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Abstract

Behavioural consistency is a critical condition
for a language model (LM) to become trust-
worthy like humans. Despite its importance,
however, there is little consensus on the defini-
tion of LM consistency, resulting in different
definitions across many studies. In this paper,
we first propose the idea of LM consistency
based on behavioural consistency and establish
a taxonomy that classifies previously studied
consistencies into several sub-categories. Next,
we create a new benchmark that allows us to
evaluate a model on 19 test cases, distinguished
by multiple types of consistency and diverse
downstream tasks. Through extensive experi-
ments on the new benchmark, we ascertain that
none of the modern pre-trained language mod-
els (PLMs) performs well in every test case,
while exhibiting high inconsistency in many
cases. Our experimental results suggest that
a unified benchmark that covers broad aspects
(i.e., multiple consistency types and tasks) is
essential for a more precise evaluation.

1 Introduction

Human-like behaviour is a critical property that in-
creases a user’s trust in an artificial intelligence (AI)
agent (De Visser et al., 2016; Jung et al., 2019)
by improving the certification process that ascer-
tains whether a system behaves correctly (Huang
et al., 2020). 1 Accordingly, despite the outstanding
performance of transformer-based PLMs on nat-
ural language understanding (NLU) benchmarks,
there have been pushbacks in various corners ques-
tioning their trustworthiness based on their non-
human like behaviours, such as a poor memori-
sation effect on infrequent information (Kassner
et al., 2020; Ravichander et al., 2020; Hofmann
et al., 2021), insensitivity to sentence order (Pham
et al., 2021; Gupta et al., 2021; Sinha et al., 2021),

1Trustworthiness = Certification + Explanation (Huang
et al., 2020).

and a miserable understanding of negation expres-
sions (Hossain et al., 2020; Kassner and Schütze,
2020; Ettinger, 2020; Hosseini et al., 2021; Jang
et al., 2022).

In this respect, behavioural consistency, a core
property of humans, is an important characteris-
tic for a model to be deemed as trustworthy LM.
Accordingly, the concept of consistency has been
widely discussed in natural language processing
(NLP). However, despite its prominent importance,
there is little consensus on the precise definition
of consistency. Below are examples of different
consistency definitions:

• Making consistent decisions in semantically
equivalent contexts (Elazar et al., 2021).

• Being consistent on a system’s beliefs across
various inputs (Li et al., 2019).

• Producing logically or factually accurate state-
ments (Li et al., 2020b).

Hence, different studies on consistency focused on
diverging types of consistency but only on certain
tasks, primarily natural language inference (NLI)
and question answering (QA).

To this end, in this paper, we first define the
consistency of an LM based on the concept of be-
havioural consistency and establish a taxonomy by
systematically categorising previous works based
on our definition. Next, we propose a new bench-
mark named benchmark for consistency evaluation
of language models (BECEL), a unified dataset
for evaluating an LM’s consistency, which assesses
multiple types of consistency on six different tasks:
NLI, semantic textual similarity (STS), words-in-
context (WiC), semantic analysis (SA), machine
reading comprehension (MRC), and topic classifi-
cation (TC). Finally, we conduct extensive experi-
ments on our new benchmark to assess the consis-
tent behaviour of widely used PLMs and draw the
following meaningful insights.

1. We observe that none of the PLMs coherently
shows a consistent behaviour in all test cases.
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2. Large-sized models do not necessarily per-
form better than small-sized models, suggest-
ing that increasing the model size is not the
solution to improve consistency.

3. Our experimental results accentuate the ne-
cessity of a unified benchmark that enables
evaluations from multiple aspects (i.e., vari-
ous consistency types and downstream tasks).

4. Artefacts in training data have more influence
than model design, e.g., training objectives
and model structures.

The data of this paper are available at https://github.
com/MJ-Jang/BECEL.

2 Language Model’s Consistency

Behavioural consistency refers to being consistent
in behavioural patterns by adhering to the same
principles.2 Based on this notion, we define the
consistency of an LM as its ability to make a coher-
ent decision not contradictory to its belief.

This definition of consistency consists of two
components. The first one is belief, which refers
to what a model considers to be true. The second
component is principle, the property that decides
what a coherent decision is. Based on these two
components, we classify the various types of con-
sistency in the literature into three large categories:
semantic, logical, and factual consistency.

2.1 Semantic Consistency
It is the nature of meaning-text theory (MTT) to
consider that the correspondence between linguis-
tic expressions (text) and semantic contents (mean-
ing) is many-to-many, implying that the meaning
can be given in different text forms (Mel’čuk and
Žolkovskij, 1970; Milićević, 2006). In this regard,
a model with a high level of NLU ability should
capture the meaning in essence and make the same
decisions in semantically identical texts consider-
ing the definition of “understanding language” 3,
and this is the concept of semantic consistency. The
belief and principle become a model’s predictions
on semantically identical texts and semantic equiv-
alence, respectively. So, we define the semantic
consistency of an LM as its ability to make the same
decisions on semantically equivalent texts.

Semantic consistency is an indispensable prop-
erty of LMs regardless of the tasks and data, since
it originates from the meaning and the universal

2N., Sam M.S., Behavioral Consistency. PsychologyDic-
tionary.org, April 7, 2013, [link].

3To focus on the meaning and not the text (Krashen, 1982).

nature of language. It is probably the most widely
used concept across many studies regarding an
LM’s consistency. Research on text adversarial
attacks showed that several PLMs are susceptible
to adversarial samples that are designed to convey
a similar meaning to their original counterparts (Jin
et al., 2020; Garg and Ramakrishnan, 2020; Li
et al., 2020a; Ivgi and Berant, 2021; Li et al., 2021).
Ribeiro et al. (2019) investigated semantic consis-
tency of QA models by generating implications that
must be true considering the model’s answer on
the original query. Other works observed a discrep-
ancy in the masked language modelling (MLM)
predictions of PLMs for queries where the ob-
ject is replaced with its plural form (Ravichander
et al., 2020) and paraphrased queries (Elazar et al.,
2021). Also, recent studies introduced the semantic
consistency to consistency regularisation for train-
ing LMs with improved inductive bias (Wang and
Henao, 2021; Zheng et al., 2021; Kim et al., 2021).

2.2 Logical Consistency
Several NLP tasks require the fulfilment of a cer-
tain logical property. The predictions that violate
this logical property are considered invalid. There-
fore, the belief and principle become a model’s
predictions regarding instances where the logical
property holds and a logical property. Hence, we
define the logical consistency of an LM as its ability
to make decisions without logical contradiction.

Logical consistency can be subdivided according
to the required logical properties. Here, we outline
four types of logical consistency: negational, sym-
metric, transitive, and additive consistency.
Negational consistency. The core property of
negational consistency is the logical negation prop-
erty (p is true ⇔¬p is false; Aina et al. 2018). That
is, an LM’s predictions should be different for texts
having the opposite meaning if the property holds.
Several works observed that PLMs often generate
MLM outputs that violate this property, e.g., gener-
ating the same predictions for queries like “Birds
can [MASK]” and “Birds cannot [MASK]” (Kass-
ner and Schütze, 2020; Ettinger, 2020; Jang et al.,
2022). Asai and Hajishirzi (2020) used negational
consistency for data augmentation to train QA mod-
els.
Symmetric consistency. Provided a function f
takes two variables, a symmetric inference is de-
fined as: f(x, y) = f(y, x). Intuitively, this im-
plies that an LM’s prediction should be invariant
to the input text swap for NLP tasks. Previous

https://github.com/MJ-Jang/BECEL
https://github.com/MJ-Jang/BECEL
https://psychologydictionary.org/behavioral-consistency/
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works on symmetric consistency are conducted on
the NLI task. Wang et al. (2019) suggested that
symmetric consistency holds for instances having
contradiction and neutral as a label, and investi-
gated the change in accuracy after switching the
premise and hypothesis. On the contrary, Li et al.
(2019) claimed that the property holds if and only
if the label is a contradiction. They evaluated the
symmetric consistency of NLI models on newly
constructed data from MS-COCO (Lin et al., 2014).
Recently, Kumar and Joshi (2022) expanded the ex-
periments from NLI to STS task and evaluated the
consistency in more conservatively by measuring
the confidence score difference.
Transitive consistency. Given the three predicates
X, Y, and Z, transitive inference is represented as:
X → Y ∧Y → Z then X → Z (Gazes et al., 2012;
Asai and Hajishirzi, 2020). Li et al. (2019) applied
this property to NLI task. Specifically, for the three
related sentences P , H , and Z, they defined four
transitive inference rules:

E(P,H) ∧ E(H,Z) → E(P,Z), (1)

E(P,H) ∧ C(H,Z) → C(P,Z), (2)

N(P,H) ∧ E(H,Z) → ¬C(P,Z), (3)

N(P,H) ∧ C(H,Z) → ¬E(P,Z), (4)

where E, N , and C denote entailment, neutral,
and contradiction, respectively. They constructed
a new evaluation set from MS-COCO (Lin et al.,
2014) for assessing the transitive consistency of
NLI models. In QA, Asai and Hajishirzi (2020)
used the transitive property for augmenting train-
ing data by combining two questions (q1, q2) where
the effect of q1 is equal to the cause of q2. (Lin and
Ng, 2022) investigated PLMs’ transitive inference
ability on WordNet word senses and the IS-A re-
lation, i.e., if A is-a B and B is-a C, then A is-a
C. These works ascertained that PLMs do not fully
obey the transitive property.
Additive consistency. We propose a new type of
logical consistency that we call additive consis-
tency. For a function f , additive inference is rep-
resented as: f(x) = f(y) = c → f(x + y) = c,
where c is a predicted label. For NLP tasks, ad-
ditive consistency applies to any single-sentence
classification task (e.g., SA and TC). Intuitively,
this implies that if a model yields the same predic-
tion for different sentences, then the prediction of
the combined sentence should also be the same.
Specificity of logical consistency. It is worth men-
tioning that, unlike semantic consistency, logical

Pretrained 
Language Model

Train Dataset

Eval Set 
(𝓔)

1. Fine-tuning

2. Inference on the original
evaluation set

3. Inference on the new 
evaluation set

New Eval Set 
(𝓔𝑵)

Modification

Downstream Task

𝐏𝐫𝐞𝐝(𝓔) 𝐏𝐫𝐞𝐝(𝓔𝐍)

4. Measure consistency

Figure 1: Overall evaluation framework for assessing
an LM’s consistency.

consistency is a task- and data-specific condition.
It is inapplicable to those where a certain logical
property is invalid. For instance, negational consis-
tency cannot be applied to TC. It is obvious that
negating the sentence below that belongs to the
Sports category does not change its category.

Tottenham forward Son Heung-min has signed a
new four-year contract.

2.3 Factual Consistency
The basic concept of factual consistency is that a
model should generate factually accurate outputs.
Therefore, the belief is the model’s output, and
the principle becomes factual correctness. Hence,
we define the factual consistency of an LM as its
ability to generate outputs not contradictory to the
common facts and given context.

By its nature of generating correct facts, fac-
tual consistency is closely related to knowledge
grounding and reducing hallucinations. So, most
works on factual consistency are on natural lan-
guage generation (NLG), mainly text summarisa-
tion (Kryscinski et al., 2020; Maynez et al., 2020;
Wang et al., 2020; Pagnoni et al., 2021), generative
open-domain QA (Lewis et al., 2020b; Izacard and
Grave, 2021), and dialogue generation (Li et al.,
2020b; Shuster et al., 2021; Komeili et al., 2022).

3 BECEL Dataset
3.1 Overview
Figure 1 illustrates the overall framework for evalu-
ating an LM’s consistency. A PLM is fine-tuned on
a downstream task and generates predictions of its
original evaluation set (E) and a new evaluation set
(EN ), specially designed from E to assess a certain
type of consistency. Next, we compare the PLM’s
prediction on E and EN to measure the consistency.

Our BECEL dataset contains EN of multiple ex-
isting downstream tasks for assessing various con-
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BoolQ SNLI RTE MRPC WiC SST2 AG-news
semantic 1,076 4,406 248 202 140 187 540

negational 401 2,204 153 290 - - -
symmetric - 3,237 1,241 3,668 5,428 - -
transitive - 2,375 - - 3,162 - -
additive - - - - - 53K 53K

Table 1: Number of new test data points for each down-
stream task and consistency type.

sistency types. It includes six downstream tasks:
SNLI (Bowman et al., 2015) and RTE (Candela-
Quinonero et al., 2006) for NLI, MRPC (Dolan
and Brockett, 2005) for STS, BoolQ (Clark et al.,
2019) for MRC, SST-2 (Socher et al., 2013) for
SA, AG-News (Zhang et al., 2015) for TC and
WiC (Pilehvar and Camacho-Collados, 2019), for
evaluating semantic consistency and four types of
logical consistencies.4 Several data examples are
in Figures 5 and 6 in Appendix B. We remove
factual consistency from our evaluation scope, as
benchmarks and evaluation frameworks for fac-
tual consistency are already well-studied across
various tasks, such as summarisation (Kryscinski
et al., 2020; Wang et al., 2020; Pagnoni et al.,
2021), QA (Choi et al., 2018; Rajpurkar et al.,
2018; Reddy et al., 2019), and dialogue genera-
tion (Dinan et al., 2019; Komeili et al., 2022).

Table 1 illustrates the size of the newly created
EN for each task and consistency type. In the case
where a specific consistency cannot be applied to
a particular task, it is excluded from the evalua-
tion. The applicability of each consistency type to
various tasks is described in Appendix A.2. In gen-
eral, we use test sets as E , provided gold labels are
available. If not, development sets are used instead.
However, training sets are used as E , if two condi-
tions are satisfied: (1) the size of the dev/test sets is
small, and (2) new evaluation data can be collected
automatically. Specifically, the RTE, MRPC, and
WiC tasks for evaluating symmetric and transitive
consistency belong to this case.

3.2 Data Collection Schema

Semantic consistency data. EN for semantic con-
sistency is a paraphrased version of E . For all tasks,
we paraphrase only one text input. Table 9 in Ap-
pendix illustrates each task’s fixed and modified
text inputs for creating EN . To collect paraphrase
sentences, we use the publicly available Quilbot
(https://quillbot.com/), as it can generate more nat-
ural paraphrases and cover broader linguistic varia-

4Brief descriptions of each downstream task are provided
in Appendix A.1.

tions compared to model-driven paraphrasing such
as text adversarial attacks. In the WiC data, we
remove a new data point if the target word does
not exist in the paraphrased sentence. We then con-
duct a human evaluation through Amazon MTurk
for the generated paraphrases to improve the data
quality. Three annotators are allocated for each
instance and asked to score the text similarity of
the original and paraphrased sentences from 1 to 5.
The instances where the average similarity score is
not less than 4 are finally added to EN .

Negational consistency data. To collect EN for
negational consistency, we generate the opposite-
meaning sentences of the modified variables listed
in Table 9 by using two methods: negation and
antonym replacement. For the former, we negate
sentences having a single verb by inserting nega-
tion expressions like “not”. For the latter, we ex-
tract adjectives and adverbs and replace only one
word at a time with its antonym by using Concept-
Net (Speer et al., 2017). Next, we perform the same
human evaluation used in semantic consistency but
select examples where the average similarity score
does not exceed 2. Finally, we conduct a manual
review on all instances to remove ambiguous or
grammatically incorrect data points.

As mentioned earlier, negational consistency is
data-specific. In SNLI, the label changes from
“entailment” to “contradiction” if the hypothesis is
switched with its opposite-meaning sentence. How-
ever, the label alteration is not guaranteed for the
other labels, especially for “neutral”. So, we only
consider the “entailment” label to construct EN of
SNLI. For the same reason, we only use data points
having the label “entailment” for RTE, “equivalent”
for MRPC, and “true” for BoolQ to build EN .

Symmetric consistency data. We swap the text
input order of tasks where the symmetric consis-
tency is applicable. For WiC and MRPC, it is valid
for every data point. Conversely, for NLI, it only
applies to instances having “contradiction” as a la-
bel (Li et al., 2019) or “neutral” if the hypothesis is
less specific than the premise (Wang et al., 2019).
For RTE, we ascertain that the premise is always
more specific than the hypothesis, and so data with
“not_entailment” label are used to construct EN .
However, it is not guaranteed in SNLI. So, only the
data points with “contradiction” label are used.

Transitive consistency data. We construct EN
for transitive consistency on two tasks: SNLI and
WiC. For SNLI, two data points must share the

https://quillbot.com/
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same hypothesis to apply the transitive inference
rules described in Section 2.2, but only a premise
is shared in the SNLI dataset. Hence, we leverage
the symmetric consistency applicable to instances
with the “contradiction” label, which enables us to
transform the rules 3 and 4 as follows:

E(P,H) ∧ C(P,Z) → C(H,Z),

N(P,H) ∧ C(P,Z) → ¬E(H,Z).

By using the modified rules, we collect EN for
SNLI automatically. However, since the hypothesis
is less specific than the premise in most cases in the
SNLI data (Wang et al., 2019), we observe that the
modified rules do not apply to several data points.
Therefore, we conduct a human evaluation through
Amazon MTurk to filter out such instances. Three
annotators are allocated to each instance. We add
examples to EN , provided at least two annotations
comply with the rules.

For the WiC task, given a target word w and three
predicates A, B, and C, the following transitive
rules are applicable to every data point:

T (A,B|w) ∧ T (B,C|w) → T (A,C|w),
T (A,B|w) ∧ F (B,C|w) → F (A,C|w),
F (A,B|w) ∧ T (B,C|w) → F (A,C|w),

where T /F implies that the meaning of the word
w is used identically/differently in the given two
sentences. We use these rules to collect EN of WiC.
Additive consistency data. The additive consis-
tency is valid for tasks that take a single-text input.
To construct EN for each task, we generate all pos-
sible combinations of two data points that share the
same label and create a new one by merging their
text inputs. Next, we remove a new data point if the
token length of the merged text exceeds the 75%
quantile of that of the training data, because such in-
stances can be considered out-of-distributions that
can overestimate the inconsistency issue.

3.3 Evaluation Metrics
Semantic/Symmetric consistency. Assume that
ei ∈ E , eNi ∈ EN , and eNi is a perturbed version of
ei, and therefore, |E| = |EN |. A model M should
generate the same predictions for ei and eNi . There-
fore, by referencing the robust accuracy (Tsipras
et al., 2019; Ivgi and Berant, 2021), we define the
inconsistency metric (τ ) for semantic and symmet-
ric consistency as follows:

τ = 1− 1/|EN |
∑|EN |

i=1
1(M(ei) = M(eNi )).

ℇ T T T T T T T T F F

F F T T T T T T T Tℇ𝑵
𝒔𝒚𝒎

ℇ𝑵
𝒏𝒆𝒈 F F F F T T F F F F

T T T T T T T T T T

Examples

Pr
ed
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tio
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𝐴𝑐𝑐: 80% 𝐼𝐶: 40%

Figure 2: Graphical representation of accuracy and sym-
metric/negational consistency for binary classification.
The blue and yellow boxes denote inconsistent cases for
symmetric and negational consistency, respectively.

Negational consistency. Let ei ∈ E , eNi ∈ EN ,
and eNi is a perturbed version of ei (i.e., |E| =
|EN |). Contrary to semantic and symmetric con-
sistency, a model M should produce different pre-
dictions for ei and eNi , where eNi ∈ EN is a new
instance designed for measuring negational con-
sistency. Therefore, we define the inconsistency
metric for negational consistency as follows:

τ = 1− 1/|EN |
∑|EN |

i=1
1(M(ei) ̸= M(eNi )).

Transitive/Additive consistency. For both transi-
tive and additive consistency, a new instance eNi is
generated from two data points of E . Assume that
eNi ∈ EN , and eNi originates from ei,1, ei,2 ∈ E .
Including eNi where the antecedent is not satisfied,
i.e., a model M makes incorrect predictions for ei,1
or ei,2, can overestimate the inconsistency problem.
Therefore, we use a conditional inconsistency as
an evaluation metric:

τ = 1− 1/|C|
∑|C|

i=1
1(M(ci) = li),

where li is the label of ci ∈ C, and C ⊂ EN denotes
the set of ei where the model M makes correct
predictions for both ei,1 and ei,2.

3.4 Importance of Measuring Consistency

Previous benchmarks regarding the opposite mean-
ings (Naik et al., 2018; Hossain et al., 2020) or
symmetry (Wang et al., 2019) only measure accu-
racy on the new test suit. It is true that models with
low accuracy are likely to be inconsistent, but the
high accuracy does not necessarily guarantee high
consistency. Figure 2 well illustrates an example
case. Although the accuracy is 80% in the origi-
nal test set and two types of EN , implying that the
model is quite robust on unseen data, the incon-
sistency is 40%. Therefore, consistency should be
treated as an independent evaluation metric.
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Model BoolQ MRPC RTE SNLI SST2 WiC AG-News
τsem τneg τsem τneg τsym τsem τneg τsym τsem τneg τsym τtrn τsem τadd τsem τsym τtrn τsem τadd

BERT base 20.5 87.2 16.6 90.3 7.6 15.8 76.9 17.8 11.0 15.9 12.1 4.0 5.2 0.2 7.1 8.9 46.8 2.8 1.6
large 16.5 77.3 12.5 90.8 6.8 12.3 75.8 15.8 9.9 11.7 10.2 3.6 3.3 0.1 8.4 7.0 49.3 3.0 1.7

RoBERTa base 13.5 43.5 13.2 83.5 4.7 12.8 56.9 18.6 9.6 9.5 9.3 3.3 4.5 0.1 10.1 6.9 50.8 3.1 3.1
large 10.2 40.8 8.4 84.2 4.3 9.8 24.6 11.6 7.9 5.9 9.7 3.5 2.3 0.1 9.3 7.3 46.6 2.7 1.1

Elelctra base 7.1 63.7 8.8 86.6 7.1 9.4 32.8 9.8 9.2 7.7 9.5 3.3 3.0 0.0 10.1 5.1 48.0 2.8 2.4
large 6.8 42.3 5.5 77.0 5.3 8.9 17.3 6.7 7.9 5.4 6.4 2.5 4.0 0.1 8.9 7.9 46.5 2.6 1.0

ERNIE2.0 base 13.3 62.4 6.3 79.6 6.6 13.2 35.0 13.2 10.1 13.2 9.5 3.3 5.2 0.1 5.1 5.1 51.1 3.2 2.7
large 7.6 66.8 7.3 62.7 6.4 9.8 37.1 22.8 9.0 7.5 7.3 3.0 3.5 0.0 9.0 6.9 46.7 3.5 1.7

GPT2 base 12.8 85.8 18.4 87.2 14.5 18.1 75.3 33.3 16.3 30.0 23.0 10.4 19.6 0.8 14.1 13.1 47.4 2.7 2.2
large 23.3 75.3 14.6 89.5 10.6 13.9 52.3 15.8 11.5 13.9 12.0 4.9 6.2 0.1 13.4 12.5 49.8 3.0 4.3

BART base 13.4 71.2 12.2 84.4 5.6 11.4 70.5 18.3 10.8 10.9 14.4 4.7 4.7 0.1 8.7 7.7 53.0 3.0 3.5
large 7.9 58.2 11.4 82.2 4.6 10.2 29.7 27.2 8.7 6.6 7.5 2.8 3.0 0.1 6.9 5.4 53.1 2.5 3.4

T5 base 12.9 29.4 8.1 39.8 3.7 11.7 18.5 16.8 10.9 7.2 10.6 3.6 4.1 0.2 16.0 7.9 46.3 2.1 0.3
large 10.9 19.7 4.5 25.2 4.2 8.6 15.9 8.0 9.3 5.8 8.3 2.9 3.0 0.1 8.6 6.3 45.3 1.7 0.2

Table 2: The average of semantic (τsem), negational (τneg), symmetric (τsym), transitive, (τtrn), and additive
inconsistency (τadd). All the metrics are lower the better. We repeat each experiments for five times.

4 Experiments and Analysis

4.1 Experimental Design

Model candidates. We evaluated the consistency
of the below widely used PLMs (both base and
large size models) on our new benchmark suit.

• Encoder models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), Electra (Clark
et al., 2020), and ERNIE 2.0 (Sun et al., 2020).

• Decoder models: GPT2 (Radford et al., 2019).
• Encoder-Decoder models: BART (Lewis

et al., 2020a) and T5 (Raffel et al., 2020).

Training details. At fine-tuning, we use AdamW
optimiser (Loshchilov and Hutter, 2017) and a lin-
ear learning rate scheduler decaying from 1e-3. All
models are trained for 10 epochs, and the early
stopping method is used during the training. The
batch size and learning rate are different across
model size and tasks. See Appendix A.3 for more
details. For T5, we apply text-to-text multitask
training by using the free-text input format used by
Raffel et al. (2020). We repeat the experiments for
each model and task for five times and report their
average values. Our best validation performance
is almost close to the reported results in previous
works (see Table 6 in the appendix).

4.2 Semantic Consistency Results

The results are in Table 2. We ascertain that PLMs
show a different consistency across diverse tasks.
Specifically, τsem is extremely low in the SST2 and
AG-News tasks. We conjecture that a leading cause
is that these tasks have a high correlation between
labels and certain words, such as sentiment words
and proper nouns, and therefore, are hardly affected
by paraphrases. Among the other tasks, the PLMs

BoolQ MRPC SST2 RTE
BAE 12.4 (-1.1) 7.9 (-5.3)* 5.9 (+3.6)* 11.7 (-1.1)

TextFooler 11.2 (-2.3)* 8.9* (-6.7)* 6.4 (+4.2)* 11.3 (-1.5)

Table 3: The inconsistency results of the adversarial
training experiments. The value written in parenthesis
is the difference compared to the original RoBERTa-
base model. The difference is statistically significant
with p value < 0.05 (*).

are relatively more consistent in MRPC than the
others but still make many mistakes considering
that the STS task is designed to focus on semantic
equivalence. We also observe that GPT2 and BERT
are highly inconsistent. T5 and Electra show the
lowest τsem, but the difference to the others, apart
from GPT2 and BERT, are marginal. The results
suggest that a model’s training objective somewhat
affects its semantic consistency.

Can adversarial training be a solution? Adver-
sarial training is widely used to improve robustness
by providing models with original and adversarial
samples (Jin et al., 2020). We investigate whether
it is beneficial to improve semantic consistency.
We apply two text attack methods, BAE (Garg and
Ramakrishnan, 2020) and TextFooler (Jin et al.,
2020), to the RoBERTa-base model by using Text-
Attack (Morris et al., 2020). Five adversarial sam-
ples are generated for each data point.

The results are in Table 3. We confirm that ad-
versarial training is not always beneficial. The
improvement is marginal, except for MRPC and
even backfired in SST2. We speculate that a lead-
ing cause is that the attack methods are likely to
generate incorrect paraphrase sentences (see Ap-
pendix 10 for examples). Moreover, adversarial
training is vulnerable to instances that the attack
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method cannot generate. It has been observed
that about 45% of inconsistent predictions con-
tain examples that have different sentence struc-
tures (e.g., changing active to passive), which
synonym-replacement-based methods like BAE
and TextFooler are unable to produce. The results
suggest that adversarial training cannot be an ul-
timate solution to improve semantic consistency.

4.3 Negational Consistency Results
Table 2 presents the results of the negational con-
sistency experiments. It is astonishing that τneg is
very high across all tasks apart from SNLI, sug-
gesting that the fine-tuned PLMs entirely fail to
understand the opposite meaning. For SNLI, we
strongly believe that the leading cause of low τneg
are superficial cues in the training data. It is well
known that there is a strong correlation between
negation expressions and “contradiction” labels in
the SNLI data (Gururangan et al., 2018), and we
confirm that almost 68% of training instances with
negation expressions in the hypothesis have “con-
tradiction” labels. So, achieving high consistency
in SNLI is easy, as our new evaluation set originates
from instances with “entailment” labels, as illus-
trated in Section 3.2. The relatively low τneg of the
T5 models, which can benefit from the SNLI data
through multi-task training, also support our claim.
Model design vs. superficial cues. Similarly to
the semantic consistency experiments, GPT2 and
BERT perform worst in general. To compare the
impact of model designs (e.g., training objectives,
model structure) and superficial cues, we use the
following metric for the model M on the task T :

ρMT = (τMT − τMSNLI)/(τ
M
T − τ∗T ),

where τMT implies the negational inconsistency of
the model M on the task T . τ∗T denotes the best
inconsistency of task T among similar-size models
(e.g., base). Intuitively, the metric implies that the
performance gap with SNLI (i.e., effect of superfi-
cial cues) is ρ times higher than that with the best
PLM (i.e., effect of model designs).

We measure ρ of BERT, GPT2, and BART, be-
cause their performance does not rank at the top
across all tasks (ρ becomes larger if the model’s
inconsistency is close to the best performance).
Single-task trained models are considered for de-
ciding the best performance. The results are in
Table 4. We observe that ρ is greater than 1 in ev-
ery case. RTE has relatively low values, as it shares
the same superficial cues with SNLI, but their total

Model BoolQ MRPC RTE
base large base large base large

BERT 1.63 1.80 6.95 2.81 1.38 1.10
GPT2 1.32 1.78 7.53 2.82 1.07 1.10
BART 2.18 1.99 15.31 3.09 1.58 1.31

Table 4: ρ values of BERT, GPT2, and BART.

Figure 3: Box plot of maximum softmax probability of
RoBERTa-base for negational consistency experiments.

amount is much less. This suggests that superficial
cues have a greater effect than model designs.

Overconfident inconsistent predictions. Nega-
tional inconsistency would be less concerning, if
the predictions are made by change (i.e., high en-
tropy). However, we observe that models are very
confident regarding their inconsistent decisions,
generating similar or higher softmax probabilities
than the consistent predictions in most cases (see,
e.g., Figure 3). The confidence score seems reason-
able only in the SNLI task, which contains superfi-
cial cues. The results suggest that fine-tuned PLMs
are hard to trust, considering their overconfidence
in incorrect and inconsistent predictions.

4.4 Symmetric Consistency Results

Table 2 shows the experimental results of symmet-
ric consistency. In terms of the model, GPT2 again,
performs worst in most cases, implying that deco-
der-only auto-regressive models are not suitable for
achieving high consistency. The inconsistency is
not significantly different for the other models, but
Electra outperforms the others in general.

Compared to the NLI tasks, the inconsistency is
much lower in WiC and MRPC, which are designed
to focus on semantic equivalence, suggesting that
achieving high symmetric consistency might be
possible by making PLMs capturing the latent
meaning of the texts. Although the inconsistency
is fairly low, it should not be overlooked, because
symmetry is an uncomplicated property that re-
quires a simple reasoning ability. For this reason,
humans are likely to show an extremely low incon-
sistency. We conduct a brief human evaluation on
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the MRPC task by asking five human annotators 30
questions each and observe that humans are highly
consistent on symmetry, achieving τsym = 0.7.

4.5 Transitive Consistency Results
The transitive consistency results are in Table 2.
Interestingly, they are entirely different in the two
tasks. In the SNLI task, which is designed to in-
fer the logical relationship between two given sen-
tences, all PLMs show a strong performance. How-
ever, in the WiC task, which focuses on the word’s
meaning, the inconsistency is very low even though
the evaluation data originate from the training set.
The results suggest that the transitive reasoning
ability is highly contingent on the purpose of down-
stream tasks.
Does the training data size matter? SNLI and
WiC have two major differences: (1) task objec-
tive and (2) data size (i.e., approximately 500K and
6K for SNLI and WiC, respectively). To ascertain
whether more training data help achieving a high
consistency, we conduct an additional experiment
by down-sampling the training data size of SNLI
to 6K. The Electra models that record the best τtrn
are used for this experiment. The results are in Ta-
ble 5. The inconsistency increases after the down-
sampling, but is still lower than that of WiC, and
the validation accuracy is impaired, especially in
the base-size model. The results suggest that small
training data can cause high inconsistency, as a
model becomes less accurate, but the task objective
affects much more than the training data size.

4.6 Additive Consistency Results
It is noteworthy that this experiment is a very easy
task, because the input is a combination of two
sentences that belong to the same category, so the
model has more evidence to make the correct de-
cision. The results of the additive consistency ex-
periments are in Table 2. All the PLMs are highly
consistent in SST2 but make some mistakes in AG-
News except for the T5 models. The average τadd
of 2.3 in AG-News is not a low score considering
the task difficulty. To become trustworthy, PLMs
need to be more consistent on the additive property.

5 Discussion
Are large models more consistent? It is well-
known that large-size models consistently outper-
form small-size models in terms of accuracy. Does
the same trend occur from a consistency perspec-
tive? Figure 4 illustrates the portion of the three
cases: the performance of the large models are

Model SNLI SNLI-6K WiC
Aval τtrn Aval τtrn Atr τtrn

Electra base 91.8 3.3 64.8 10.0 81.6 48.0
large 93.5 2.5 85.6 3.3 80.7 46.5

Table 5: Results of the down-sampled SNLI experi-
ments. Aval and Atr denote the validation and training
accuracy, respectively. We report Atr of WiC, because
its EN originates from the training data.

Semantic

Negational

Symmetric

Transitive

Additive

0% 25% 50% 75%

base > large no difference base < large

Figure 4: Portion of experimental cases where the large-
size models are more or less consistent than the base-
size models. A t-test under the significance level of 0.05
confirmed the statistical difference in performance.

better, worse, or show no statistical difference. In-
terestingly, the case where there is no statistical
difference in consistency between the large- and
base-size models accounts for a large portion, and
sometimes base-size models even perform better.
This pattern is hardly seen in accuracy-based evalu-
ation metrics, suggesting that additional evaluation
metrics such as consistency other than the accuracy
should be considered for a precise evaluation.

Necessity of a unified benchmark. Our experi-
mental results highlight the importance of evaluat-
ing models in a wide spectrum. We verify that none
of the PLMs performs coherently well in every ex-
periment, suggesting that focusing on a certain task
or consistency type contains the risk of reaching
a wrong conclusion. For instance, we might con-
clude that PLMs are fairly consistent if we only
consider semantic consistency. If we conduct ex-
periments only in the NLI tasks like extant studies,
the conclusion might be distorted, since the results
of all inconsistency types seem reasonable in the
NLI tasks, especially in SNLI. Our new dataset,
however, prevents us from drawing such a falla-
cious conclusion by allowing us to assess models
across multiple consistency types and tasks, demon-
strating its importance to have a unified benchmark
covering a wide array of topics including different
evaluation criteria and task types.

Uncontrollable AI. Due to the nature of inductive
reasoning, the inductive bias of machine learning
and deep learning models is greatly affected by the
patterns in the training data. Although this is well-
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known and widely accepted (Alzubi et al., 2018;
Katsaros et al., 2019; Anagnostis et al., 2020; Xu
et al., 2020; Thielen et al., 2020; Ma et al., 2021),
our experimental results show that the artefacts in
data are a more influential factor than the model
design in deciding its inductive bias (Section 4.3).
The problem is that we have a control over the
model design but not the artefacts, as it is difficult
to review and manipulate all data points with an
enormous size. This evokes a critical concern: un-
controllable AI. However elaborate the model that
we design with highly advanced training objectives
and model structures, we might not have a full con-
trol over the model, as the ungovernable effect of
the artefacts in data remains. It is thus imperative to
take appropriate actions to address the data-driven
faulty behaviour of the model, such as the genera-
tion of ethically problematic outputs (Nangia et al.,
2020). To overcome such issues and move forward
to developing more trustworthy and safer AI, per-
haps it is time to think beyond inductive reasoning.

6 Summary and Outlook

In this work, we first defined LM consistency based
on the concept of behavioural consistency: a core
property that a sound LM should obey. Next, we
categorised various previous studies regarding con-
sistency into three types: semantic, logical, and
factual consistency. Finally, we designed a bench-
mark suite to assess various types of consistency
on multiple downstream tasks.

Through extensive experiments, we observed
that none of the PLMs shows perfectly consistent
outputs in all test cases. Our experimental results
highlight the essence of evaluation schema in multi-
ple spectrums to avoid reaching a distorted conclu-
sion. We also revealed that the impact of spurious
artefacts presented in training data is greater than
that of model design, such as model size and learn-
ing objective. This finding raises concerns about
uncontrollable AI, as we have no control over the
artefacts in tremendous amounts of data. Our work
suggests that we should probably go beyond neural
models, which only allow inductive reasoning, to
develop trustworthy and safe AI.
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A Appendix

A.1 Task Descriptions

BoolQ (Clark et al., 2019) is a dataset for machine
reading comprehension (MRC) with yes/no ques-
tions. Each data point consists of a triplet such as
question, passage, and answer, requiring a broad
range of inference capacities to solve questions.
SNLI (Bowman et al., 2015) and RTE (recognis-
ing textual entailment) (Candela-Quinonero et al.,
2006) are datasets for natural language inference
(NLI). Each data point is composed of a sentence
pair and a label indicating the relationship between
the pair (i.e., “entailment”, “neural”, and “contra-
diction”). MRPC (Microsoft Research Paraphrase
Corpus) (Dolan and Brockett, 2005) is a dataset
for semantic textual similarity (STS). Each data
point consists of a sentence pair and a label indi-
cating whether the two paraphrased sentences are
semantically equivalent. SST-2 (Stanford Senti-
ment Treebank) (Socher et al., 2013) is a dataset
for sentiment analysis (SA). Each data point is com-
posed of a phrase and a binary sentiment label (i.e.,
positive and negative). AG-News (Zhang et al.,
2015) is a dataset of new articles for topic classi-
fication (TC). Each data point is composed of a
title and a description of an article, and a label re-
lated to one of the four topics of the article (i.e.,
“World”, “Sports”, “Business”, and “Sci/Tech”).
WiC (Word-in-Context) (Pilehvar and Camacho-
Collados, 2019) is a dataset for identifying the in-
tended meaning of words. Each data point consists
of two sentences containing the same specific word
and a label indicating whether the word is used
with the same meaning in different contexts.

A.2 Applicability of Logical Consistencies to
Downstream Tasks

Negational Consistency Applicability. Among
our downstream tasks, negational consistency is
invalid for the TC and WiC tasks. Regarding the
TC task, negated sentences normally belong to the
same category as their original version, as illus-
trated in the example in Section 2.2. Similarly, the
labels are preserved in the WiC task, because the
meaning of the target word does not change in the
perturbed sentence.

Although negational consistency is theoretically
applicable to the SA task, we remove it from our
evaluation scope for a practical reason. We ob-
serve that our method for generating the opposite
meaning sentence does not suit well on the spoken

language (e.g., movie reviews) that constitute the
SST2 dataset.

Symmetric Consistency Applicability. For sym-
metry to hold, the following two conditions are
necessary:
Condition 1. The input should consists of two
sentences.
Condition 2. The hierarchy between the two sen-
tences should be equivalent.

The TC and SA tasks violate the first condition.
Regarding the MRC task (i.e., BoolQ), the ques-
tion is dependent on the passage, and, therefore, it
violates the second condition. As a result, the three
tasks are removed from our scope for evaluating
symmetric consistency.

Transitive Consistency Applicability. Theoreti-
cally, transitive consistency is valid for the down-
stream tasks where symmetric consistency holds.
However, it requires one more condition for practi-
cal reasons: the two data points must have a com-
mon sentence, e.g., the same hypothesis in the NLI
task. Only the SNLI and WiC datasets satisfy this
condition among our candidate tasks. Although it
is possible to construct new data for the MRPC and
RTE datasets, it can cause a distribution shift issue
that could exaggerate the inconsistency problem.
Therefore, we conducted the transitive consistency
evaluation only on the SNLI and WiC datasets.

Additive Consistency Applicability. Additive con-
sistency always holds for tasks that take a single
sentence as an input. However, it is not guaran-
teed if a downstream task requires more than two
sentences as an input. Table 7 shows the example
of the violation in the SNLI task. Thus, we tested
additive consistency only for the SA and TC tasks.

A.3 Training Hyperparameters

Table 8 describes the batch-size per GPU, input
sentence length (i.e., number of tokens), and learn-
ing rates used for training models for each dataset.
Similarly to previous works, we confirm that the
datasets with large training data (e.g., SNLI, SST2,
and AG-news) were insensitive to hyperparameter
values.

A.4 Human Annotation

We used Amazon Mechanical Turk (https://www.
mturk.com/) for annotating our data. We employed
Anglophone annotators with an acceptance rate of
at least 98% and the number of HITs greater than

https://www.mturk.com/
https://www.mturk.com/
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Model BoolQ MRPC RTE SNLI SST2 AG-News WiC
Fval Fval Fval Fval Fval Fval Ftr Fval

BERT base 66.6 (1.0) 81.8 (1.9) 62.1 (2.0) 90.1 (0.2) 90.5 (0.3) 93.2 (0.2) 62.5 (13.4) 53.0 (7.4)
large 70.3 (1.4) 82.0 (1.4) 64.4 (3.3) 91.0 (0.2) 92.4 (0.4) 93.9 (0.2) 70.0 (9.0) 57.7 (2.9)

RoBERTa base 75.8 (1.0) 86.4 (0.9) 71.5 (1.8) 91.5 (0.0) 92.9 (0.4) 94.1 (0.1) 78.6 (3.9) 63.8 (1.8)
large 84.9 (0.4) 88.6 (1.0) 81.5 (2.1) 93.0 (0.1) 95.9 (0.3) 94.3 (0.2) 77.0 (6.2) 66.0 (2.0)

Electra base 73.8 (2.6) 88.3 (0.2) 75.3 (2.5) 91.8 (0.1) 93.9 (0.2) 93.2 (0.2) 80.4 (4.3) 66.5 (5.9)
large 87.1 (0.5) 90.1 (0.6) 86.7 (1.2) 93.5 (0.3) 95.4 (2.2) 93.8 (0.4) 80.7 (1.8) 69.0 (1.2)

ERNIE2.0 base 76.2 (1.2) 86.8 (0.9) 73.4 (2.6) 91.1 (0.2) 93.6 (0.2) 93.5 (0.1) 62.8 (13.1) 56.0 (4.6)
large 82.6 (0.7) 86.6 (1.2) 76.7 (1.1) 92.1 (0.0) 95.1 (0.2) 94.0 (0.2) 67.1 (9.5) 55.2 (10.1)

GPT2 base 62.9 (1.7) 77.3 (1.0) 65.3 (2.5) 84.7 (1.1) 90.9 (0.5) 92.9 (0.1) 73.4 (3.8) 63.5 (2.6)
large 75.3 (0.8) 80.4 (1.2) 69.0 (2.8) 90.8 (0.2) 94.1 (0.4) 94.1 (0.2) 87.4 (5.7) 64.5 (2.2)

BART base 64.8 (2.4) 85.6 (1.1) 70.7 (1.0) 90.8 (0.2) 93.0 (0.3) 93.8 (0.3) 78.8 (5.5) 56.0 (1.7)
large 78.4 (3.9) 81.6 (8.3) 74.9 (3.1) 93.1 (0.1) 95.9 (0.2) 94.0 (0.7) 77.3 (3.5) 58.9 (2.9)

T5 base 79.9 (0.2) 86.8 (0.9) 77.6 (0.2) 90.1 (0.1) 94.0 (0.2) 92.1 (0.2) 82.3 (0.3) 64.5 (1.1)
large 83.8 (0.6) 89.3 (0.9) 88.0 (0.6) 92.1 (0.2) 95.8 (0.1) 92.5 (0.4) 84.6 (1.5) 70.3 (0.8)

Table 6: Our validation performance of the PLMs on the seven downstream tasks; Ftr and Fval denote F1 score on
the training and validation set, respectively. We report the training performance of the WiC task, because the gap
between training and validation performance is large compared to the other tasks. We report the average of five
repetitions. The values written in parenthesis imply a standard deviation.

EXAMPLE 1
Premise: Two women are embracing while holding to go
packages.
Hypothesis: Two woman are holding packages.
Label: entailment
EXAMPLE 2
Premise: Two men on bicycles competing in a race.
Hypothesis: People are riding bikes.
Label: entailment

MERGED EXAMPLE
Premise: Two women are embracing while holding to go
packages. Two men on bicycles competing in a race.
Hypothesis: Two woman are holding packages. People
are riding bikes.

Table 7: Example of SNLI data where negational consis-
tency does not hold. The label of the merged example
cannot be “entailment”, because two women are not
riding bikes.

BoolQ SNLI RTE MRPC WiC SST2 AG-news
b-size 8 64 8 8 64 32 32
s-len 512 128 256 128 128 128 256

lr 2e−5 1e−5 1e−5 2e−5 1e−5 1e−5 1e−5

Table 8: Batch-size, sentence length, and learning rates
used for the BECEL benchmark experiments.

Fixed Variable Modified Variable
BoolQ passage question
SNLI premise hypothesis
RTE premise hypothesis

MRPC sentence1 sentence2
WiC word, sentence1 sentence2
SST2 - text

AG-news - text

Table 9: Modified variables of each dataset for collect-
ing EN for semantic and negational consistency.

1,000. The representative snapshot of the UI for
the human annotation is shown in Figure 7.
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B Examples

Test case Predicted Pass?

Testing Semantic Consistency on the TC task.                                                       Labels: World, Sports, Business, Sci/tech

Original UN's Global Fund meets African leaders in Tanzania for talks on fighting the world's deadliest diseases. World

O

New
The United Nations Global Fund meets African leaders in Tanzania to discuss combating the world's 
deadliest diseases.

World

…

Testing Negational Consistency on the NLI task.                                                  Labels: entailment, neutral, contradiction

Original
Premise: The man in the blue shirt is relaxing on the rocks.
Hypothesis: A man is wearing a blue shirt.

entailment

X

New
Premise: The man in the blue shirt is relaxing on the rocks.
Hypothesis: A man is not wearing a blue shirt.

entailment

…

Testing Symmetric Consistency on the STS task.                                                               Labels: equivalent, not_equivalent

Original 
S1: Zuccarini was ordered held without bail Wednesday by a federal judge in Fort Lauderdale, Fla.
S2: A federal magistrate in Fort Lauderdale ordered him held without bail. 

equivalent

O

New
S1: A federal magistrate in Fort Lauderdale ordered him held without bail. 
S2: Zuccarini was ordered held without bail Wednesday by a federal judge in Fort Lauderdale, Fla.

equivalent

…

Figure 5: Data examples of semantic, negational, and symmetric consistency evaluation.

Test case Predicted Pass?

Testing Transitive Consistency on the WiC task.                                                                                                Labels: True, False

Original 1
Word: back
Sentence1: The horse refuses to back.
Sentence2: The wind backed.

True

XOriginal 2
Word: back
Sentence1: The wind backed. 
Sentence2: The train backed into the station.

True

New
Word: back
Sentence1: The horse refuses to back.
Sentence2: The train backed into the station.

False

…

Testing Additive Consistency on the SA task.                                                                                         Labels: negative, positive

Original 1 Unflinchingly bleak and desperate. negative

XOriginal 2 A sometimes tedious flim. negative

New Unflinchingly bleak and desperate. A sometimes tedious flim. positive

…

Figure 6: Data examples of transitive and additive consistency evaluation.
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Figure 7: Snapshot of our human annotation UI for annotating semantic consistency evaluation data.

ORIGINAL SAMPLE
Sentence 1: The stupendous power of the Tevatron made possible the 1995 discovery of the top quark - the last of
six flavors of quarks predicted by the standard model theory of particle physics.
Sentence 2: The top quark is the last of six flavors of quarks predicted by the standard model theory of particle physics.
ADVERSARIAL SAMPLE
Sentence 1: The stupendous power of the Tevatron made possible the 1995 discovery of the top quark - the top of
six flavors of quarks predicted by the standard model theory of particle physics.
Sentence 2: The top quark is the last of six flavors of quarks predicted by the standard model theory of particle physics.

ORIGINAL SAMPLE LABEL ADVERSARIAL SAMPLE LABEL
entailment entailment

ORIGINAL SAMPLE
Sentence 1: Rockweed has been harvested commercially in Nova Scotia since the last 1950’s and is currently the most
important commercial seaweed in Atlantic Canada.
Sentence 2: Marine vegetation is harvested.
ADVERSARIAL SAMPLE
Sentence 1: Rockweed has been introduced commercially in Nova Scotia since the last 1950’s and is currently the most
important commercial seaweed in Atlantic britain.
Sentence 2: Marine vegetation is harvested.

ORIGINAL SAMPLE LABEL ADVERSARIAL SAMPLE LABEL
entailment entailment

Table 10: Examples of degenerated adversarial samples of BAE (Garg and Ramakrishnan, 2020) for the RTE dataset.
The words that changed in the adversarial samples are underlined in both original and adversarial samples. It is hard
to consider that the label of the adversarial samples is the same as the original label.


