The remaining 1,902 notes
were divvied up among the three annotators, as
customary.

Inter-annotator agreement was calculated on the
100 held out notes as exact section character offsets
and section types—both the offsets and the section
type had to match to be considered correct. This
agreement was calculated among the human anno-
tators, and subsequently between each annotator
and the regular expressions that were initially used
to segment the notes.

Among humans, Krippendorff’s α yielded more
than acceptable values of 0.84 to 0.87 on the final
set held out for this IAA calculation (see Table 4).
At this point, these annotations were added to the
final dataset by selecting notes with the fewest is-
sues5 using the primary annotator as the tie-breaker.

While we achieved a high inter-coder agreement
among human annotators, we found troubling data
in terms of the performance of the regular expres-
sion annotation approach. We computed an aggre-
gate Krippendorff’s α=0.54 between the human
physician annotators and our custom regular ex-
pressions (see Section 3.1) on the final annotated
data, which falls more than 14 points shy of the
“lowest conceivable limit” of 0.68 (Krippendorff,
2004). This shows how regular expression’s per-
formance to segment notes falls short of that by
human annotators (see Table 4), yet regular expres-
sions continue to be the most common methods
used for section identification (Pomares-Quimbaya
et al., 2019; Shivade et al., 2015).

In part, the regular expressions often failed to
demarcate the entire section, especially in text with
irregular formatting toward the end. Furthermore,
additional analysis shows the α scores between in-
dividual annotators and the regular expressions are
low as well, albeit with a fairly high variance. Krip-
pendorff suggests that acceptable scores that are

5Issues included placement of header tokens and missing
sections. For example, an annotation with a defined section
would win over another’s annotation with the section type.
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a) b)

Figure 2: Concept unique identifier (CUI) Plots: a) plot of past-medical-history (purple) and
past-surgical-history (blue) reduced to 3D together as one data set with the first principal component
(red line) with data point size as the TF/IDF score, b) plot of the same sections but reduced to 3D as separate data
points with respective first principal components.

“customary to require” have α ą 0.8 (Krippendorff,
2004). On one hand, an α of 0.73 between physi-
cian A1 and the automatic regular expression anno-
tator R clears the minimal limit threshold. However,
this metric falls well below the “aimed” score of
0.8. The larger issue is with physician A2’s and
A3’s scores of 0.49 and 0.53, which fall short of
the minimum limit by a large margin. From these
scores (see Table 4) and the low overall α, we
conclude regular expressions do not sufficiently
segment medical notes, therefore the annotation set
we provide should be considered the gold standard
for medical note identification and segmentation.

3.3 Data Analysis
An interesting discovery concerned projections of
medical conditions across sections in embedded
space. Concept unique identifiers (CUIs) were ex-
tracted using MedCAT (Kraljevic et al., 2021) and
weighted by TF/IDF (Sparck Jones, 1972) across
sections. Each CUI was mapped to a vector from
cui2vec embeddings, and then reduced to three
dimensions using principal component analysis
(PCA), shown in Figure 2. The plot was generated
without normalizing or standardizing the data so
CUI vector magnitudes were retained for analysis.
Figure 2 (a) shows the past-medical-history
section (purple) CUIs on the horizontal axis with
past-surgical-history (blue) CUIs only on

the vertical axis with size proportional to TF/IDF.
The past surgical and medical history sections

in discharge summary notes project many medical
disease CUIs as orthogonal to surgical CUIs. The
medical disease CUIs on the vertical axis are those
that do not have surgery as a treatment option, such
as hypertension. However, a CUI representing coro-
nary artery disease that plots along the surgical his-
tory vertical axis does require surgery. Most of the
data points that share the vertical axis along with
past-medical-history are those that require
both medication and surgery, such as cancer.

Not only does this show cui2vec being used in
practice for the first time, it illustrates an applica-
tion of how groupings of concepts can be visual-
ized and analyzed to gain intuition and insight in
complex medical data. In our data, this includes
not only a semantic relationship between concepts,
but how those concepts represent the treatments
involved based on the section from which they
originate. Given this data relationship, we hypothe-
size that utilization of cui2vec embeddings, such as
concatenating them to word vectors, will increase
performance of task specific models including SI.

3.4 Limitations
MedSecId is limited to notes (with the exception
of the discharge summary) of patients admitted
to an ICU from the MIMIC-III corpus for several
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Figure 3: Baseline models: a) BiLSTM-CRFtok BiLSTM model with non-contextual token input embeddings, b)
BERT-CRFtok BiLSTM model with BERT word piece token fixed input embeddings, c) BERTsent BiLSTM model
with [CLS] sentence embeddings using the per sentence majority label.

note categories with no data included after the pa-
tient leaves to a lower severity department6. Notes
written afterward are an essential source of data
that provides an aspect of the patients’ stay that
is otherwise lacking in the corpus, such as daily
progress Physician notes. However, Radiology and
Echo notes from the MIMIC-III corpus apply to all
hospital departments since they are uniform for all
patients, regardless of their location, outpatient or
inpatient. In addition, discharge summaries entail
the entire hospital visit, including the ICU and the
remainder of the admission.

3.5 Implementation Details

The annotation set was randomly sampled per note
and divided as a stratified dataset into training
(80%), validation (10%) and test (10%) datasets.
The medical note structure ontology (see Sec-
tion 3.1) is distributed as both a RDF Turtle file
and a CSV file along with the annotations. The
publicly available7 code to train, validate, and test
the model also includes additional APIs to access
the annotated data, perform inference with the pre-
trained model or train a new model. This codebase
includes functionality to use the pretrained model
or utilize the annotations for experimentation and is

6Only five note categories are available (see Table 2).
7https://github.com/uic-nlp-lab/medsecid

ready to easily be installed.8 This codebase also ref-
erences a related project useful for parsing MIMIC-
III text, pseudo token replacement, and Postgres
database to Python object relational mapping.

4 Methods

Because the section text spans do not break on to-
kens, we cast our task as a named entity recognition
(NER) using in, out (IO) encoding9 on a 50 way
classification including <none> for text with no
sections (see Table 7). Using this encoding, we
created several baselines across two BiLSTM mod-
els10 for the purpose of future work benchmarking.
These baselines include majority label metrics, a
token BiLSTM-CRF, and a sentinel BERT embed-
ding (Devlin et al., 2019) LSTM model (see Fig-
ure 3). Aside from adjusting the LSTM hidden size,
gradient clipping, and number of epochs, all para-
meters were held constant across all experiments
(see Appendix B for all hyperparameters used).

BiLSTM-CRFtok The token model consists of a
simple non-contextual input word embeddings, a
LSTM layer and fully connected linear layer using
a CRF output with labels assigned by the Viterbi

8All that is required in a pip install. See the GitHub
repo for details.

9IOB encoding was not used as there are no transitions
from one section to another and to reduce the label count.

10No models use a BERT transformer, only BERT token
and sentinel ([CLS]) embeddings.

https://github.com/uic-nlp-lab/medsecid
https://github.com/uic-nlp-lab/medsecid
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Id Name mF1 mP mR MF1 MP MR
1 Majority Label 0.023 0.023 0.023 0.0 0 0.005
2 BERTsent 0.925 0.925 0.925 0.589 0.616 0.6
3 BiLSTM-CRFtok (word2vec) 0.927 0.927 0.927 0.778 0.78 0.801
4 BERT-CRFsent 0.929 0.929 0.929 0.689 0.734 0.7
5 BERTsent BioBERT 0.94 0.94 0.94 0.687 0.73 0.679
6 BERT-CRFsent BioBERT 0.94 0.94 0.94 0.705 0.757 0.704
7 BiLSTM-CRFtok (GloVE 50D) 0.954 0.954 0.954 0.76 0.783 0.765
8 BiLSTM-CRFtok fastText 0.954 0.954 0.954 0.796 0.806 0.806
9 BiLSTM-CRFtok (GloVE 300D) 0.955 0.955 0.955 0.787 0.801 0.788

Table 5: Summarization of performance metrics where mF1 is the micro F1, mP is the micro precision, mR is the
micro recall, MF1 is the macro F1, MP is the macro precision, MR is the macro recall.

algorithm. Several embeddings were used with
this model, including word2vec (Mikolov et al.,
2013a,b), Global Vectors for Word Representation
(GLoVe) (Pennington et al., 2014) and fastText (Bo-
janowski et al., 2017) (Crawl) embeddings.

BERTsent To address the issue of exploding gra-
dients, we created a sentence-based model using
static BERT sentinel embeddings to lower the in-
put length to the LSTM layer. The model assumes
sections rarely break mid-sentence since every sen-
tence is assigned one section. Sentences with more
than one section annotation will lower end-to-end
performance. However, 97.6% of the annotation
set contains sentences with a single section for all
tokens of the respective sentence as shown in Ta-
ble 6. The output of the final layer of the first time
step was used as the input to a LSTM. The LSTM
output forwarded to a dense layer with one output
neuron for each label and an output max over the
label.

Unique Sections Count Proportion
1 253025 97.59%
2 5589 2.16%
3 589 0.23%
4 72 0.03%
5 11 0.00%

Table 6: Distribution of sentences having a single sec-
tion label across all tokens of the respective sentence.

Both the standard small BERT model and
BioBERT embeddings (Lee et al., 2020) are in-
cluded in the baseline results (see Section 5). A
ClinicalBERT baseline model (Alsentzer et al.,
2019) would not provide a fair baseline metric for
comparison with future works since it trained on
the MIMIC-III corpus so it was excluded.

BERT-CRFsent Like BERTsent, but adds a CRF
layer with Viterbi assigned labels.

5 Results

The baseline models described in Section 4 were
each trained until the validation loss converged,
then early stopped. The results are summarized in
Table 5 with label specific results in Table 7. We
report performance metrics by counting correct pre-
dictions when the character span boundaries match
exactly and the sections type match. If either do
not match, it is counted as an incorrect prediction.

From the majority label, it’s clear the models per-
form comparatively well as shown in the summary
results in Table 5. The GLoVe model has the best
micro F1 of 0.96 with the fastText model having
the best macro F1 of 0.8. This 16 point spread is
evident from how performance drops off for the bot-
tom 13 section types. Many of these low perform-
ers are those that were re-casted or re-grouped (see
Section 3.1), and could be regrouped to an umbrella
section type like Labs/Imaging/Radiology if such a
rigorous delineation was not necessary.

The BERTsent does not lag far behind, but its
performance using sentinel embeddings does not
capture sections as well as the token level models
despite long document length. Performance signifi-
cantly improved and models converged faster with
the use of gradient clipping to alleviate issues of
LSTM exploding gradients (Bengio et al., 1994).

6 Conclusions and Future Work

We presented MedSecId, a comprehensive dataset
of 2,002 medical annotations from the MIMIC-III
corpus across five note types and 50 sections. The
dataset contains section types, headers and patient
age annotations. Our dataset shows promising base-
line results from simple models such as BiLSTMs
with diverse inputs, but still leaves room for im-
provement by more sophisticated models.

We expect performance using our models to im-
prove pipelines that use rule based methods for
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Id Label mF1 mP mR MF1 MP MR Acc Count
1 procedure 0 0 0 0 0 0 0 156
2 labs 0 0 0 0 0 0 0 436
3 prenatal-screens 0.276 0.276 0.276 0.216 0.5 0.138 0.276 105
4 imaging 0.357 0.357 0.357 0.263 0.5 0.178 0.357 990
5 comparison 0.414 0.414 0.414 0.195 0.333 0.138 0.414 222
6 code-status 0.513 0.513 0.513 0.226 0.333 0.171 0.513 150
7 wet-read 0.521 0.521 0.521 0.342 0.5 0.26 0.521 121
8 communication 0.556 0.556 0.556 0.179 0.25 0.139 0.556 133
9 impression 0.563 0.563 0.563 0.18 0.25 0.141 0.563 920
10 disposition 0.647 0.647 0.647 0.262 0.333 0.216 0.647 68
11 history 0.688 0.688 0.688 0.272 0.333 0.229 0.688 170
12 past-surgical-history 0.745 0.745 0.745 0.427 0.5 0.372 0.745 145
13 current-medications 0.746 0.746 0.746 0.142 0.167 0.124 0.746 1406
14 contrast 0.8 0.8 0.8 0.444 0.5 0.4 0.8 25
15 <none> 0.816 0.816 0.816 0.03 0.033 0.027 0.816 6378
16 discharge-disposition 0.83 0.83 0.83 0.151 0.167 0.138 0.83 513
17 addendum 0.833 0.833 0.833 0.151 0.167 0.139 0.833 3106
18 last-dose-of-antibiotics 0.872 0.872 0.872 0.466 0.5 0.436 0.872 397
19 indication 0.88 0.88 0.88 0.468 0.5 0.44 0.88 117
20 physical-examination 0.881 0.881 0.881 0.156 0.167 0.147 0.881 22113
21 image-type 0.884 0.884 0.884 0.313 0.333 0.295 0.884 181
22 discharge-condition 0.904 0.904 0.904 0.317 0.333 0.301 0.904 1490
23 infusions 0.909 0.909 0.909 0.476 0.5 0.455 0.909 99
24 history-of-present-illness 0.924 0.924 0.924 0.137 0.143 0.132 0.924 24950
25 discharge-medications 0.925 0.925 0.925 0.192 0.2 0.185 0.925 25088
26 flowsheet-data-vitals 0.932 0.932 0.932 0.482 0.5 0.466 0.932 2128
27 24-hour-events 0.954 0.954 0.954 0.244 0.25 0.238 0.954 1765
28 past-medical-history 0.959 0.959 0.959 0.163 0.167 0.16 0.959 5990
29 discharge-diagnosis 0.959 0.959 0.959 0.196 0.2 0.192 0.959 3578
30 family-history 0.968 0.968 0.968 0.328 0.333 0.323 0.968 1171
31 chief-complaint 0.968 0.968 0.968 0.492 0.5 0.484 0.968 1142
32 medical-condition 0.971 0.971 0.971 0.328 0.333 0.324 0.971 409
33 review-of-systems 0.977 0.977 0.977 0.494 0.5 0.488 0.977 724
34 labs-imaging 0.981 0.981 0.981 0.142 0.143 0.14 0.981 45855
35 discharge-instructions 0.986 0.986 0.986 0.166 0.167 0.164 0.986 23208
36 social-history 0.988 0.988 0.988 0.249 0.25 0.247 0.988 3114
37 allergies 0.989 0.989 0.989 0.331 0.333 0.33 0.989 891
38 assessment-and-plan 0.99 0.99 0.99 0.199 0.2 0.198 0.99 12728
39 reason 0.992 0.992 0.992 0.332 0.333 0.331 0.992 646
40 conclusions 0.994 0.994 0.994 0.498 0.5 0.497 0.994 2814
41 findings 0.998 0.998 0.998 0.333 0.333 0.333 0.998 6053
42 hospital-course 0.998 0.998 0.998 0.2 0.2 0.2 0.998 78321
43 social-and-family-history 1 1 1 1 1 1 1 52
44 technique 1 1 1 1 1 1 1 22
45 clinical-implications 1 1 1 1 1 1 1 36
46 other-medications 1 1 1 1 1 1 1 489
47 major-surgical-or-invasive-procedure 1 1 1 1 1 1 1 1903
48 facility 1 1 1 1 1 1 1 344
49 patient-test-information 1 1 1 1 1 1 1 1349
50 medication-history 1 1 1 0.333 0.333 0.333 1 6082

Table 7: By label BiLSTM-CRFtok performance where mF1 is the micro F1, mP is the micro precision, mR is the
micro recall, MF1 is the macro F1, MP is the macro precision, MR is the macro recall, Acc is the accuracy, count is
the the number of tokens encountered in the test set. The <none> label is for tokens with no section annotated.

SI as mentioned in Section 3.2. These pipelines
include discharge note summarization, and other
downstream tasks that would benefit from having
header and non-section text removed such as train-
ing word embeddings such as ClinicalBERT.

Hyperparameter tuning with the baseline models
is a next logical step for further work. Another
obvious opportunity to improve performance is to
concatenate cui2vec embeddings in the input layer

as described in Section 3.3. Other future work
includes comparing the results using the synthetic
tokens in place of pseudo tokens, which would shed
light on how models learn with more realistic data.
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A Descriptions

Table 8: Note Categories

Name Description
Consult Notes generated when a specialst intervenes in a patient’s care.
Discharge summary A discharge summary describes a patient’s stay at a hospital and the care they received. They can

also include follow up instructions, medications and a schedule for future appointments.
Echo An ultrasound of the heart.
Physician Daily notes taken by the physician on their rounds as a part of a patient check up.
Radiology Diagnosis and other notes taken by a radiologiest based on images such as xrays, MRI, CAT scans.

Table 9: Section Types

Section Type Name Description
24-hour-events 24 Hour Events Description of what happened in the past 24 hours of

the patients stay.
addendum Addendum An addition to the note.
allergies Allergies Patient allergies to medication and food of varying

severity.
assessment-and-plan Assessment And Plan An overview of the problems that are occuring and

the plan to address each problem.
critical-care-attending-addendum Attending Addendum The attending physician’s addition to the note.
chief-complaint Chief Complaint The reason why the patient came to the hospital.
clinical-implications Clinical Implications Why this study is important.
code-status Code Status What should be done in the event of a cardiac or

respiratory arrest, end of goals care.
communication Communication Information about who to contact and the relation to

the patient.
comparison Comparison Comparing the new study to prior studies to determine

interval changes.
conclusions Conclusions Interpretation of the findings in relation to the pa-

tient’s condition.
contrast Contrast Was contrast introduced into the patient.
current-medications Current Medications Medications that the patient are taking at home.
discharge-condition Discharge Condition The stability of the patient upon discharge.
discharge-diagnosis Discharge Diagnosis The diagnosis of the patient after being worked up in

the hospital.
discharge-disposition Discharge Disposition Where the patient is being discharged to.
discharge-instructions Discharge Instructions Post discharge instructions regarding what the patient

can and cannot do.
discharge-medications Discharge Medications Medications that the patient will sent home with and

to continue taking.
disposition Disposition Where the patient will go within the hospital.
family-history Family History Medical history of family members.
findings Findings Specific finidngs during the study.
flowsheet-data-vitals Flowsheet Data/Vitals Information pulled from flowsheets that are discretely

kept within the ehr.
history History Patient’s clinical history warranting exam.
history-of-present-illness History Of Present Illness A description of the events surrounding the reason

why the patient came to the hospital: Symptom onset,
duration, severity and associatating factors.

hospital-course Hospital Course A summary of what happened during the patient’s
time in the hospital.

image-type Image Type The type of study being performed.
imaging Imaging All image related orders placed by the physician in-

cluding: CT, XRAY, ECHO, MRI, Ultrasound.
impression Impression Overall summerization of the study.
indication Indication Why the study was performed.
infusions Infusions Medications classified as a constant infusion.
labs Labs Laboratory values.
labs-imaging Labs / Imaging Lab and radiological results.
last-dose-of-antibiotics Last Dose Of Antibiotics Time of the last dose of antibiotic medications.
major-surgical-or-invasive-procedure Major Surgical Or [...] Any procedures or surgies that occured while the pa-

tient was at the hospital.
medical-condition Medical Condition History of the patient and why the patient needs the

study.
Continued on the next page
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Table 9: Section Types (cont)

Section Type Name Description
medication-history Medication History Medications that the patient are taking at home.
other-medications Other Medications Other medications the patient is receiving.
past-medical-history Past Medical History Medical problems a patient has.
past-surgical-history Past Surgical History All surgeries the patient has had in their past.
patient-test-information Patient/Test Information Basic and standardized information of the patient.
physical-examination Physical Examination Evalutating anatomic finds of a patient through palpa-

tion and auscultation.
prenatal-screens Prenatal Screens Screening of blood type and infections prior to deliv-

ery.
procedure Procedure Procedure name.
reason Reason Why the consulting team was brought in for the pa-

tient’s care.
review-of-systems Review of Systems A generalized review of potential symptoms that the

patient might not have addressed in the chief com-
plaint or history of present illness.

social-history Social History History of occupation, recreational activities, and liv-
ing situation.

social-and-family-history Social and Family History Combination of social and family history.
technique Technique How the procedure was being performed.
wet-read Wet Read Initial read, not the official read of the study.
addendum addendum An addition to the note.
facility facility The location the patient is going after discharge.

B Hyperparameters

The hyperparameters used to train the models described in Section 4. Those hyperparameters which
differed for each model are given in Table 10. Hyperparameters shared across all models are given in
Table 11. The only non-zero drop out was used in the LSTM layer.

Model Epochs Learning Rate CRF
BERT-CRFsent 40 0.003 True
BERT-CRFsent BioBERT 45 0.003 True
BERTsent 35 0.003 False
BERTsent BioBERT 45 0.003 False
BiLSTM-CRFtok (GloVE 300D) 30 0.01 True
BiLSTM-CRFtok (GloVE 50D) 25 0.01 True
BiLSTM-CRFtok (word2vec) 30 0.01 True
BiLSTM-CRFtok fastText 40 0.01 True

Table 10: The hyperparameters of the models given in the results. Epochs is the number of epochs used to train
the model, Learning Rate is the learning rate for the update step size of the loss function and CRF is whether the
BiLSTM used a CRF output layer.

Name Value Description
Batch Size 20 The size of the mini-batches used to train the model.
Hidden Size 250 The hidden size of the LSTM.
Num Layers 2 The number of stacked layers of the LSTM.
Dropout 0.15 The dropout of the LSTM.

Table 11: The shared hyperparameters set for all models.
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