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Abstract

The evaluation of recent embedding-based eval-
uation metrics for text generation is primarily
based on measuring their correlation with hu-
man evaluations on standard benchmarks. How-
ever, these benchmarks are mostly from simi-
lar domains to those used for pretraining word
embeddings. This raises concerns about the
(lack of) generalization of embedding-based
metrics to new and noisy domains that con-
tain a different vocabulary than the pretraining
data. In this paper, we examine the robust-
ness of BERTScore, one of the most popular
embedding-based metrics for text generation.
We show that (a) an embedding-based metric
that has the highest correlation with human
evaluations on a standard benchmark can have
the lowest correlation if the amount of input
noise or unknown tokens increases, (b) taking
embeddings from the first layer of pretrained
models improves the robustness of all metrics,
and (c) the highest robustness is achieved when
using character-level embeddings, instead of
token-based embeddings, from the first layer of
the pretrained model.1

1 Introduction

Evaluating the quality of generated outputs by Nat-
ural Language Generation (NLG) models is a chal-
lenging and open problem. Human judgments
can directly assess the quality of generated texts
(Popović, 2020; Escribe, 2019). However, human
evaluation, either with experts or crowdsourcing,
is expensive and time-consuming. Therefore, auto-
matic evaluation metrics, which are fast and cheap,
are commonly used alternatives for the rapid de-
velopment of text generation systems (van der Lee
et al., 2019). Traditional metrics such as BLEU
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), and ROUGE (Lin, 2004) measure

1The code of our experiments is avail-
able at https://github.com/long21wt/
robust-bert-based-metrics

n-gram overlap between generated and reference
texts. While these metrics are easy to use, they
cannot correctly assess generated texts that contain
novel words or a rephrasing of the reference text.

Recent metrics like BERTScore (Zhang et al.,
2020), MoverScore (Zhao et al., 2019), COMET
(Rei et al., 2020), BARTScore (Yuan et al., 2021),
and BLEURT (Sellam et al., 2020) adapt pretrained
contextualized word embeddings to tackle this is-
sue. These novel metrics have shown higher cor-
relations with human judgments on various tasks
and datasets (Ma et al., 2019; Mathur et al., 2020).
However, the correlations are measured on stan-
dard benchmarks containing text domains similar
to those used for pretraining the embeddings them-
selves. As a result, it is unclear how reliable these
metrics are on domains and datasets containing
words outside the vocabulary of the pretraining
data.

The goal of this paper is to investigate the robust-
ness of embedding-based evaluation metrics on
new and noisy domains that contain a higher ratio
of unknown tokens compared to standard text do-
mains.2 We examine the robustness of BERTScore,
one of the most popular recent metrics for text
generation.3 In order to perform a systematic eval-
uation on the robustness of BERTScore with regard
to the ratio of unknown tokens, we use character-
based adversarial attacks (Eger and Benz, 2020)
that introduce a controlled ratio of new unknown
tokens to the input texts. Our contributions are:

• We investigate whether the use of character-
based embeddings instead of token-based em-
beddings improves the robustness of embedding-
based generation metrics. Our results show that

2We connect to recent research that investigates the behav-
ior of metrics in adversarial situations (Sai et al., 2021; Kaster
et al., 2021; Leiter et al., 2022; Zeidler et al., 2022).

3E.g., as of September 2022, BERTScore is cited ∼1200
times while it is ∼200 and 400 for MoverScore and BLEURT,
respectively.
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the evaluations based on character-level embed-
dings are more robust.

• We examine the impact of the hidden layer used
for computing the embeddings in BERTScore.
We show that the choice of hidden layer affects
the robustness of the evaluation metric.

• We show that by using character-level embed-
dings from the first layer, we achieve the high-
est robustness, i.e., similar correlation with hu-
man evaluations for different ratios of unknown
tokens.

2 BERTScore

BERTScore (Zhang et al., 2020) computes the
pairwise cosine similarity between the reference
and hypothesis using contextual embeddings. It
forward-passes sentences through a pretrained
model, i.e., BERT (Devlin et al., 2019), and ex-
tracts the embedding information from a specific
hidden layer. To select the best hidden layer,
BERTScore uses average Pearson correlation with
human scores on WMT16 (Bojar et al., 2016) over
five language pairs. For instance, the best layer is
the ninth layer for BERTbase−uncased.

BERTScore with character-level embeddings.
Existing embedding-based metrics, including
BERTScore, use token-based embeddings that are
taken from pretrained models like BERT (Devlin
et al., 2019). In this paper, we investigate the im-
pact of using character-level embeddings instead
of token-level embeddings in BERTScore (Zhang
et al., 2020). We use ByT5 (Xue et al., 2021),
which encodes the input at the byte level. It tok-
enizes a word into a set of single characters or con-
verts it directly to UTF-8 characters before forward-
ing the input sequence into the model. Xue et al.
(2021) show that ByT5 is more robust to noise com-
pared to word-level embeddings. For computing
BERTScore using character-level embeddings, we
use ByT5 instead of BERT in BERTScore computa-
tions. We adapt three variants of ByT5 (small, base,
large) in BERTScore. Table 1 presents the best
layer of ByT5 models for computing BERTScore.

3 Experimental settings

3.1 Evaluation on a standard benchmark

We report the results on the WMT19 dataset (Ma
et al., 2019) that contains seven to-English lan-
guage pairs. Each language pair has 2800 sen-

Model Best Layer Score

ByT5-small 1 0.510
ByT5-base 17 0.581
ByT5-large 30 0.615

Table 1: Best layers with different ByT5 variants and
their average Pearson correlation score on WMT16.

Language Pairs No. Segment Sample (DARR)

de-en (German-English) 85365
fi-en (Finnish-English) 38307
gu-en (Gujarati-English) 31139
kk-en (Kazakh-English) 27094
lt-en (Lithuanian-English) 21862
ru-en (Russian-English) 46172
zh-en (Chinese-English) 31070

Table 2: To-English language pairs of WMT19. DARR
denotes Direct Assessment Relative Ranks, in which
all available sentence pairs of DA (Direct Assessment)
scores are taken into account.

tences, each corresponding to one reference, plus
the systems’ output sentences. Totally, the hu-
man evaluation in WMT19 has 281k segment sam-
ple scores for each of the output translation in to-
English language pairs. Table 2 shows the language
pairs considered, as well as the number of segments
per language pair.

3.2 Evaluating Robustness
Evaluation on different ratios of unknown to-
kens. To evaluate the robustness of evaluation
metrics on new domains, we use character-level
attacks to introduce a controlled ratio of unknown
tokens in the corresponding reference texts of the
evaluation sets.4 We examine five different attacks
from Eger and Benz (2020): (a) intruders: in-
serting a character—e.g., ‘.’, ‘/’, ‘:’—in between
characters of a word, (b) disemvoweling: remov-
ing vowels—e.g., ‘a’, ‘e’, ‘i’—from the word, (c)
keyboard typos: randomly replacing letters of a
word with characters that are nearby the original
characters on an English keyboard, (d) phonetic:
changing a word’s spelling in such a way that its
pronunciation stays the same, and (e) visual: re-
placing characters with a symbol that is its visually
nearest neighbor (Eger et al., 2019). We can control
the ratio of tokens that are affected by the adversar-

4We need human annotations for evaluating the correla-
tion of evaluation metrics with human judgments, and such
annotations are available for standard domains like WMT
datasets. As a result, we introduce unknown tokens by using
character-level attacks to artificially introduce more unknown
tokens.
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Setting Sentence

no-attack Now they have come to an agreement.
intrude Now they have c/o/me t+o a>n agreement.
disemvowel Nw thy have come to an grmnt.
keyboard-typo No3 they have come to xn agrrement.
phonetic Nau they have cohm to an agrimand.
visual Now thẸỸ hẲve come to aᷠ aᵹᴚḕḘmḔnƫ.

Table 3: Examples for the character-level attacks (Eger
and Benz, 2020; Keller et al., 2021) at perturbation level
p = 0.3, i.e., the probability that each letter in a sentence
is attacked is 0.3.

0.0 0.1 0.2 0.3

Perturbation Level

2

3

4

5

6

7

8

9

10

11

12

13

14

N
u

m
b

er
of

U
N

K
to

ke
n

s
p

er
se

gm
en

t

keyboard

disemvowel

intrude

phonetic

visual

Figure 1: The number of average unknown tokens
per segment across seven to-English language pairs in
WMT19 given different attacks and perturbation levels.

ial attack by the perturbation level (p), e.g., p = 0
denotes no attack and p = 0.3 indicates that each
letter in the sentence is attacked by the probability
of 0.3. Table 3 shows an example of each of these
attacks at p = 0.3.

Figure 1 shows the average number of un-
known tokens, as determined based on BERT’s
tokenizer, per segment across seven to-English lan-
guage pairs given different attacks and perturba-
tion levels. We count a token as an unknown to-
ken if (1) BERT represents it as [UNK], or (2)
BERT splits it into subwords, e.g., ‘pre-trained’ to

‘pre’,‘##train’,‘##ed’.5 As we see from the figure,
the number of unknown tokens increases as we ap-
ply these character-level attacks with higher pertur-
bation levels. In our experiments in Section 4, we
report the results using visual attacks. The results
using other attacks are also reported in Appendix
B, and they follow the same patterns as those using
the visual attack.

Evaluation on low-resource language pairs.
Apart from the experiments on WMT19, we also
perform the evaluations on the (Xhosa, Zulu) and
(Bengali, Hindi) language pairs from WMT21 (Fre-

5Please refer to the detailed algorithm in Appendix A.

Language pair No. unknown tokens

bn-hi (Bengali-Hindi) 19.235
hi-bn (Hindi-Bengali) 23.478
xh-zu (Xhosa-Zulu) 28.930
zu-xh (Zulu-Xhosa) 28.743

Table 4: The number of average unknown tokens per
segment for each language pair in our low-resource
datasets.
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Figure 2: Average Kendall correlation of 7 to-English
language pairs in WMT19 given different perturbation
level from p = 0.0 to p = 0.3 using the visual attack.

itag et al., 2021). BERTScore uses multilingual
BERT for evaluating non-English languages. Mul-
tilingual models contain a higher ratio of unknown
tokens for low-resource languages, and therefore,
evaluating the correlation of embedding-based met-
rics with human judgments on low-resource lan-
guages is also an indicator of their robustness. Ta-
ble 4 shows the number of unknowns tokens per
segment to multilingual BERT in four different low-
resources language pairs in WMT21 dataset. We
refer to the number of segments of low-resources
dataset in Table 7 in Appendix C.

4 Experiments

4.1 Impact of Character-level Embeddings

Table 5 shows the results of BERTScore using dif-
ferent embeddings on WMT19’s to-English lan-
guage pairs (using p = 0). Figure 2 shows the
average correlation score over all seven to-English
language pairs given different perturbation level
from p = 0 to p = 0.3 using the visual attack.

We observe that computing BERTScore using
the ByT5-small models results in a slightly lower
average correlation with human scores over the
seven to-English pairs at p = 0 compared to
BERTScore using BERT and larger ByT5 models.
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de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

BERT-base 0.180 0.339 0.288 0.438 0.364 0.209 0.410 0.318
BERT-large 0.194 0.346 0.292 0.442 0.375 0.208 0.418 0.325
ByT5-small 0.172 0.286 0.278 0.422 0.307 0.194 0.373 0.290
ByT5-base 0.197 0.326 0.297 0.419 0.358 0.215 0.418 0.319
ByT5-large 0.193 0.333 0.304 0.427 0.354 0.208 0.415 0.319

Table 5: Segment-level Kendall correlation results for to-English language pairs in WMT19 without any attack, i.e.
p = 0. The correlation of BERTScore with human are reported using different embeddings including bert-base-
uncased, bert-large-uncased, ByT5-small, ByT5-base, and ByT5-large.

Model bn-hi hi-bn xh-zu zu-xh

BERT-multi 0.073 0.364 0.266 0.488
ByT5-small 0.096 0.411 0.311 0.523

Table 6: Kendall correlation scores of BERTScore for
WMT21 low-resource language pairs Hindi-Bengali and
Zulu-Xhosa using BERT-base-multilingual and ByT5-
small embeddings.

However, the average correlation using ByT5-
small remains around the same value given dif-
ferent ratio of unknown tokens, indicating higher
robustness of the metrics using ByT5-small. On the
other hand, while using BERT-large embeddings re-
sults in the highest average correlation with human
scores in Table 5, its correlation drops consider-
ably in the presence of more unknown tokens in
Figure 2.

For Hindi-Bengali and Zulu-Xhosa, we com-
pare the results against using the BERT-base-
multilingual model in Table 6. We observe that the
BERTScore metric that uses ByT5-small achieves
higher correlations with humans throughout. Given
that low resources languages contain more out-
of-vocabulary words for pretrained models, this
observation confirms our previous results using
character-level attacks on the WTM19 dataset.

4.2 Impact of the Selected Hidden Layer

Our results in Section 4.1 show the robustness of
BERTScore when using the ByT5-small model for
computing the embeddings. However, as Table 1
shows, the selected hidden layer for getting em-
beddings varies when using different pretrained
models. For instance, when using ByT5-small em-
beddings, the model uses the embeddings of the
first layer while it uses the embeddings of the 30th
layer for ByT5-large. Zhang et al. (2020) show
that BERTScore correlation scores with humans
drop as they select the last few layers of BERT
for getting the embeddings. Therefore, the robust-

ness of examined metrics may also depend on their
corresponding selected layers for computing em-
beddings.

In this section, we evaluate the impact of the se-
lected hidden layer on the robustness of the metric.
We evaluate three settings where we use: (a) the
embeddings of the first layer for all models, (b) the
embeddings of the best layer for each model (cf.
Table 3), and (c) the mean of aggregated embed-
dings over all layers. We perform the robustness
evaluations using the visual attack at p = 0.3. Fig-
ure 3 shows the average results of this experiment6.
We make the following observations.

First, using the embeddings of the first layer
closes the gap between the correlations of different
variations of the ByT5 model, i.e., small, base, and
large, in the presence of more unknown tokens, i.e.,
p = 0.3.

Second, using the embeddings of the first layer
improves the robustness of BERTScore using
BERT embeddings, i.e., improving the correla-
tion from 0.033 to 0.174 for BERT-base given
p = 0.3. However, the correlation of the result-
ing BERTScore is still considerably lower than us-
ing ByT5 embeddings at the presence of more un-
known tokens. This indicates that both the choices
of the hidden layer as well as the pretrained model
play an important role in the robustness of the re-
sulting embedding-based metric. A reason why
the first layer may be more effective in our setup
is that, in the presence of input noise or unknown
tokens, embeddings of higher layers may become
less and less meaningful, as the noise may propa-
gate and accumulate along layers. We provide an
example from the similarity matrix of the resulting
embeddings for different layers in Figure 5 in the
Appendix E.

Overall, our results indicate that optimizing the
layer on a standard data set such as WMT16 may

6In Table 8 and 9 in Appendix D, we report scores for each
language pair.
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Figure 3: Average segment-level Kendall correlation results for seven to-non-English language pairs in WMT19 to
fist layer, default layer, and mean of aggregated embeddings setting in BERTScore.

be suboptimal in terms of the generalization of
the resulting metrics. Concerning efficiency of the
resulting metrics (a core aspect of modern NLP
(Moosavi et al., 2020)), BERT-base has 110 mil-
lion parameters, while ByT5-small has 300 million
parameters. With the default BERTScore setting,
passing the input through 9 layers results in a longer
inference time. However, using the embeddings of
the first layer results in a very fast inference for
both models.

5 Conclusion

Embedding-based evaluation metrics will be used
across different tasks and datasets that may contain
data from very different domains. However, such
metrics are only evaluated on standard datasets that
contain similar domains as those used for pretrain-
ing embeddings. As a result, it is not clear how
reliable the results of such evaluation metrics will
be on new domains. In this work, we investigate
the robustness of embedding-based metrics in the
presence of different ratios of unknown tokens. We
show that (a) the results of the BERTScore using
BERT-based embeddings is not robust, and its cor-
relation with human evaluations drops significantly
as the ratio of unknown tokens increases, and (b) us-
ing character-level embeddings from the first layer
of ByT5 significantly improves the robustness of
BERTScore and results in reliable results given dif-
ferent ratios of unknown tokens. We encourage the
community to use this setting for their embedding-
based evaluations, especially when applying the
metrics to less standard domains.

In future work, we aim to address other aspects
of robustness of evaluation metrics beyond an in-
creased amount of unknown tokens as a result of
spelling variation, such as how metrics cope with

varying factuality (Chen and Eger, 2022) or with
fluency and grammatical acceptability issues (Rony
et al., 2022). We also plan to investigate the impact
of pixel-based representations (Rust et al., 2022)
(which are even more lower-level) for enhancing
the robustness of evaluation metrics.
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Maja Popović. 2020. Informative manual evaluation
of machine translation output. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 5059–5069, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Md Rashad Al Hasan Rony, Liubov Kovriguina, Deban-
jan Chaudhuri, Ricardo Usbeck, and Jens Lehmann.
2022. RoMe: A robust metric for evaluating natural
language generation. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5645–
5657, Dublin, Ireland. Association for Computational
Linguistics.

https://aclanthology.org/2020.aacl-main.79/
https://aclanthology.org/2020.aacl-main.79/
https://aclanthology.org/2020.aacl-main.79/
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.26615/issn.2683-0078.2019_005
https://doi.org/10.26615/issn.2683-0078.2019_005
https://aclanthology.org/2021.wmt-1.73
https://aclanthology.org/2021.wmt-1.73
https://aclanthology.org/2021.wmt-1.73
https://doi.org/10.18653/v1/2021.emnlp-main.701
https://doi.org/10.18653/v1/2021.emnlp-main.701
https://doi.org/10.18653/v1/2021.findings-acl.141
https://doi.org/10.18653/v1/2021.findings-acl.141
https://doi.org/10.18653/v1/2021.findings-acl.141
https://doi.org/10.18653/v1/W19-8643
https://doi.org/10.18653/v1/W19-8643
https://doi.org/10.18653/v1/W19-8643
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/W19-5302
https://aclanthology.org/2020.wmt-1.77
https://aclanthology.org/2020.wmt-1.77
https://aclanthology.org/2020.sustainlp-1.0
https://aclanthology.org/2020.sustainlp-1.0
https://aclanthology.org/2020.sustainlp-1.0
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.coling-main.444
https://doi.org/10.18653/v1/2020.coling-main.444
https://www.aclweb.org/anthology/2020.emnlp-main.213
https://www.aclweb.org/anthology/2020.emnlp-main.213
https://doi.org/10.18653/v1/2022.acl-long.387
https://doi.org/10.18653/v1/2022.acl-long.387


3407

Phillip Rust, J.F. Lotz, Emanuele Bugliarello, Eliza-
beth Salesky, Miryam de Lhoneux, and Desmond El-
liott. 2022. Language modelling with pixels. ArXiv,
abs/2207.06991.

Ananya B. Sai, Tanay Dixit, Dev Yashpal Sheth, Sreyas
Mohan, and Mitesh M. Khapra. 2021. Perturbation
CheckLists for evaluating NLG evaluation metrics.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7219–7234, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2021. Byt5: Towards a token-free
future with pre-trained byte-to-byte models.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text gener-
ation. Advances in Neural Information Processing
Systems, 34.

Laura Zeidler, Juri Opitz, and Anette Frank. 2022. A
dynamic, interpreted CheckList for meaning-oriented
NLG metric evaluation – through the lens of semantic
similarity rating. In Proceedings of the 11th Joint
Conference on Lexical and Computational Semantics,
pages 157–172, Seattle, Washington. Association for
Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/2021.emnlp-main.575
https://doi.org/10.18653/v1/2021.emnlp-main.575
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
http://arxiv.org/abs/2105.13626
http://arxiv.org/abs/2105.13626
https://doi.org/10.18653/v1/2022.starsem-1.14
https://doi.org/10.18653/v1/2022.starsem-1.14
https://doi.org/10.18653/v1/2022.starsem-1.14
https://doi.org/10.18653/v1/2022.starsem-1.14
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053


3408

Algorithm 1: Count UNK token in a BERT
tokenized sentence

1 def count UNK:
Data: sentence: a tokenized sentence as

a list of string
output :count: number of UNK token

of input tokenized sentence

2 count←− 0
3 buffer←− empty list
4 for token in sentence do
5 if [UNK] in token then
6 count←− count +1
7 else if ## in token then
8 Add token to buffer
9 else

10 if len(buffer) != 0 then
11 count←− count +1
12 Empty buffer
13 end
14 end
15 end
16 if len(sentence) ≥ 2 then
17 if ## in last token of sentence then
18 count←− count +1
19 end
20 end
21 return count

A Counting UNK token

Algorithm 1 shows how we count UNK tokens
that the BERT tokenizer creates from a sentence.
In BERT, [UNK] represents the UNK tokens that
are not in their given vocabulary. Besides [UNK],
BERT use WordPiece tokenizer concept, which
breaks the unknown word into sub-words using a
greedy longest-match-first algorithm, such as splits
“bassing” into ‘bass’ and ‘##ing’ where ‘##’ de-
notes the join of sub-words. Thus, the UNK word
becomes two known words. ‘##’ is the indication
for the starting of a UNK word if the previous to-
ken does not contain ‘##’. In case the next token
still contains ‘##’, it indicates that the token still
belongs to a word and does not count as a UNK
token, e.g., “verständlich” to ‘vers’, ‘##tä’, ‘##nd’,

‘##lich’ and count it as one UNK token. It lasted
until we finally found non contain ‘##’ token. With
a word-piece tokenizer, the beginning token of a to-
kenized sentence is either [UNK] or known word,
and we also consider the case where the last token

Language Pair No. Segment

bn-hi (Bengali→ Hindi) 4,461
hi-bn (Hindi→ Bengali) 4,512
xh-zu (Xhosa→ Zulu) 2,952
zu-xh (Zulu→ Xhosa) 2,502

Table 7: Amount of segments in WMT21 for Hindi←→
Bengali and Zulu←→ Xhosa.

contains “##”.

B WMT19

The results of other attacks are illustrated in Fig-
ure 4.

C FLORES

Table 7 shows the number of provided human an-
notations in FLORES.

D Impact of layer choice in BERTScore

Table 8 and 9 show the particular results of each
language pair with different settings in BERTScore
without attack and with visual attack at p = 0.3
respectively.

E Effectiveness of the first layer

In Figure 5, we show four different settings
and their cosine similarity matrix computed by
BERTScore using bert-base-uncased. In both nor-
mal reference with 1st or 9th setups, matched to-
kens get higher similarity score. 9th layer setting
gathers information for relevant tokens, which re-
sults in higher similarity score across the matrix.
As in the case with attacked reference, 1st layer
setting penalizes the unmatched tokens and the
magnitude of matched tokens are as high as using
normal reference with 1st layer setup. However,
by using 9th layer for attacked reference, we can
observe the hue color of matched tokens with low
score. Thus, we conclude the accumulated noise to
higher layer cause the problem with effectiveness
in our previous setup with WMT19 dataset.
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Figure 4: Average Kendall correlation of seven to-English language pairs in WMT19 under attack with perturbation
level from p = 0.0 to p = 0.3

Setting Metric de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

Default

BERTScore-bert-base-uncased 0.18 0.339 0.288 0.438 0.364 0.209 0.41 0.318
BERTScore-byt5-small 0.172 0.286 0.278 0.422 0.307 0.194 0.373 0.290
BERTScore-byt5-base 0.197 0.326 0.297 0.419 0.358 0.215 0.418 0.319
BERTScore-byt5-large 0.193 0.333 0.304 0.427 0.354 0.208 0.415 0.319

First

BERTScore-bert-base-uncased 0.147 0.295 0.263 0.421 0.318 0.183 0.361 0.284
BERTScore-byt5-small 0.171 0.285 0.279 0.422 0.307 0.194 0.370 0.290
BERTScore-byt5-base 0.164 0.276 0.280 0.414 0.307 0.191 0.362 0.285
BERTScore-byt5-large 0.161 0.277 0.280 0.416 0.308 0.189 0.361 0.285

BERTScore-bert-base-uncased 0.17 0.326 0.289 0.437 0.351 0.206 0.397 0.311
Mean of BERTScore-byt5-small 0.170 0.292 0.284 0.420 0.313 0.202 0.372 0.293
aggregation BERTScore-byt5-base 0.188 0.324 0.305 0.427 0.347 0.207 0.408 0.315

BERTScore-byt5-large 0.185 0.322 0.311 0.431 0.343 0.208 0.411 0.316

Table 8: Segment-level correlation metric results Kendall for seven to-non-English language pairs in WMT19 with
respect to fist layer, default layer and mean of aggregated embeddings setting without any attack i.e. p = 0.
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Setting Metric de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

Default

BERTScore-bert-base-uncased -0.003 -0.014 -0.027 0.149 -0.022 0.024 0.126 0.033
BERTScore-byt5-small 0.155 0.266 0.239 0.392 0.264 0.175 0.360 0.264
BERTScore-byt5-base 0.014 -0.009 0.026 0.147 0.052 0.042 0.155 0.061
BERTScore-byt5-large 0.011 -0.055 -0.018 0.141 -0.015 0.032 0.155 0.036

First

BERTScore-bert-base-uncased 0.074 0.215 0.082 0.215 0.234 0.120 0.278 0.174
BERTScore-byt5-small 0.155 0.266 0.239 0.392 0.264 0.175 0.360 0.264
BERTScore-byt5-base 0.147 0.256 0.262 0.403 0.264 0.166 0.348 0.264
BERTScore-byt5-large 0.138 0.258 0.259 0.394 0.262 0.170 0.352 0.262

BERTScore-bert-base-uncased 0.053 0.144 0.052 0.214 0.149 0.082 0.240 0.133
Mean of BERTScore-byt5-small 0.070 0.089 0.094 0.244 0.109 0.107 0.273 0.141
aggregation BERTScore-byt5-base 0.025 -0.029 0.022 0.263 -0.019 0.056 0.123 0.063

BERTScore-byt5-large 0.054 0.005 0.020 0.255 0.013 0.095 0.156 0.085

Table 9: Segment-level correlation metric results Kendall for seven to-non-English language pairs in WMT19 with
respect to fist layer, default layer and mean of aggregated embeddings setting under visual attack at 0.3 perturbation
level.
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(a) 9th layer, attacked reference:
“Tḣis was the ₚos⦞ible caṲse of the fิ⒭e. ”

(b) 9th layer, normal reference:
“This could possibly be the cause of the fire.”

(c) 1st layer, attacked reference:
“Tḣis was the ₚos⦞ible caṲse of the fิ⒭e.”

(d) 1th layer, normal reference:
“ This could possibly be the cause of the fire.”

Figure 5: Similarity Matrix using BERTScore with bert-base-uncased for candidate: “ This could possibly be the
cause of the fire.” in different setups.


