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Abstract

Prompting method is regarded as one of the cru-
cial progress for few-shot nature language pro-
cessing. Recent research on prompting moves
from discrete tokens based “hard prompts”
to continuous “soft prompts”, which employ
learnable vectors as pseudo prompt tokens and
achieve better performance. Though show-
ing promising prospects, these soft-prompting
methods are observed to rely heavily on good
initialization to take effect. Unfortunately, ob-
taining a perfect initialization for soft prompts
requires understanding of inner language mod-
els working and elaborate design, which is
no easy task and has to restart from scratch
for each new task. To remedy this, we pro-
pose a generalized soft prompting method
called MetaPrompting, which adopts the well-
recognized model-agnostic meta-learning algo-
rithm to automatically find better prompt ini-
tialization that facilitates fast adaptation to new
prompting tasks. Extensive experiments show
MetaPrompting tackles soft prompt initializa-
tion problem and brings significant improve-
ment on four different datasets (over 7 points
improvement in accuracy for 1-shot setting),
achieving new state-of-the-art performance.

1 Introduction

Enabling models to learn from a few labeled ex-
amples, i.e., Few-Shot Learning (FSL), is one of
the key steps toward more human-like artificial
intelligence. Recently, taking advantage of large-
scale Pretrained Language Models (PLM) (Brown
et al., 2020), prompting-based methods achieve im-
pressive results for few-shot learning of Natural
Language Processing (NLP) (Gao et al., 2021; Liu
et al., 2021a; Zhao et al., 2021).

Prompting-based methods insert a piece of text,
i.e. prompts, to the input examples, so that the few-
shot task can be formulated as a (masked) language
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Figure 1: Comparison between conventional soft-
prompting method (left) and proposed MetaPrompting
(right). x denotes the query sentence, and z is learnable
pseudo tokens in soft prompts. ϕ represents all train-
able parameters. MetaPrompting exploits optimization-
based meta-learning to find an initialization ϕmeta that
facilitates better and faster adaptation to new tasks.

modeling problem. For example, say we want to
classify the sentiment of the book review “I will
never read it again.”, we can append a prompt “It
was” to the sentence, getting “I will never read it
again. It was”. It is natural to expect a higher prob-
ability from the PLM to generate “terrible” than
“great” then. Such converting bridges the gap be-
tween pre-training and target tasks. Consequently,
it has better transferability and less dependence on
target task data.

The performance of prompting methods is found
to be greatly affected by the design of prompts (Gao
et al., 2021). That is, a good prompt makes sig-
nificant difference. Early attempts take manually-
designed prompts or search prompts automatically.



Schick et al. (2020) and (Schick and Schütze, 2021)
explore to automatically identify label words. In
pursuit of better performance compared to hand-
picked prompts, Gao et al. (2021) proposes LM-
BFF to search both prompt templates and label
words. AutoPrompt (Shin et al., 2020) lever-
ages gradient-based searching to find out the best
prompts. These prompts consist of discrete to-
kens, which limits the prompt search space. To fur-
ther liberate the potential of prompts, recent works
employ learnable vectors as prompt content and
learn optimal prompts in continuous space, which
is so-called “soft prompts” (Liu et al., 2021c; Li
and Liang, 2021). Since they no longer require
prompts to be composed of real words, these meth-
ods greatly expand the possibilities of prompts and
thus achieve better performance (Liu et al., 2021b).

However, despite the promising prospects of soft
prompts, learning a good prompt is still far from
trivial. Because soft-prompts search for optimal so-
lutions in an infinite continuous space, the choice of
the starting point for the search (i.e., prompt initial-
ization) becomes crucial. Soft-prompt is observed
to be more sensitive to different initialization than
discrete prompts in low data setting (Li and Liang,
2021; Liu et al., 2021b). Unfortunately, creating
a perfect prompt initialization requires both un-
derstanding of LMs’ inner workings and trial-and-
error. Lester et al. (2021) initialize soft prompt with
the token embeddings of hand-crafted prompt di-
rectly. Zhong et al. (2021b) search discrete tokens
as better initialization, which shows better perfor-
mance. What’s worse is that these initializations
are task-bounded. Every time we confront a new
task, the costly process of initialization design has
to start from scratch.

In this paper, to tackle the above issues, we let
loose the prompt design of a specific task, but in-
stead focus on obtaining a task general prompt
initialization that facilitates faster and better adap-
tation to new prompting tasks. Recently proposed
optimization-based meta-learning algorithms, such
as MAML (Finn et al., 2017) and Reptile (Nichol
et al., 2018), achieve better adaption by learning a
parameter initialization. Following their essence,
we tackle soft prompt initialization problem by
proposing MetaPrompting, which is a generalized
soft prompting method powered by meta-learning
algorithms. MetaPrompting learns general meta-
knowledge from source domain tasks to form a
better soft prompt initialization, and thus adapts

faster and better across various target domain tasks
(See Figure 1). Extensive experiments show that
MetaPrompting achieves promising performance
with desired robustness.

We summarize the main contribution of this pa-
per as follows:

(1) We propose a novel prompting method
MetaPrompting, which employs optimization-
based meta-learning algorithm to find adaptive ini-
tialization for soft-prompt methods. To the best of
our knowledge, this is the first study of applying
meta-learning to prompting problem setting.

(2) We conduct extensive experiments on four
different datasets with various few-shot settings,
and results show the superiority of MetaPrompting
over normally fine-tuned soft-prompt methods and
SOTA meta-learning baselines.

(3) Further analysis experiments indicate that
MetaPrompting significantly alleviates soft prompt
initialization problem, and learns general meta-
knowledge to counter the instability of prompt vari-
ance. We also study MetaPrompting’s compatibil-
ity with different meta-learning methods and give
empirical analysis of their performance difference.

All code and data will be publicly available at
https://github.com/Dousia/MetaPrompting.

2 Preliminaries and Related Works

In this section, we review related work and provide
preliminaries about Language Model Prompting
and Meta-learning.

2.1 Prompting Language Models

Prompting methods are proposed to better apply
pre-trained language models to downstream tasks
by aligning them with pre-training tasks. For
Masked Language Models (MLMs), the first step
is to convert a sample text x to xprompt by insert-
ing prompt words which contain [MASK] tokens.
Taking the news headline classification task as an
example, the prompted text is given as:

xprompt = [CLS] x The topic is [MASK] . [SEP], (1)

where “The topic is [MASK]” are prompt tokens.
Then, we ask pre-trained MLM to complete the
prompted text xprompt, and the word to be filled
at [MASK] position is regarded as an answer. An
answer-label map is then used to convert the word
probability distribution at [MASK] to classifica-
tion results. For example, answers ‘arts’ and ‘cul-
ture’ can be mapped to label ‘ARTS & CULTURE’,
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while ‘environment’ can be mapped to label ‘EN-
VIRONMENT’. The average probability of each
label’s corresponding answers is computed as the
label’s final probability.

Early prompting methods, such as GPT-
3 (Brown et al., 2020) and PET/iPET (Schick and
Schütze, 2021), use hand-crafted prompt templates.
Although promising results are achieved, the per-
formance of these methods heavily relies on the se-
lection of pre-defined prompt templates. Moreover,
designing prompts is extremely time-consuming,
and hand-crafted prompts may be sub-optimal.

A number of recent works propose to automate
the search of discrete prompt templates (Shin et al.,
2020; Gao et al., 2021; Davison et al., 2019; Jiang
et al., 2020; Haviv et al., 2021), while others treat
prompt tokens as continuous trainable parame-
ters (Li and Liang, 2021; Liu et al., 2021c; Qin
and Eisner, 2021). In this work, we follow P-
tuning (Liu et al., 2021c) to combine soft prompt
and anchor tokens as templates. Instead of directly
applying the model in few-shot tasks, however, we
adopt meta-learning methods to find a better ini-
tialization point for both soft prompt embeddings
and MLM parameters, because they are very sen-
sitive to initialization in few-shot settings (Li and
Liang, 2021; Liu et al., 2021b). Note that a re-
cent work (Zhong et al., 2021a) also learns prompt
model on a number of source domain tasks, but
their method consumes heavy human labor to de-
sign hard prompts for each task, and directly fine-
tunes the model without involving meta algorithms.

2.2 Meta Learning

Meta-learning algorithms can be classified into
metric-based methods, model-based methods and
optimization-based methods. Metric-based meth-
ods such as Siamese Network (Koch et al., 2015),
Matching Network (Vinyals et al., 2016) and Proto-
typical Network (Snell et al., 2017), are proposed
to learn a metric space that gathers similar samples
and separates distinct ones. Model-based meta-
learning algorithms use additional meta learners to
assist model prediction (Graves et al., 2014; Mishra
et al., 2018; Qiao et al., 2018).

Different from above algorithms, optimization-
based meta-learning methods learn to improve
model’s optimization procedure. Optimization-
based approach is more suitable for prompting
models as it neither requires a specific task form
(i.e., metric learning form) nor additional archi-
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Figure 2: An illustration of soft-prompting method. x
refers to the sample text, and z represents soft prompt
tokens. All trainable parameters are colored in blue,
while fixed ones are colored in grey.

tecture (e.g. memory-augmented components in
model-based algorithms). Andrychowicz et al.
(2016) and Ravi and Larochelle (2017) train re-
current neural networks to transform vanilla gradi-
ent descent direction for better optimization results.
MAML (Finn et al., 2017) optimizes model param-
eters to find a better initialization point, so that the
model can adapt faster and better to unseen tasks.
In addition to MAML, more elaborate methods also
learn inner loop gradient descent direction (Li et al.,
2017) and inner step sizes (Antoniou et al., 2019).
Utilizing first-order derivatives, FOMAML (Finn
et al., 2017) and Reptile (Nichol et al., 2018) are
proposed to reduce the memory consumption of
high-order derivative calculation.

3 Method

Since prompt-based methods, especially those
adopting soft prompts, are very sensitive to pa-
rameter initialization (Li and Liang, 2021; Liu
et al., 2021b), we introduce optimization-based
meta-learning methods into prompting methods to
find better initialization points for prompt-based
models and further explore their capabilities in few-
shot scenarios. In this section, we first introduce
the prompt-based model tuning process used in our
method (§3.1), and then describe how to construct
Meta Prompting tasks (§3.2). Finally, we elaborate
and formulate the Meta Prompting objective and
parameter updating strategies (§3.3 and §3.4).

3.1 Prompt-based Model Tuning
In this work, we use soft prompts with anchor to-
kens. As illustrated in Figure 2, prompt tokens
consist of soft tokens which are represented as



trainable parameters (blue) as well as anchor to-
kens which are fixed as the embeddings of specific
words (grey). Hard-soft combined prompt tem-
plates render the model more flexible, while pre-
serving enough semantic information to trigger the
MLM to produce correct predictions. Similar to
P-tuning (Liu et al., 2021c), we implement transfor-
mation layers on soft prompt embeddings, allowing
them to escape from local minima smoothly.

In this way, we define MLM parameters as θ and
soft prompt token embeddings as ϕ. Given a few-
shot task τ where Dτ = {(xi,yi)}i∈τ represents
training samples, the prompt tuning objective can
be formulated as follows:

θ∗, ϕ∗ = argmin
θ,ϕ

LDτ (fϕ,θ)

= argmax
θ,ϕ

∑
(xi,yi)∈Dτ

logP (yi|xi;ϕ, θ),
(2)

where L is the loss function, and fϕ,θ is prompt-
based model parameterized by MLM parameters θ
and soft prompt embeddings ϕ.
Dτ contains few labeled data because of the high

annotation cost in real-world scenarios. As a result,
the initialization of parameters θ and ϕ are more
than crucial to the model’s performance.

3.2 Constructing Meta Prompting Tasks
To get a better initialization point for parameters
θ and ϕ, we propose to sample Meta Prompting
tasks from accessible source data and conduct meta-
training on these sampled tasks. This meta training
process aims to simulate the model’s adaptation to
new few-shot tasks.

We sample each Meta Prompting task τi as:

τi = (Dsupport
τi ,Dquery

τi ), (3)

where Dsupport
τi indicates the support set and

Dquery
τi indicates the query set in traditional few-

shot learning settings. Note that meta training tasks
and meta testing tasks should be sampled from dif-
ferent domains, to prevent the model from simply
memorizing training samples.

3.3 Applying Meta-learning to Prompting
Models

After constructing Meta Prompting tasks, we train
our prompting model on these tasks to find a
better initialization point. Figure 3 illustrates
the meta training and meta testing procedures of
MetaPrompting. Given a Meta Prompting task τi,
we clone the model’s parameters and simulate the
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Figure 3: Meta training and testing procedures of
MetaPrompting.

adaption process of few-shot tasks by updating
cloned model parameters θ0i and ϕ0

i on Dsupport
τi .

The adaption objective is given in Equation (2), and
this process can be formulated as:

θki = θk−1
i − α∇θk−1

i
LDsupport

τi
(fϕk−1

i ,θk−1
i

),

ϕk
i = ϕk−1

i − α∇ϕk−1
i
LDsupport

τi
(fϕk−1

i ,θk−1
i

),
(4)

where α indicates learning rate and k = 1, 2, 3, . . .
indicates the inner step. The goal of learning with
Meta Prompting tasks is to minimize the loss of
the adapted prompting model, which is parameter-
ized as fϕi,θi , on Dquery

τi . This objective can be
described as follows:

θobj , ϕobj = argmin
θ,ϕ

LDquery
τi

(fϕi,θi). (5)

Optimizing towards this objective is to mimic
real few-shot text classification scenarios, and en-
able prompting model to find a better initialization
point for fast adaptation to new tasks. Let β be the
learning rate when updating model parameters on
Dquery

τi , and H be Hessian matrix. We formulate
the second-order gradient of prompt parameter ϕ
computed on Dquery

τi in the following form:
ϕ← ϕ− β · gsecondϕ

= ϕ− β∇ϕLDquery
τi

(fϕi,θi)

= ϕ− β∇ϕi
LDquery

τi
(fϕi,θi) · ∇ϕ(ϕi)

= ϕ− β∇ϕi
LDquery

τi
(fϕi,θi)·

(I− αHϕ(LDsupport
τi

(fϕ,θ))),

(6)



where we assume ϕi is ϕ adapted for one inner
step on Dsupport

τi . In practice, inner steps can be in-
creased for better performance. Pre-trained MLM
parameters θ is updated in the same way as prompt
parameters ϕ in Equation (6).

3.4 Stable and Memory-efficient Meta
Prompt Learning

Although broadly used in meta-learning tasks,
MAML suffers from training instability and ex-
ploding memory consumption when model size
and inner step grow. To address the first problem,
we follow Antoniou et al. (2019) to introduce Multi-
Step Loss Back-propagation (MSLB) into prompt-
ing model tuning process. In this way, prompting
model parameters receive optimization information
from each inner step during adaptation, alleviat-
ing the vanishing/exploding gradient problem in
the stacked deep neural architecture constructed in
adaptation process.

As for the exploding memory consumption is-
sue, we also explore to combine memory-efficient
alternatives such as FOMAML (Finn et al., 2017)
and Reptile (Nichol et al., 2018) with prompting
model. FOMAML removes the high-order deriva-
tives term in Equation (6), providing a cheap ap-
proximation for MAML. Reptile updates model
parameters towards the optimal point of each task,
which is obtained by adapting the model on the
support set samples. Equipped with these algo-
rithms, MetaPrompting can learn meta knowledge
with limited memory consumption.

4 Experiment

We conduct experiments by evaluating the pro-
posed methods on four widely-used benchmark
datasets with various low resource settings.

4.1 Dataset

Following Bao et al. (2019); Xu and Xiang
(2021), we use the following four text classifica-
tion datasets for experiments, which provide well-
founded benchmarks for the meta-train & meta-test
setting and vary in domain and text length.

HuffPost headlines contains around 36, 900
news headlines from 2012 to 2018 obtained from
HuffPost (Misra, 2018; Misra and Grover, 2021).

For other datasets used in Bao et al. (2019), RCV1 (Lewis
et al., 2004) is not included due to overly long text lengths,
while FewRel (Han et al., 2018) is excluded because it does
not provide each label’s semantic meanings.

These headlines cover 41 news categories and the
average text length is 11.

Amazon product data contains around 24, 000
product reviews from 1996 to 2014 from Ama-
zon (He and McAuley, 2016). These reviews con-
tain 24 categories corresponding to their respective
product categories with varying text lengths. The
average text length is 140.

20 Newsgroups contains 18, 820 newsgroup
documents of 20 different topics (Lang, 1995). We
used 20news-18828 version following Bao et al.
(2019). The average text length is 340.

Reuters contains 620 document-level news arti-
cles of 31 different topics from 1987 (Lewis, 1997).
The average text length is 168.

We adopt the same pre-processing and data-
splitting strategy with Bao et al. (2019) to process
the above datasets.

4.2 Implementation

We use the pre-trained BERT (bert-base-uncased)
with HuggingFaces codebase (Wolf et al., 2019) as
the pre-trained language model.

For soft prompting model, we follow Liu et al.
(2021c) to use a two-layer biLSTM and a two-layer
MLP to transform soft-prompt embeddings. We di-
vide the learnable parameters of prompting model
into two parts: pre-trained model and prompt em-
beddings. AdamW (Loshchilov and Hutter, 2018)
is used to optimize two types of parameters, with
initial learning rates of 1e−5 and 5e−5, respec-
tively. For pre-trained model parameters, we set
weight decay to 0.1. We also adopt linear warmup
and linear decay strategy for learning rates. Batch
size is set as 16 for all stages, and the model adapts
for 15 epochs on test episodes. We run 3 indepen-
dent runs with random seeds for each setting.

Before meta-training stage, we generate 10, 000
training episodes, 2, 500 validation episodes and
1, 000 testing episodes comprehensively and ran-
domly. During the training stage, we train the
model with 100 sampled training episodes per
epoch. When there is no validation accuracy in-
crease for 10 epochs, we apply early stopping. For
meta-testing, we test the model on all 1, 000 test
episodes and report the average accuracy.

4.3 Baselines

We compare with the following baselines:
1-NN is a 1-nearest-neighbor classifier based on

Euclidean distance.



Method 20 News Amazon HuffPost Reuters Average

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

1-NN 38.8 51.9 51.4 67.1 31.5 42.3 57.8 82.9 44.88 61.05
FT 33.0 47.1 45.7 63.9 32.4 44.1 70.9 91.0 45.50 61.53
PROTO 37.8 46.5 41.9 59.2 34.8 50.2 61.0 72.1 43.88 57.00
MAML 37.2 48.6 43.6 62.4 38.9 53.7 61.5 72.0 45.30 59.18
RR 44.8 64.3 60.2 79.7 37.6 59.5 69.1 93.0 52.93 74.13
DS (2019) 52.1 68.3 62.6 81.1 43.0 63.5 81.8 96.0 59.88 77.23
DE-MLMAN (2021) − − − − 49.7 60.9 − − − −
DE-MAML (2021) − − − − 51.8 67.3 − − − −
DE-PROTO (2021) − − − − 52.3 69.6 − − − −
KGML-PROTO (2021) − − 58.6 74.5 42.3 58.7 − − − −
KGML-MAML (2021) − − 51.4 58.8 44.2 54.1 − − − −
P-TUNING (2021c) 61.20 71.47 62.18 79.13 54.48 65.75 90.01 96.66 66.97 78.25
FROG-GNN (2021) − − 71.5 83.6 54.1 69.6 − − − −
LASAML-PN (2021) − − − − 62.1 70.1 − − − −
CONTRASTNET (2022) 71.74 81.57 76.13 85.17 53.06 65.32 86.42 95.33 71.84 81.85

OURS (PRETRAIN INIT) 72.52 76.32 75.12 83.27 70.82 75.47 95.07 97.29 78.38 83.09
OURS (META INIT) 73.75 76.57 77.65 85.54 71.93 76.32 95.20 97.17 79.63 83.90

Table 1: Results of 1-shot and 5-shot classification on four datasets in terms of accuracy. The rows below the
mid-line are results of MetaPrompting. ‘-’ means that the result of this dataset is not given in the original paper.
We do not show standard deviation of our experiment results here due to space limits. Full results can be found in
Appendix A.

FT (Chen et al., 2019) pre-trains a classifier on
source domain data, and then fine-tunes (FT) it on
each support set before evaluation.

RR (Bertinetto et al., 2019) adopts ridge regres-
sion (RR) for classification.

MAML (Finn et al., 2017) meta-learns a classi-
fier with MAML algorithm, so that the model can
adapt faster and better to target domain tasks.

Prototypical network (Snell et al., 2017) is a
metric-based method which meta-learns a metric
space by minimizing the Euclidean distance be-
tween the centroid of each category and the corre-
sponding samples.

DS (Bao et al., 2019) is trained within a meta-
learning framework to map the distribution signa-
tures (DS), i.e., characteristics of the underlying
word distributions, into attention scores to extract
more transferable features.

DE (Ohashi et al., 2021) generates distinct label
representations that embed information specific to
each label to aid classification tasks. During exper-
iments, it is combined with MAML (DE-MAML)
and prototypical network (DE-PROTO), as well as
MLMAN (Ye and Ling, 2019) (DE-MLMAN).

KGML (Yao et al., 2021) extracts additional rep-
resentation for each sentence from external knowl-
edge base, to bridge the gap between meta-training
and meta-testing tasks. During experiments, it

The above 6 baselines uses fastText embeddings (Joulin
et al., 2016) and each word’s inverse document frequency to
produce sentence embeddings.

works with MAML (KGML-MAML) and proto-
typical network (KGML-Proto).

P-tuning (Liu et al., 2021c) is a prompt-based
method that uses masked language model to con-
vert target tasks into cloze problems. It employs
soft-prompting techniques to optimize prompts in
continuous space.

Frog-GNN (Xu and Xiang, 2021) is a graph
neural network based method, which extracts bet-
ter query representations with multi-perspective
aggregation of graph node neighbors.

LaSAML-PN (Luo et al., 2021) is a meta-
learning framework that mines semantic informa-
tion in labels and attaches it to the sentence as the
input of the encoder to obtain discriminative sen-
tence embeddings.

ContrastNet (Chen et al., 2022) is the SOTA
method. It introduces instance-level and task-level
regularization loss into vanilla contrastive learn-
ing model based on BERT representations for bet-
ter generalization performance. The regularization
loss is computed with samples augmented by an
additional BERT model.

4.4 Main Results

We evaluate the proposed methods in both 5-way
1-shot and 5-way 5-shot settings and report per-
formance on four different datasets with different
text styles. As shown in Table 1, our model outper-
forms previous SOTA method ContrastNet without
using additional PLM. Averagely, our model im-



proves 1-shot accuracy by 7.79 (10.84% ↑) and
5-shot accuracy by 2.05 (2.50% ↑) across four
datasets. MetaPrompting gains less improvement
on 20Newsgroup and Amazon, because their la-
bels are hard to interpret as natural words, which
poses difficulties for prompting models (Shin et al.,
2020; Cui et al., 2022). Various methods are pro-
posed to address this problem (Shin et al., 2020;
Gao et al., 2021; Hambardzumyan et al., 2021; Cui
et al., 2022; Jiang et al., 2021). In this work, how-
ever, we do not spend much effort on elaborate
answer design but instead focus on soft prompt
initialization problem. Although equipped with
simply designed answer sets, MetaPrompting still
achieves new state-of-the-art performance across
the four datasets.

Meanwhile, we have following observations
based on Table 1:

(1) Compared with other soft-prompting meth-
ods, i.e., P-tuning, our method obtains superior
results. Although meta learning is conducted on
completely different source domain Meta Prompt-
ing tasks, our method still learns a better prompt
model initialization point, which allows faster and
better adaption to new prompting tasks.

(2) When compared to traditional supervised
learning methods, such as FT, all prompt-based
methods achieve significant improvements, which
demonstrates the effectiveness of prompting mech-
anism in narrowing the gap between pretraining
and downstream tasks.

(3) Metric learning-based baselines, such as
ContrastNet and LASAML-PN, perform as the
strongest baselines on Amazon and HuffPost
datasets, respectively. We find that directly using
prompt-based method may not necessarily perform
better, because of the absence of domain-related
initialization. The proposed MetaPrompting allevi-
ates the above issue and achieves new state-of-the-
art performance. Among strong metric-learning
baselines, Frog-GNN conducts transductive learn-
ing with additional label propagation information,
and ContrastNet uses an additional BERT model
to regularize the main model with augmented data.
Our model achieves better performance without
implementing any of above tricks.

(4) Compared with other optimization-based
meta-learning methods such as MAML, DE-
MAML and KGML-MAML, MetaPrompting con-
sistently performs better, demonstrating good com-
patibility between prompting methods and meta-

Method HuffPost Amazon 20 News Reuters

BASELINE 65.75 79.13 71.47 96.66
OURS 73.06 83.64 75.60 97.26

Table 2: PLM frozen, MetaPrompting still achieves
better performance over randomly initialized baseline
on test domains. Results are given in 5 shot setting.

learning. Note that KGML-MAML adopts an addi-
tional knowledge base, while our model does not
but still achieves better performance.

(5) To further demonstrate meta learning
method’s effectiveness in prompt learning, we con-
duct ablations study by removing the Meta Prompt-
ing Objective and learn an initialization by pre-
training soft prompt model on Meta Prompting
Tasks described in Section 3.2. The results are
shown as OURS (PRETRAIN INIT). Performance
drops are witnessed across all four datasets and
few-shot settings, validating the necessity of meta
objectives in finding a better initialization.

4.5 Analysis

In this part, we analyze the proposed method from
different aspects.

MetaPrompting tackles soft prompt initializa-
tion problem. Main results displayed in Section
4.4 are obtained with LM parameters tuned for
fair comparison with previous SOTA baselines. To
further validate the importance of learning a good
prompt initialization, we freeze PLM’s parameters
while leaving soft prompt parameters unfrozen to
only learn a better prompt initialization on source
domains. We test our meta-learning-based initial-
ization strategy against random initialization, and
the results are shown in Table 2. The randomly ini-
tialized soft prompt baseline performs poorly and
unstably, while our method consistently yields bet-
ter results with lower variance across four datasets,
which verifies our hypothesis and the validity of
the MetaPrompting.

MetaPrompting learns general meta-knowledge
from various source domains. Although
MetaPrompting shows promising results when
meta trained on source domain tasks from the
same dataset, it is impractical to always build
corresponding meta-training tasks for each
few-shot scenario. To this end, we conduct
meta-training on Out-Of-Domain (OOD) tasks
to better analyze MetaPrompting’s ability in



Source domain Target domain Acc

− HuffPost 65.75
Metatuning HuffPost 67.46

Reuters HuffPost 69.18
20 Newsgroup HuffPost 71.04

Amazon HuffPost 71.47
HuffPost (Diff. label set) HuffPost 76.32

Table 3: Given irrelevant source domain data,
MetaPrompting still learns meta knowledge to improve
the performance on target domains.

transferring meta-knowledge from various source
domains.

Table 3 shows the results of 5-shots setting. Even
given irrelevant meta-training data and prompt
templates from other datasets, MetaPrompting
still learns meta knowledge to tackle target do-
main tasks and outperforms the baseline robustly.
Among OOD datasets, Metatuning (Zhong et al.,
2021a) contains a series of text classification
tasks, and each task is accompanied by several
hand-crafted questions which require yes/no an-
swers. The task formulation of Metatuning is
distinct from HuffPost. However, MetaPrompt-
ing still makes it to transfer meta-knowledge from
Metatuning to HuffPost’s target domains, improv-
ing model performance by approximately 2 points.
Although MetaPrompting’s performance varies
among source domain tasks according to their data
quality for generalization purposes, the proposed
model outperforms the baseline across all source
domain tasks, verifying MetaPrompting’s effective-
ness in transferring meta-knowledge.

Anti-disturbance analysis We expect the meta-
learned initialization alleviates prompting models’
susceptibility to varying prompt forms. To verify
this, we test the prompting model with multiple dif-
ferent prompt forms and report the standard devia-
tion. Specifically, we add two more discrete prompt
templates, and randomly replace the template to-
kens with pseudo tokens to test MetaPrompting’s
robustness across different templates.

Table 4 shows the results. While changing the
prompting form indeed impacts the performance
for both our method and normal soft prompting
methods, the proposed meta-learning method sig-
nificantly reduces performance fluctuation, show-
ing impressive anti-disturbance ability. Therefore,

We add “The topic/product category: [MASK]. Input: x”
and “x. What is the topic/product category ? [MASK].”,
where topic and product category are used for HuffPost and
Amazon dataset respectively.

Method HuffPost Amazon
1 shot 5 shot 1 shot 5 shot

P-TUNING ±3.46 ±1.90 ±5.30 ±1.85
OURS ±0.23 ±0.09 ±0.17 ±0.45

Table 4: Analysis for anti-disturbance against changing
of prompting form.

Setting MAML++ MAML FOMAML Reptile

1 SHOT 71.93 71.43 70.56 69.76
5 SHOT 76.32 76.04 76.08 74.09

Table 5: MetaPrompting’s performance with different
meta learning methods.

the proposed method is promising in real-world
applications, because prompt designing requires
heavy workload and domain-specific knowledge.
Applying MetaPrompting significantly reduces the
cost of prompt engineering.

Applying different meta-learning methods to
prompting models. In this part, we conduct em-
pirical analysis on different optimization-based
meta-learning methods applied in prompting mod-
els. Results are shown in Table 5. Stabilizing
MAML training procedure, MAML++ performs
the best among all methods, while Reptile fails
to achieve comparable performance with others.
We attribute Reptile’s low performance to PLM’s
sensitivity to parameter tuning process, which can
be distorted by Reptile’s parameter updating strat-
egy. MAML and FOMAML show similar results,
because MetaPrompting’s slow tuning process nar-
rows the gap between their calculated gradient dur-
ing meta-training.

Analysis for learning procedure of prompting
methods. We analyze the decreasing trend of
adaptation loss to better understand the learning
procedure of soft-prompt model. Specifically, we
visualize model adaptation loss curve during meta-
testing on 5 shot Amazon dataset.

As shown in Figure 4, task-related initialization
(Ours (Pretrain Init)) helps the model converge
faster and end up at a lower position than randomly
initialized baseline. The proposed meta-learning-
based method (Ours (Meta Init)) further improves
the learning process in new tasks, indicating that
the meta-learned initialization point contains more

We only include the MSLB trick of MAML++ (Antoniou
et al., 2019) due to the incompatibility (BN layer tricks) or triv-
ial performance improvement (Per-step adaption loss, cosine
annealing learning rates).
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Figure 4: Analysis on prompt learning process.

generalizable meta knowledge to aid new tasks.

5 Conclusion

In this paper, we introduce a generalized
optimization-based meta-learning approach
MetaPrompting for few-shot NLP problems. Uti-
lizing sampled meta tasks and meta-learning-based
optimization, MetaPrompting learns to find an ini-
tialization that alleviates soft prompt initialization
problem, and allows better and faster adaption to
new tasks. Extensive experiments on four few-shot
learning benchmarks show that MetaPrompting
significantly outperforms vanilla soft-prompting
models and strong meta-learning baselines,
achieving new state-of-the-art performance.
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